Week 11 – Continuum models –Part 1: Transients

Biological Modeling of Neural Networks:

Week 11 – Continuum models: Cortical fields and perception

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

11.1 Transients

- sharp or slow

11.2 Spatial continuum

- model connectivity
- cortical connectivity

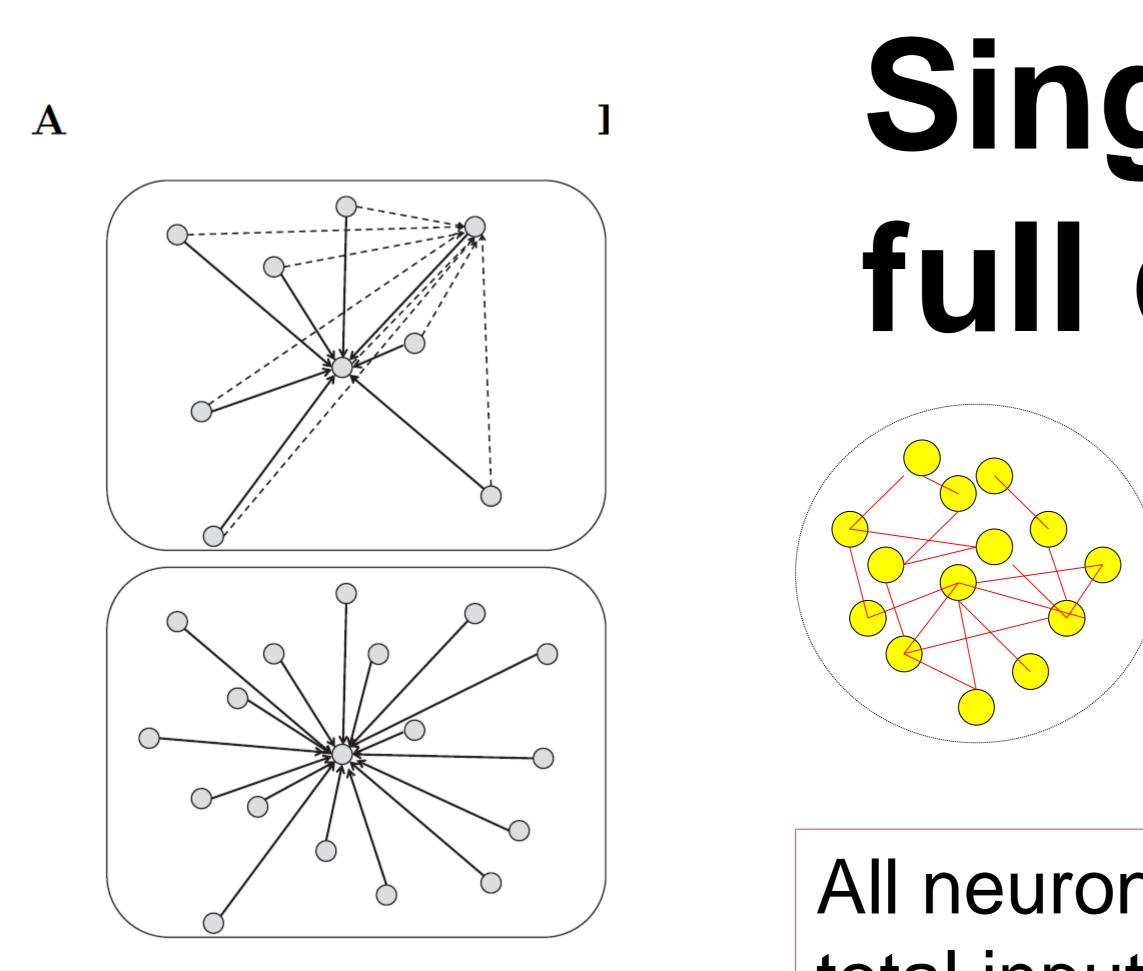
11.3 Solution types

- uniform solution
- bump solution

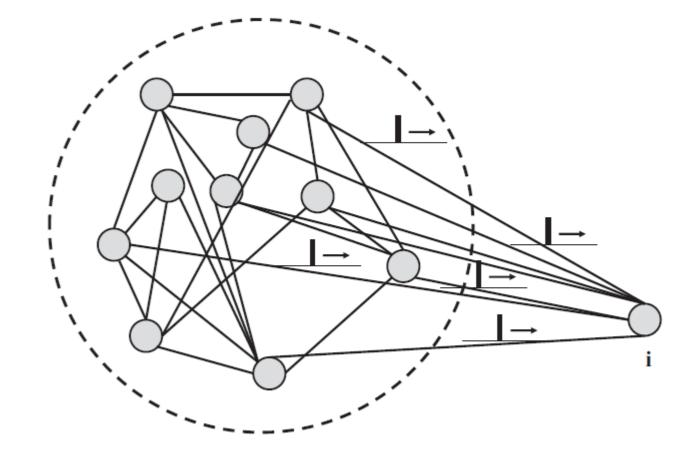
11.4. Perception

11.5. Head direction cells

review from Week 10-part 3: mean-field arguments



Single population full connectivity

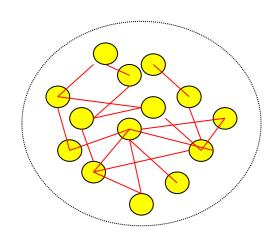


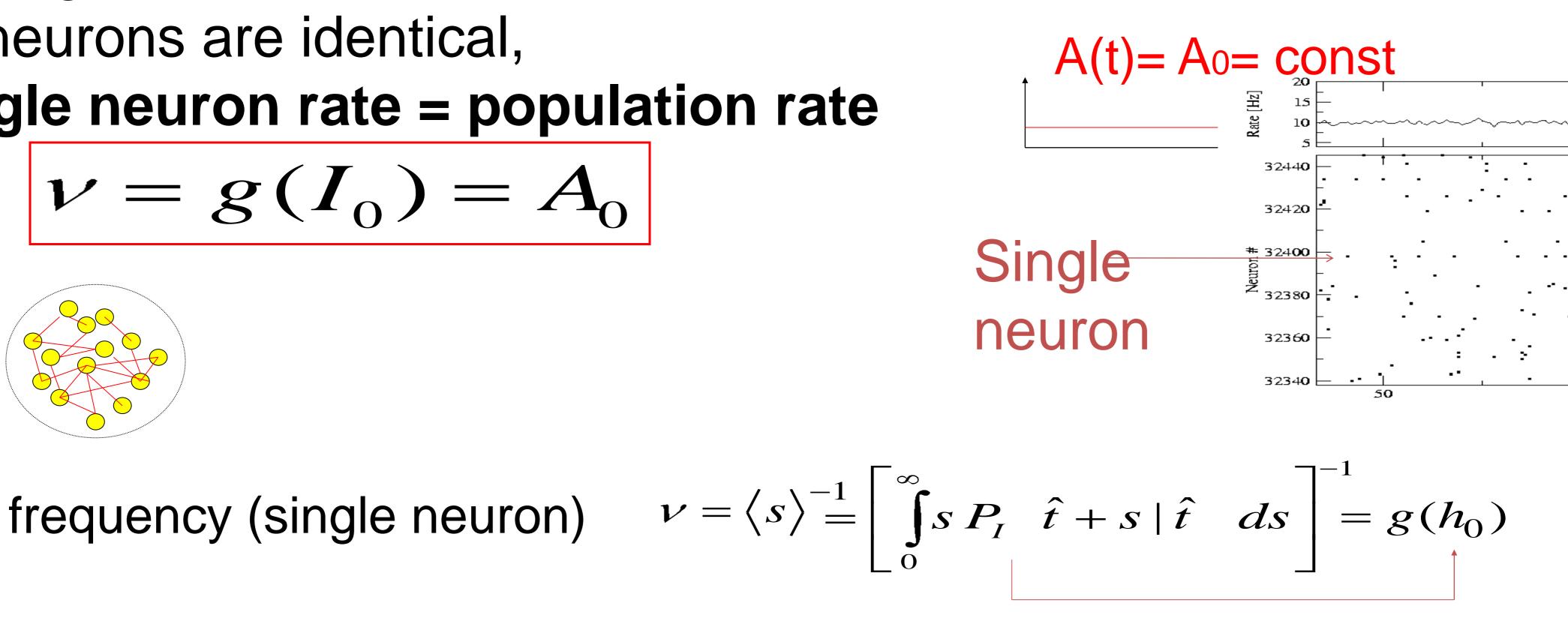
All neurons receive the same total input current ('mean field')

Review from Week 10: stationary state/asynchronous activity

Homogeneous network All neurons are identical, Single neuron rate = population rate

$\nu = g(I_0) = A_0$





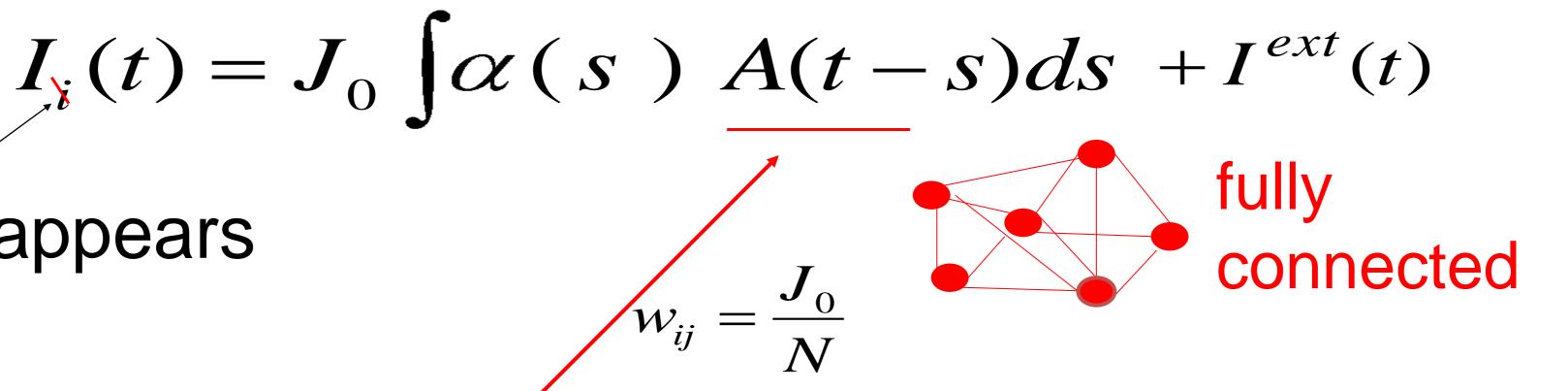
Week 10-part 3: mean-field arguments

All neurons receive the same total input current ('mean field')

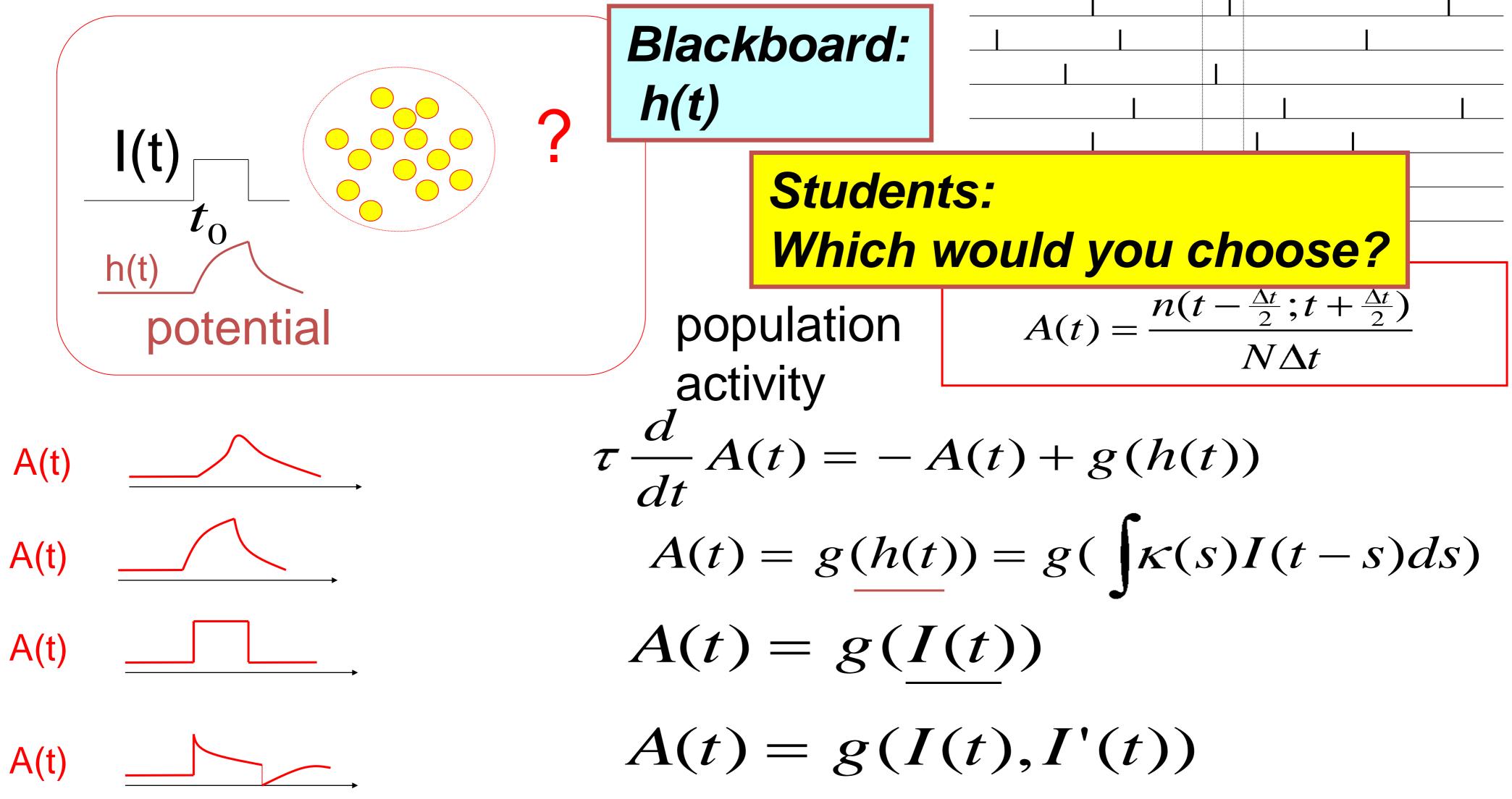
 $I_{0} = [J_{0}qA_{0} + I_{0}^{ext}]$

Index i disappears

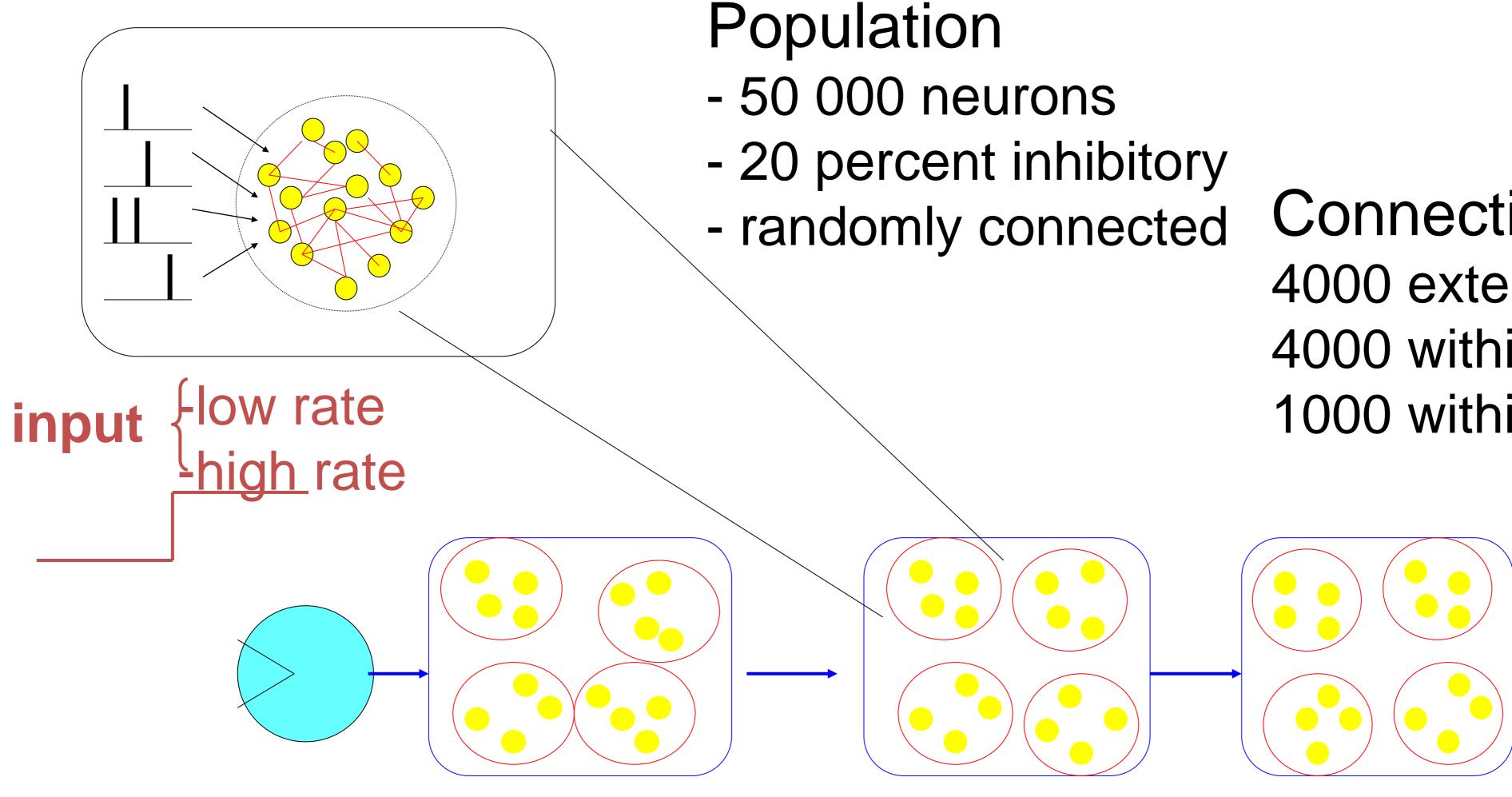
 $I^{net}(t) = \sum_{j} \sum_{f} w_{ij} \alpha(t - t_{j}^{f}) + I^{ext}$



Week 11-part 1: Transients in a population of uncoupled neurons

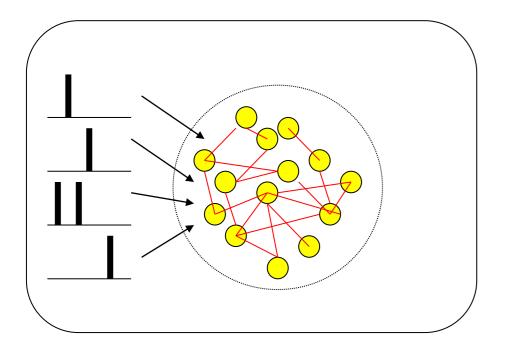


Week 11-part 1: Transients in a population of neurons



Connections 4000 external 4000 within excitatory 1000 within inhibitory

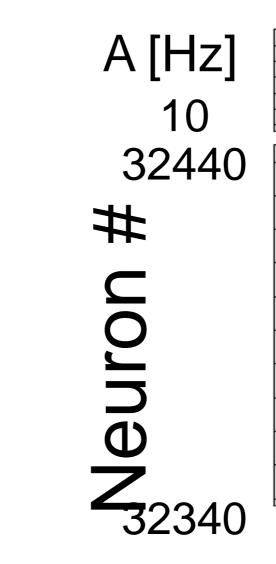
Week 11-part 1: Transients in a population of neurons



input {-low rate -high rate

Population

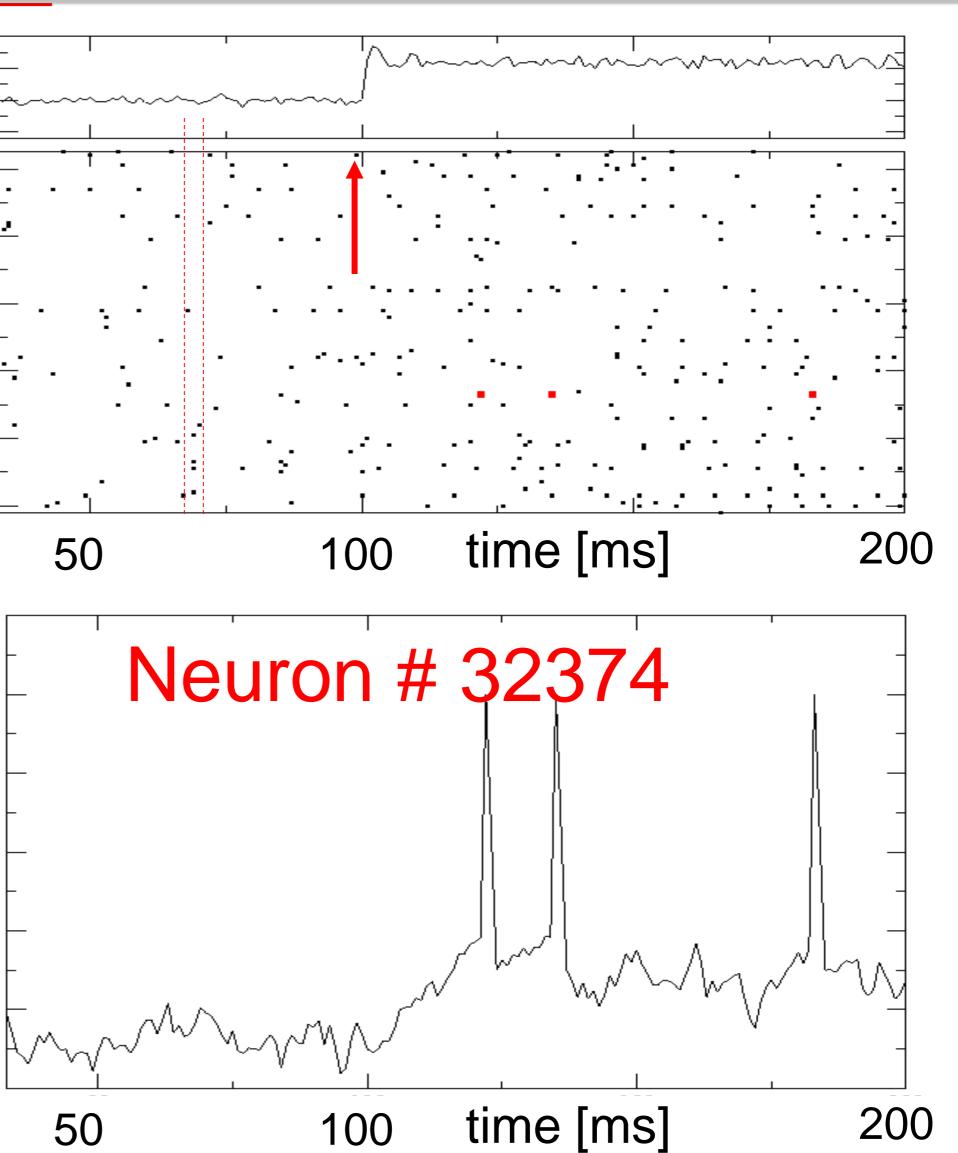
- 50 000 neurons
- 20 percent inhibitory
- randomly connected



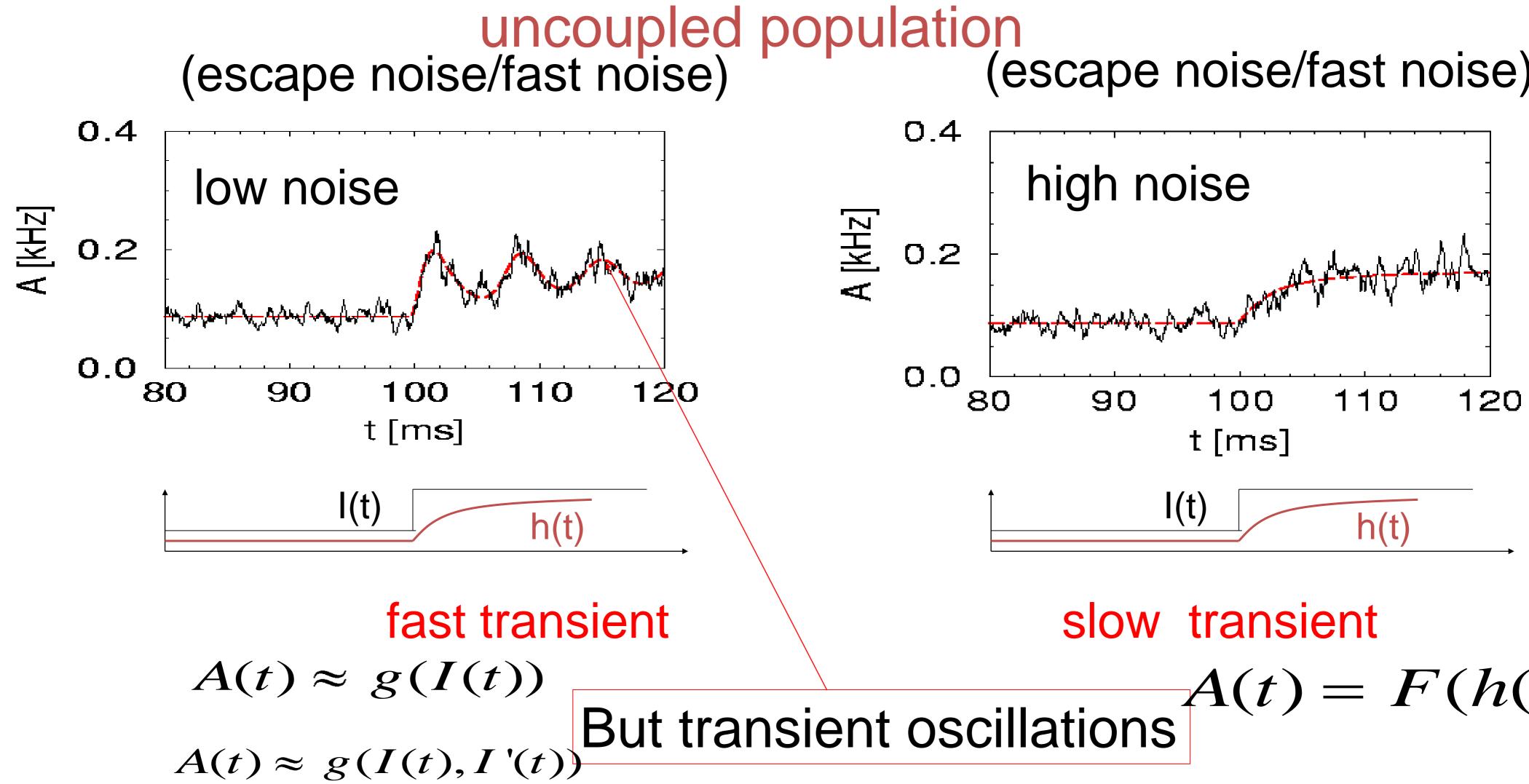
u [mV]

0

100



Week 11-part 1: Theory of transients for escape noise models



(escape noise/fast noise)

A(t) = F(h(t))

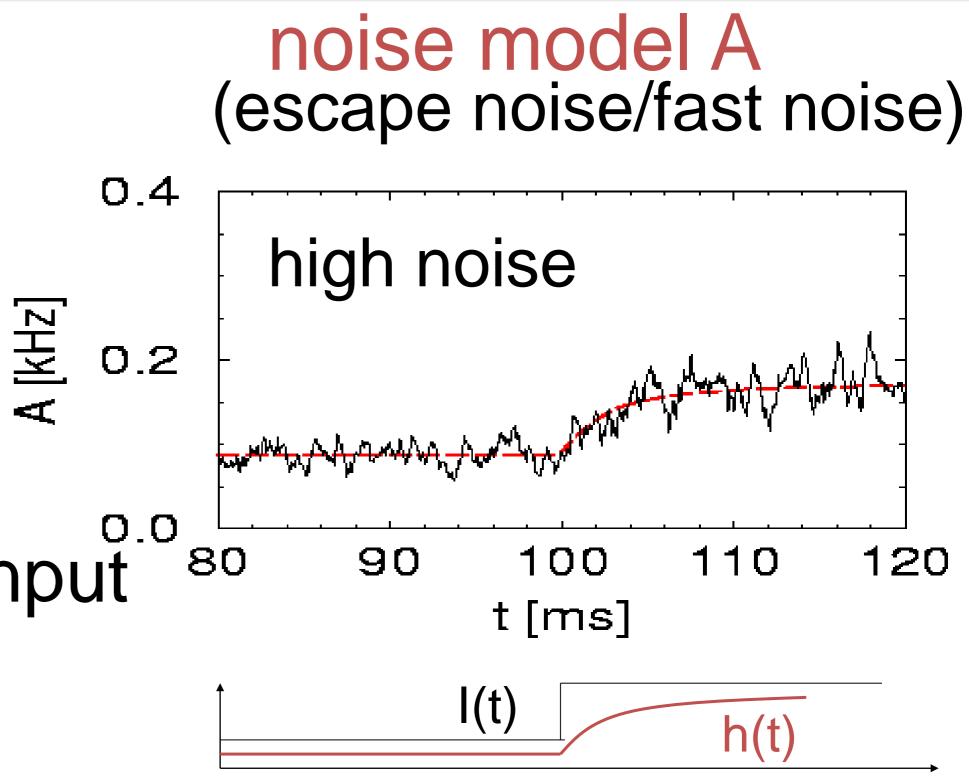
Week 11-part 1: High-noise activity equation

blackboard

In the limit of **high noise**, Population activity

A(t) = F(h(t))

Membrane potential caused by input $\tau \frac{d}{dt} h(t) = -h(t) + R I(t)$



slow transient A(t) = F(h(t))

Week 11-part 1: High-noise activity equation

Population activity A(t) = F(h(t))

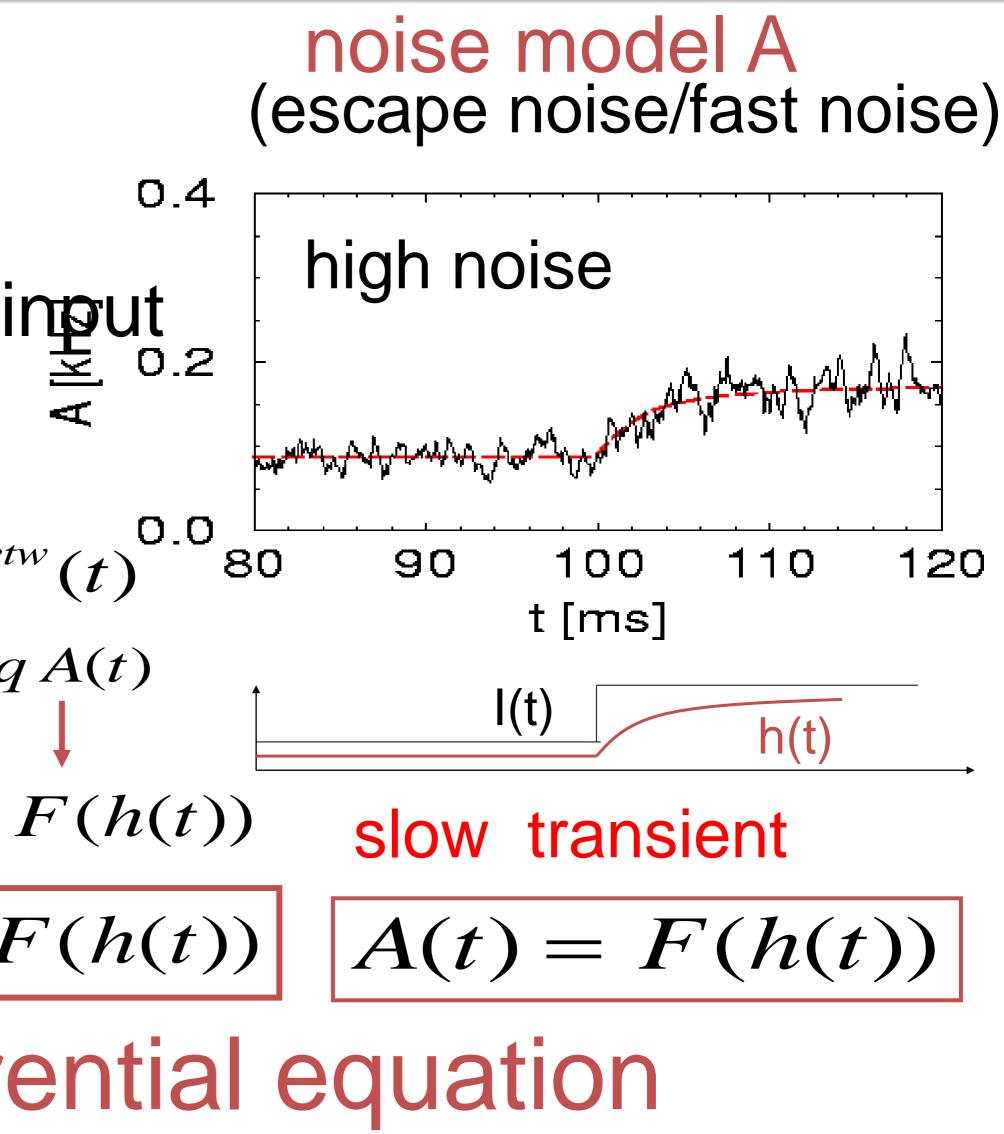
Membrane potential caused by $\inf_{x \to 0.2} \tau \frac{d}{dt} h(t) = -h(t) + R I(t)$

$$I(t) = I^{ext}(t) + I^{netv}$$
$$I(t) = I^{ext}(t) + J_0 q$$

$$I(t) = I^{ext}(t) + J_0 q I$$

 $\tau \frac{d}{dt} h(t) = -h(t) + R I^{ext}(t) + \gamma F(h(t))$

1 population = 1 differential equation



Week 10-part 2: mean-field also works for random coupling

full connectivity

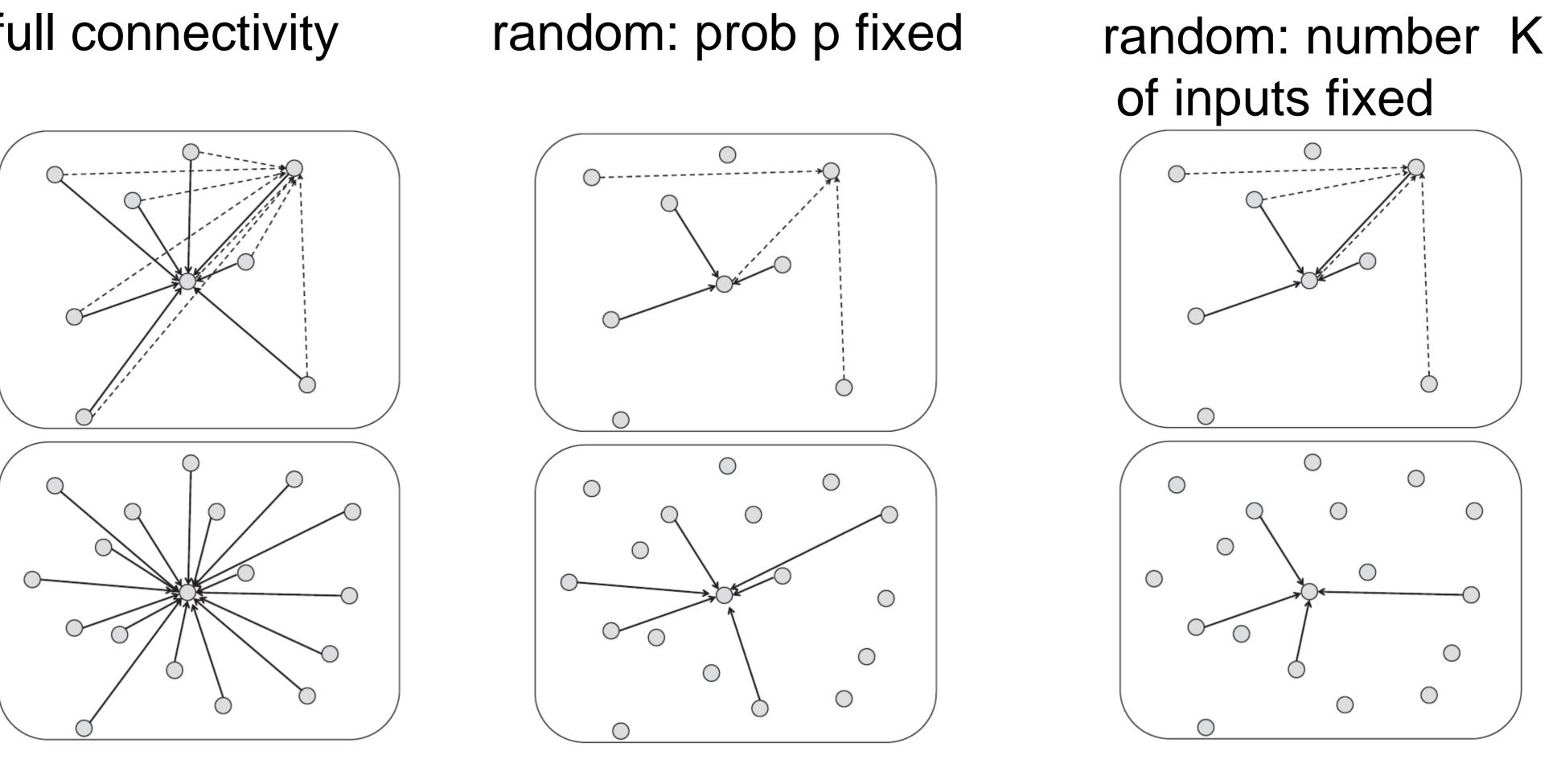


Image: Gerstner et al. Neuronal Dynamics (2014) Quiz 1, now

Population equations [] A single cortical model population can exhibit transient oscillations [] Transients are always sharp [] Transients are always slow [] in a certain limit transients can be slow [] An escape noise model in the high-noise limit has transients which are always slow [] A single population described by a single first-order differential equation (no integrals/no delays) can exhibit transient oscillations

Biological Modeling of Neural Networks:

Week 11 – Continuum models: Cortical fields and perception

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

11.1 Transients

- sharp or slow

11.2 Spatial continuum

- from multiple to continuous populations
- cortical connectivity

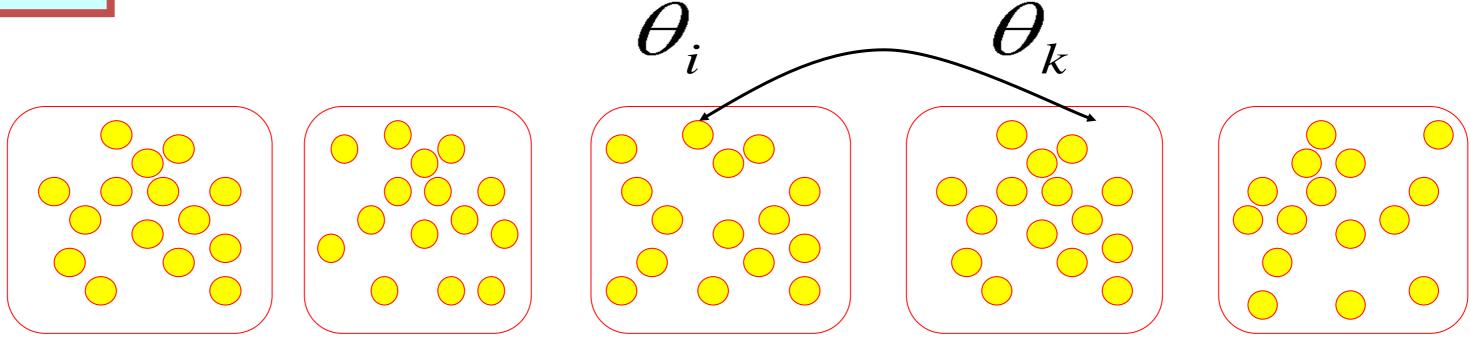
11.3 Solution types

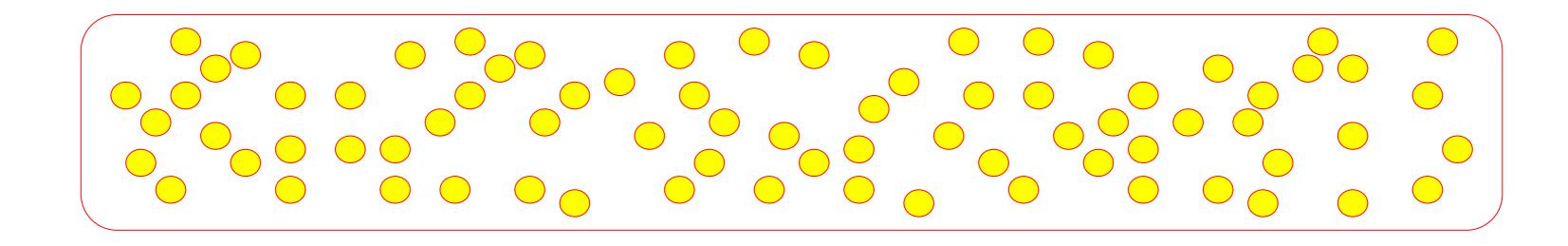
- uniform solution
- bump solution

11.4. Perception

11.5. Head direction cells

Week 11-part 2: multiple populations \rightarrow continuum





θ

Week 11-part 2: Field equation (continuum model)

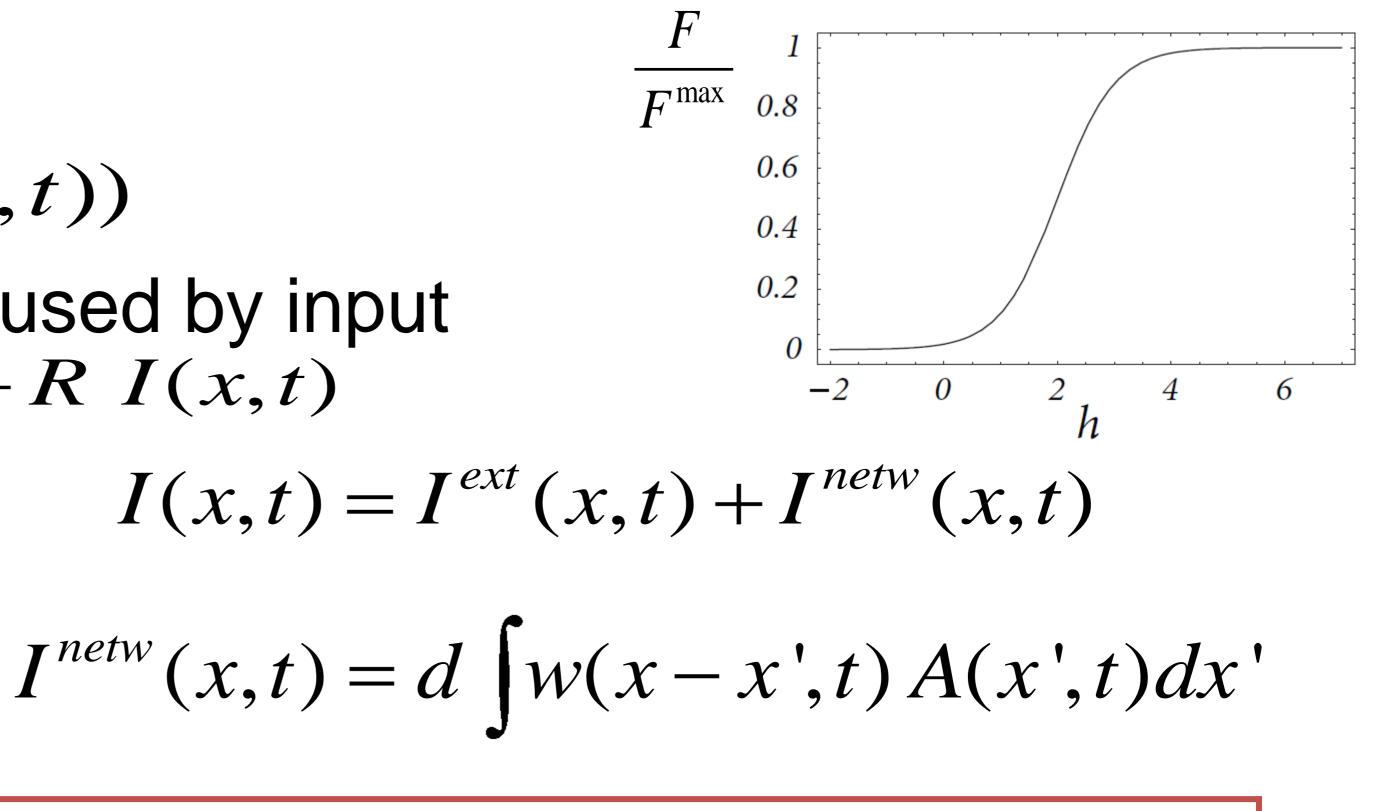
Population activity

$$A(x,t) = F(h(x,t))$$

Membrane potential caused by in
 $au rac{d}{dt}h(x,t) = -h(x,t) + R I(x,t)$
 $I(x,t)$

 $\tau \frac{d}{dt} h(x,t) = -h(x,t) + R I^{ext}(x,t) -$

1 field = 1 integro-differential equation



$$+d \int w(x-x')F(h(x',t))dx'$$

Exercise 1.1 now (stationary solution)

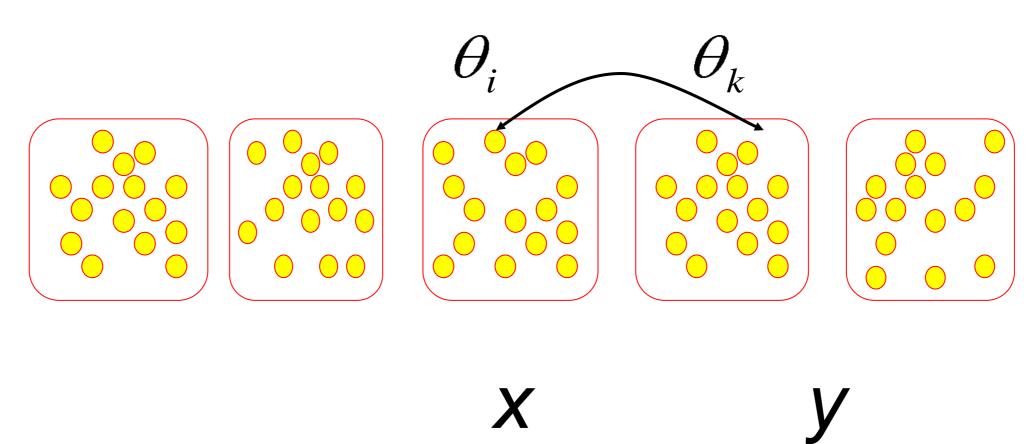
Consider a continuum model, Find analytical solutions:

- spatially uniform solution $A(x,t) = A_0$

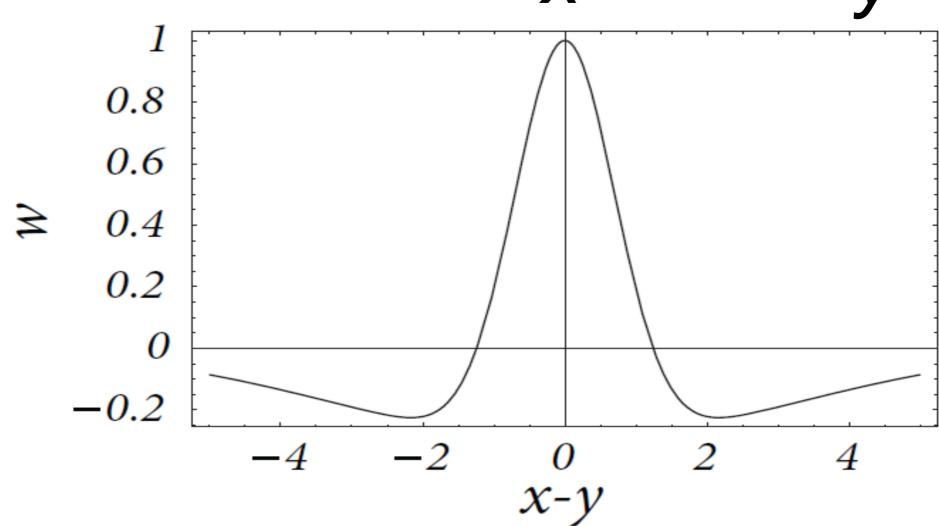
Next lecture at 10:45

If done: start with Exercise 1.2 now (spatial stability)

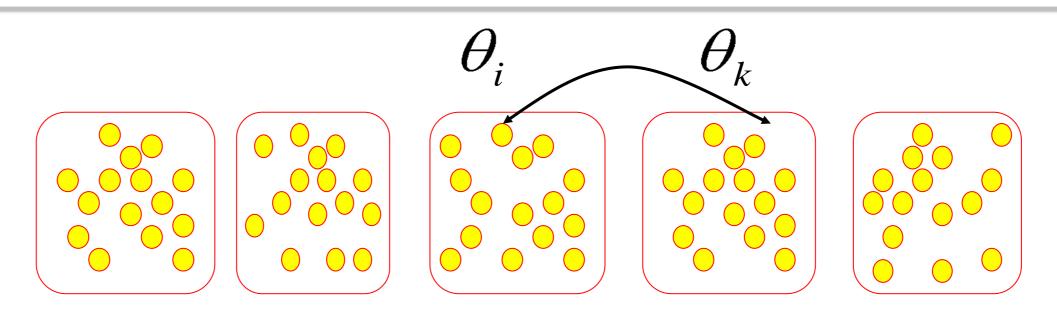
Week 11-part 2: coupling across continuum

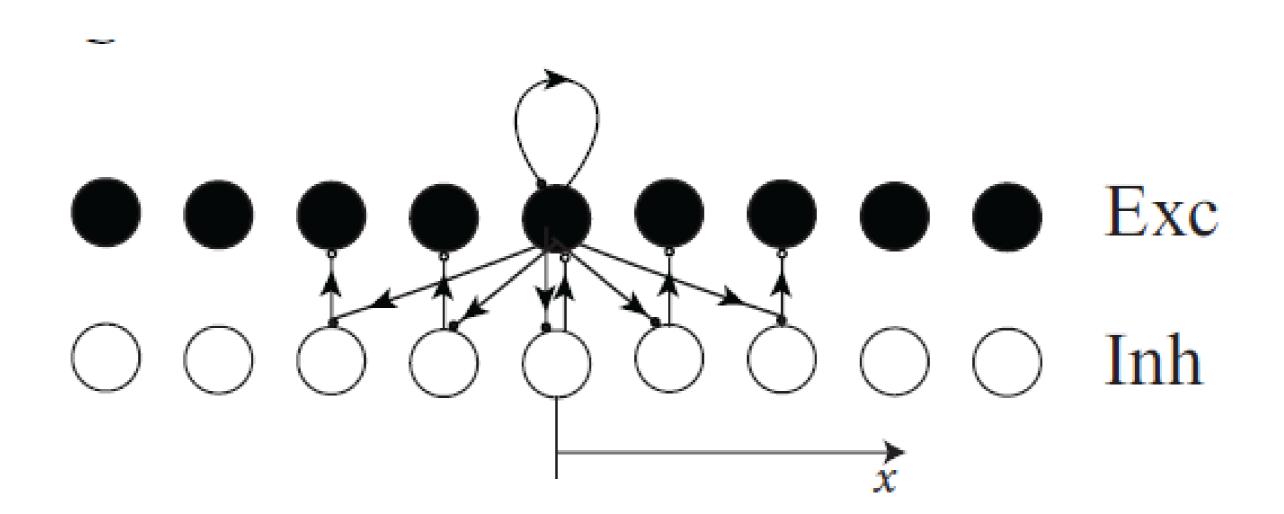


Mexican hat



Week 11-part 2: cortical coupling





Biological Modeling of Neural Networks:

Week 11 – Continuum models: Cortical fields and perception

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

11.1 Transients

- sharp or slow

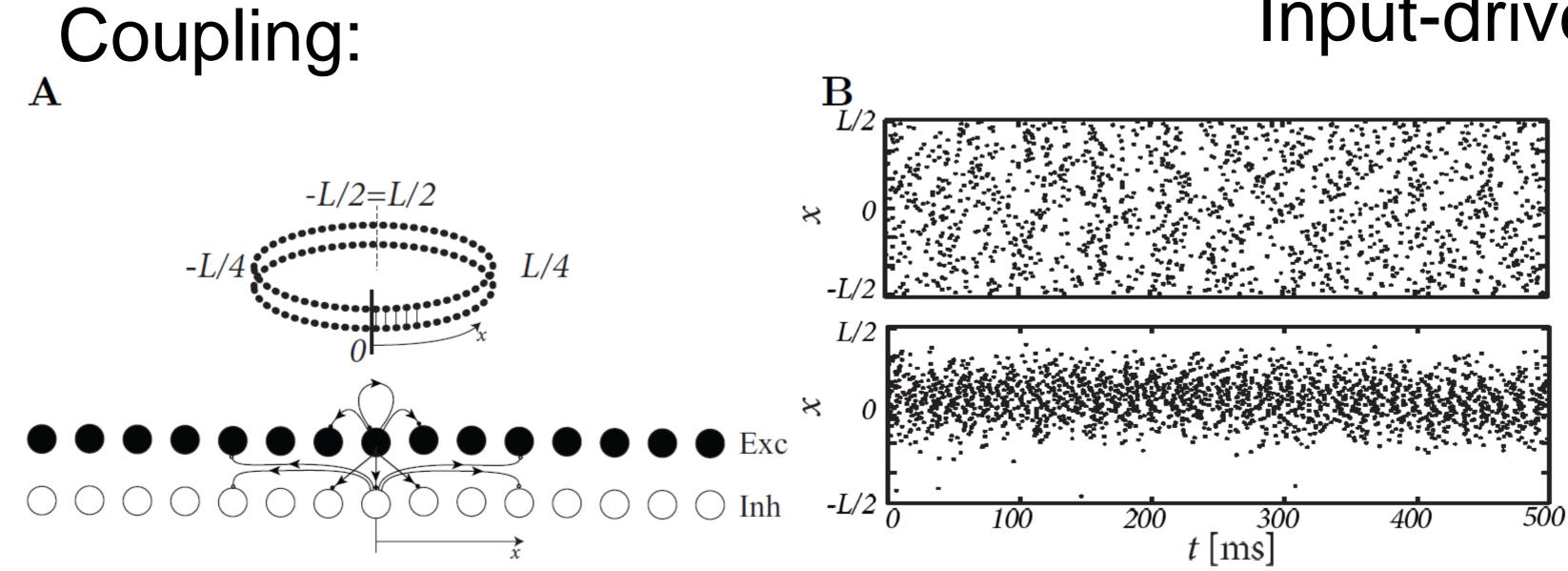
11.2 Spatial continuum

- from multiple to continuous populations
- cortical connectivity
- 11.3 Solution types
 - uniform solution
 - bump solution

11.4. Perception

11.5. Head direction cells

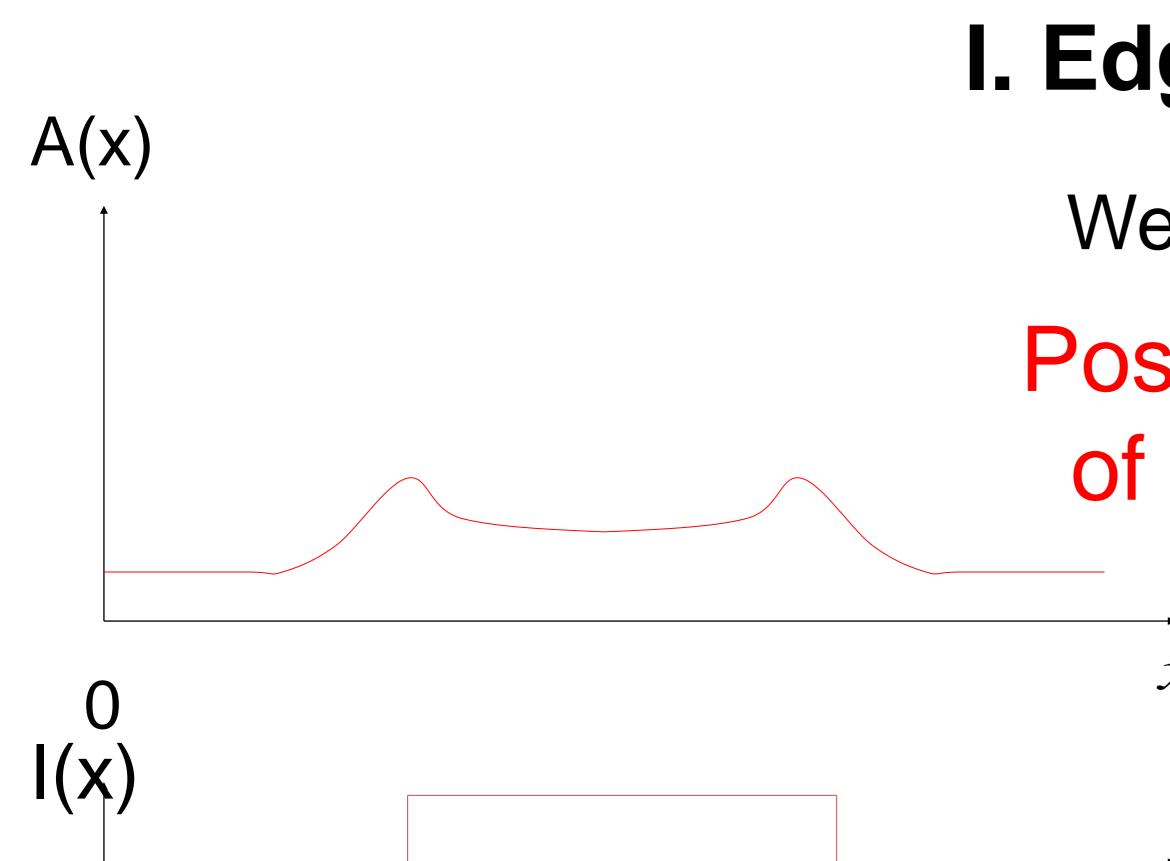
Week 11-part 3: Solution types (ring model)



Input-driven regime

Bump attractor regime

Week 11-part 3: Solution types: input driven regime Field Equations: Wilson and Cowan, 1972



I. Edge enhancement

Weaker lateral connectivity

Possible interpretation of visual cortex cells: _____ (see final part this week)

 \mathcal{X}

Week 11-part 3: Solution types: bump solution

A

II: Bump formation:

 π

Field Equations: Wilson and Cowan, 1972

- activity profile in the absence of input strong lateral connectivity
 - **Possible interpretation**
 - of head direction cells:
 - \rightarrow (see later today)

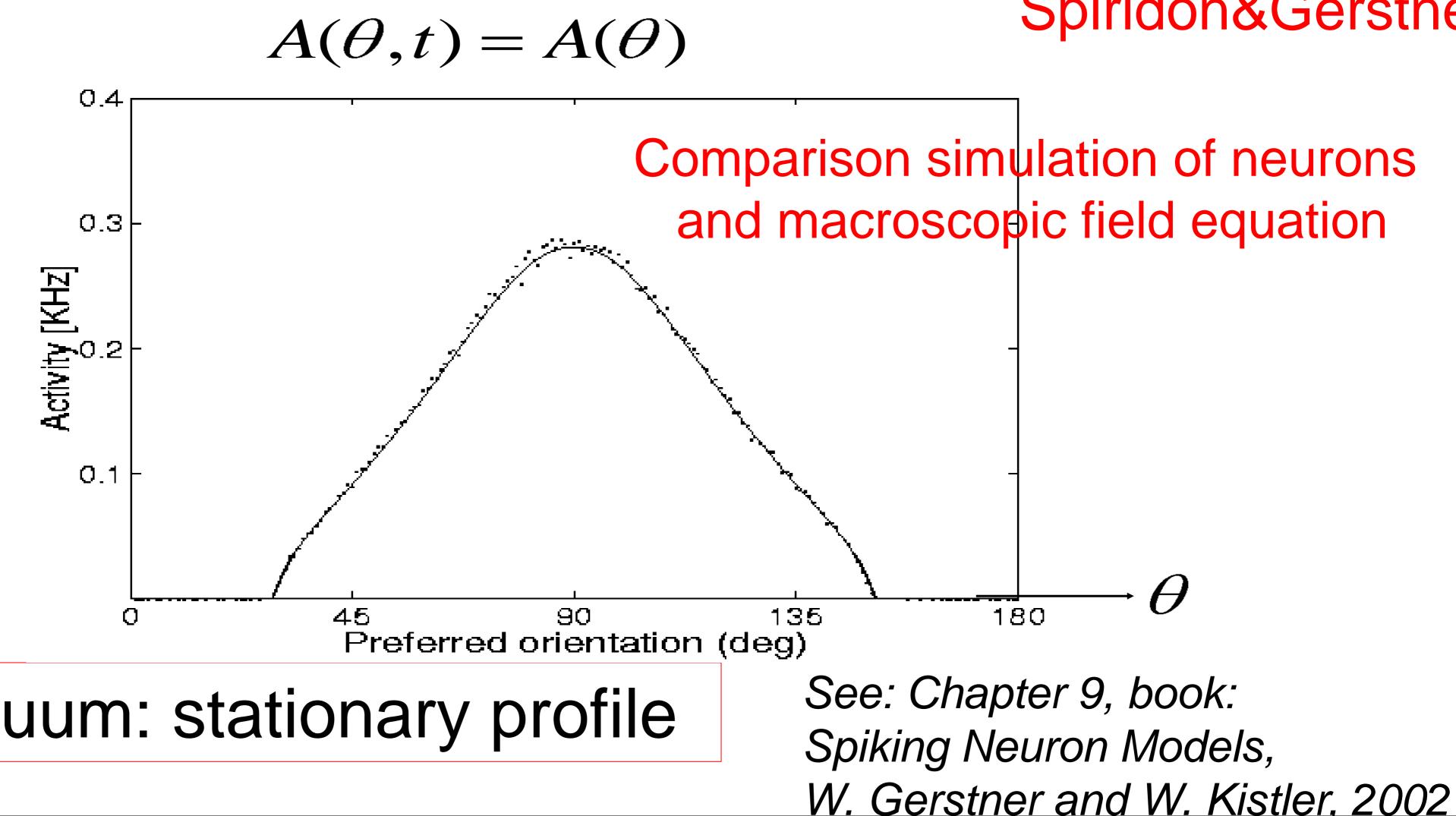
Exercise 2.1+2.2 now (stationary bump solution)

Consider a continuum model, Find analytically the bump solutions

$$W(X-Y)$$

Next lecture at 11:28

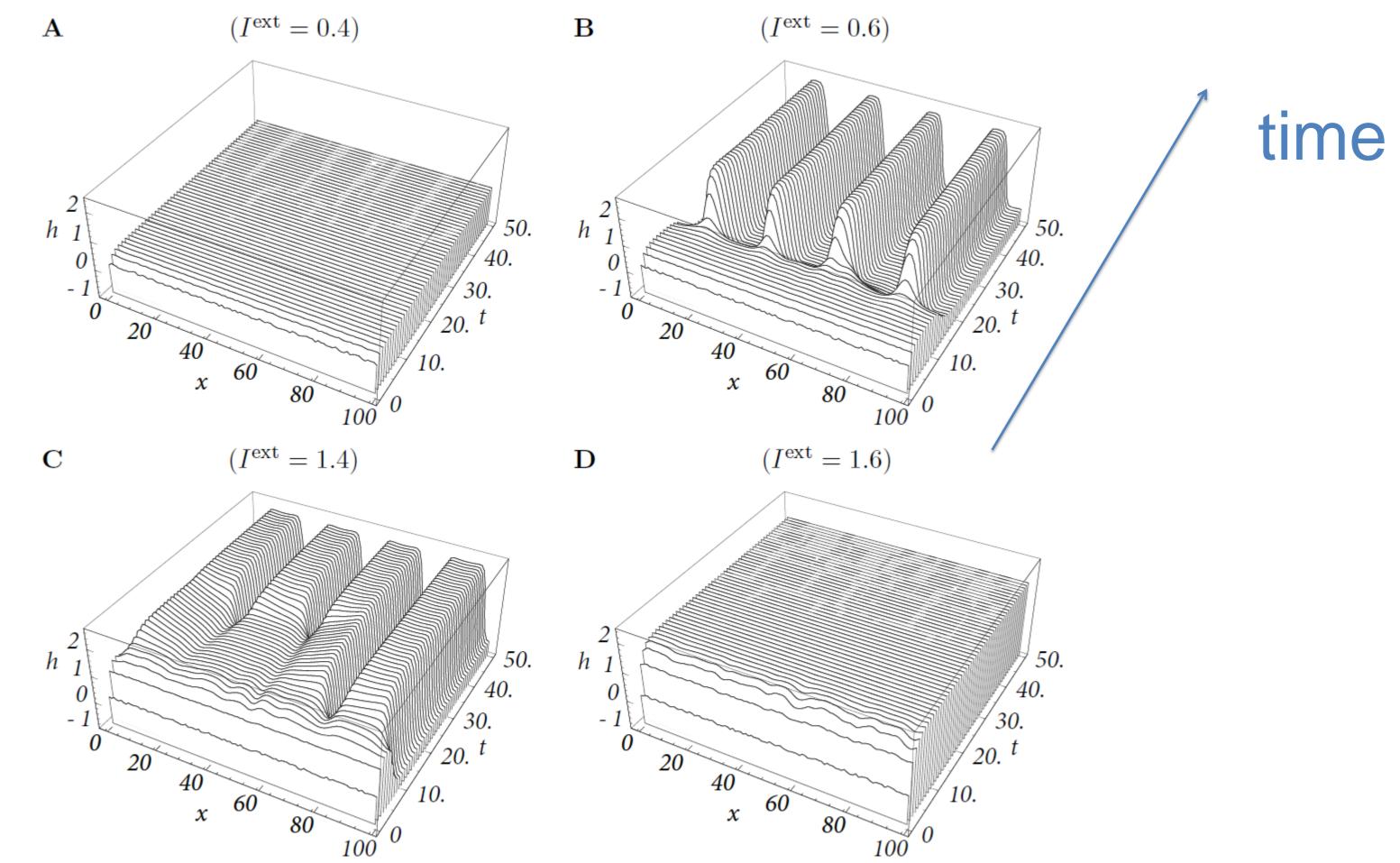
Week 11-part 3: Solution types: bump solution



Continuum: stationary profile

Spiridon&Gerstne

Week 11-part 3: Solution types (continuum model)



Biological Modeling of Neural Networks:

Week 11 – Continuum models: Cortical fields and perception

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

11.1 Transients

- sharp or slow

11.2 Spatial continuum

- model connectivity
- cortical connectivity

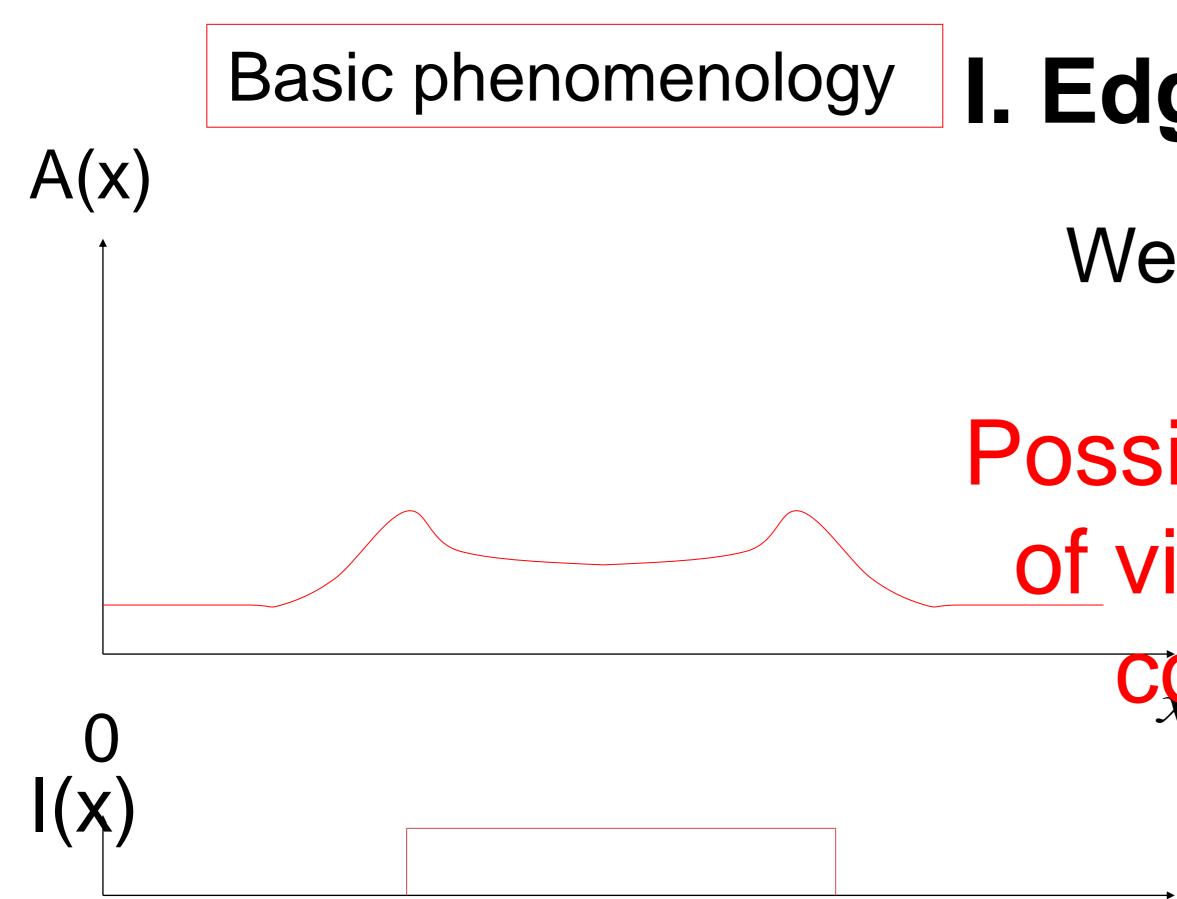
11.3 Solution types

- uniform solution
- bump solution

11.4. Perception

11.5. Head direction cells

Week 11-part 5: uniform/input driven solution



Field Equations: Wilson and Cowan, 1972

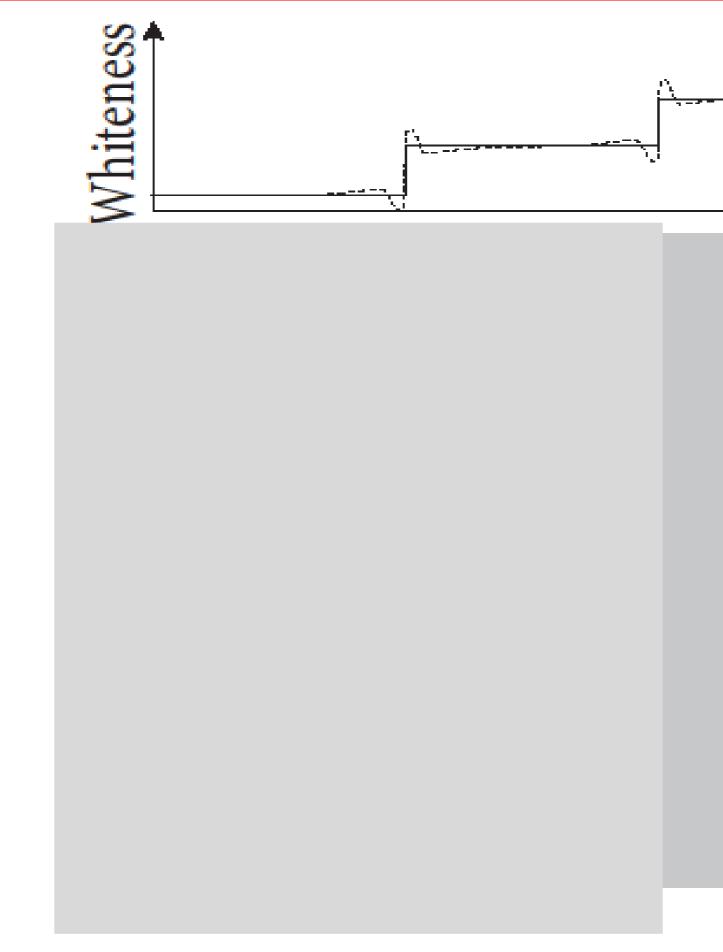
I. Edge enhancement

Weaker lateral connectivity

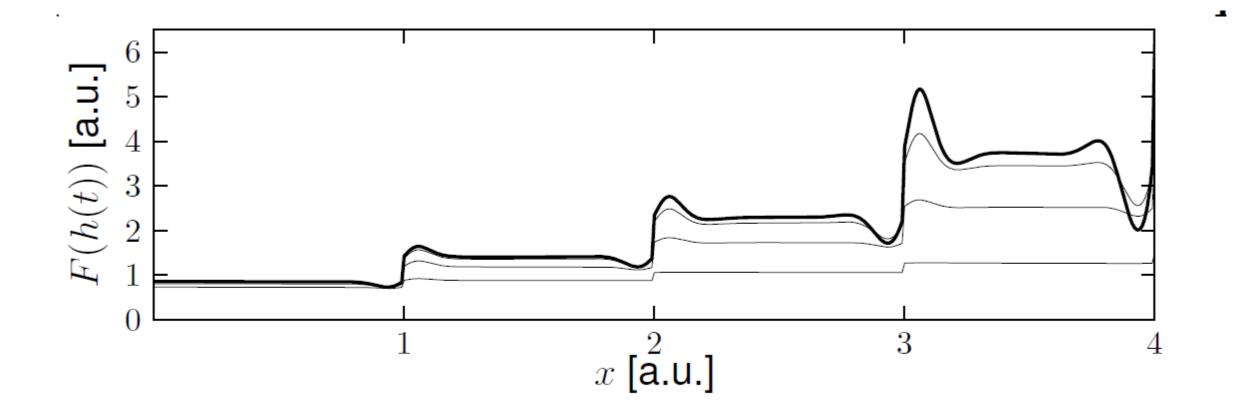
- Possible interpretation of visual cortex cells:
 - contrast enhancement in
 - orientation
 - location

Continuum models: grid illusion

Continuum models: Mach Bands

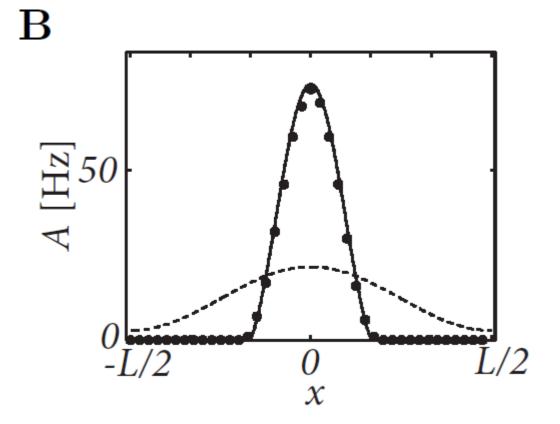


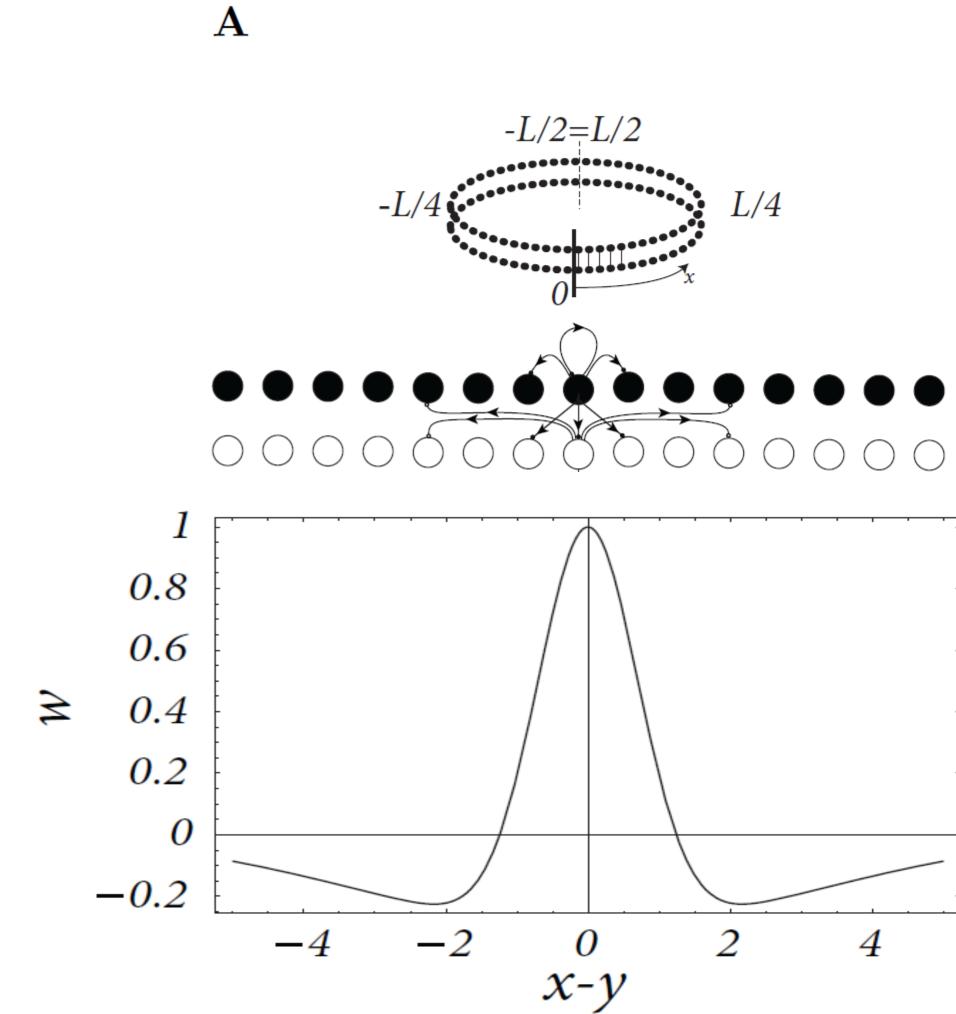
Week 11-part 4: Field models and Perception



ig. 18.9: A. Mach bands in a field model with mexican hat

Week 11-part 4: Field models and Perception



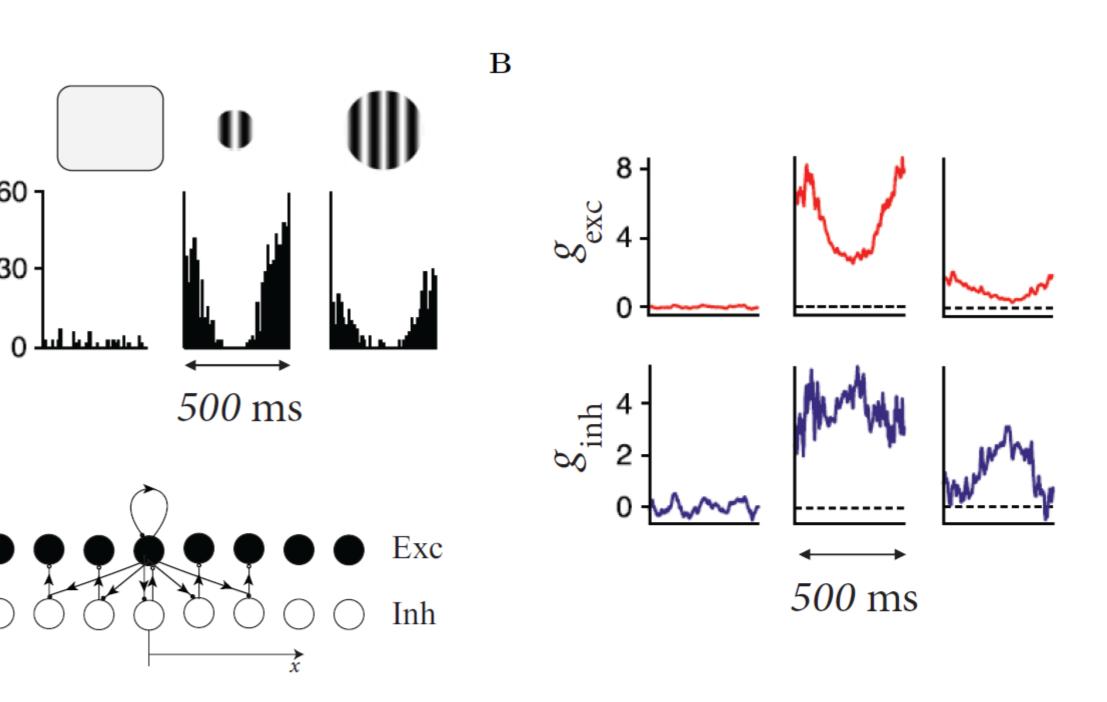


Week 11-part 4: Field models and Perception



Fig. 18.12: Surround suppression.

Fig. 18.13: Network stabilized by local inhibition. The schematic model could potentially explain why larger gratings lead not only to less excitatory input g_{exc} , but also to less inhibitory input g_{inh} . A. The firing rate as a function of the phase of the moving grating for the three stimulus conditions (blank screen, small and large grating). B.Top: Excitatory input into the cell. Bottom: Inhibitory input into the same cell. As in A, left, middle and right correspond to a blank screen, a small grating and or a large grating. Note that the larger grating leads to a reduction of both excitation and inhibition; adapted from (Ozeki et al., 2009). C. Network model with long range excitation and local inhibition. Excitatory neurons within a local population excite themselves (feedback arrow), and also send excitatory input to inhibitory cells (downward arrows). Inhibitory neurons project



Biological Modeling of Neural Networks:

Week 11 – Continuum models: Cortical fields and perception

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

11.1 Transients

- sharp or slow

11.2 Spatial continuum

- model connectivity
- cortical connectivity

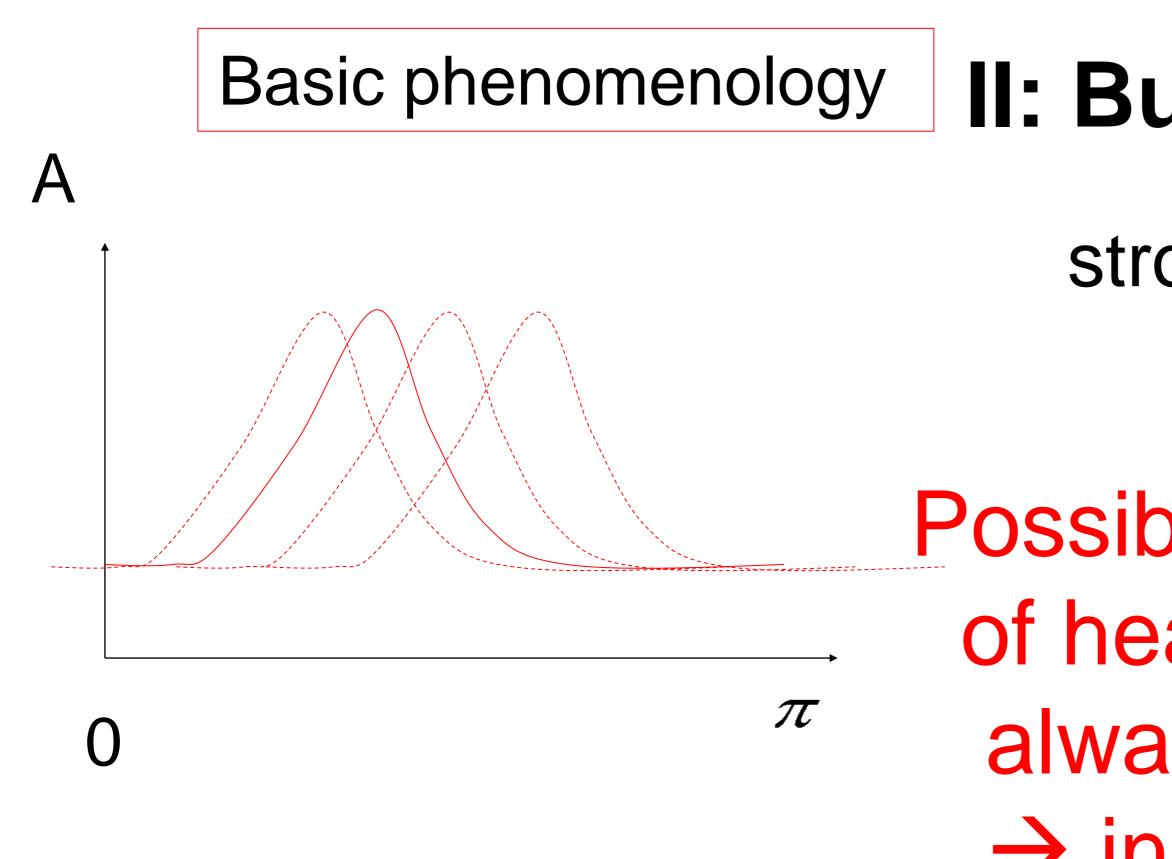
11.3 Solution types

- uniform solution
- bump solution

11.4. Perception

11.5. Head direction cells

Week 11-part 5: Bump solution

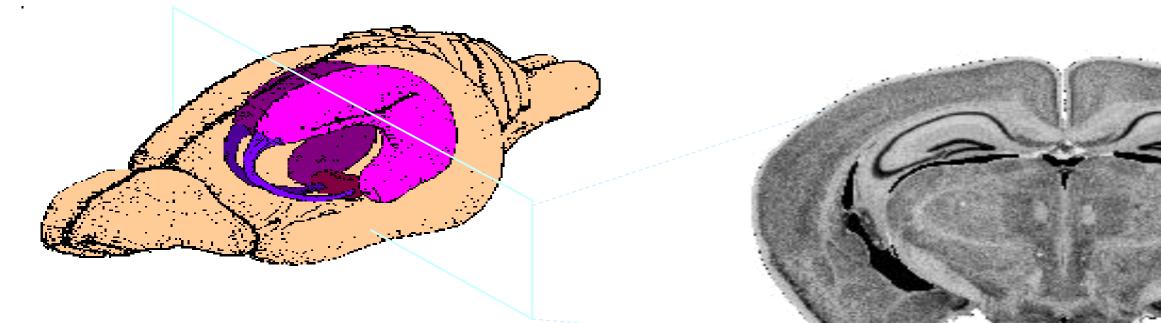


II: Bump formation

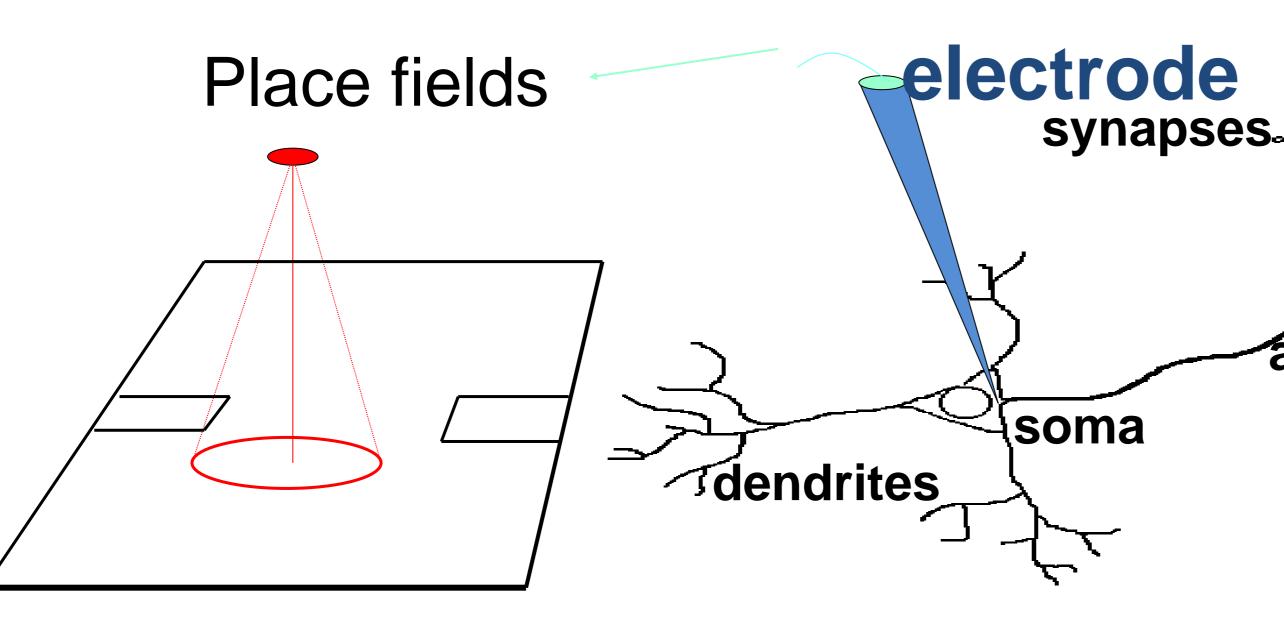
strong lateral connectivity

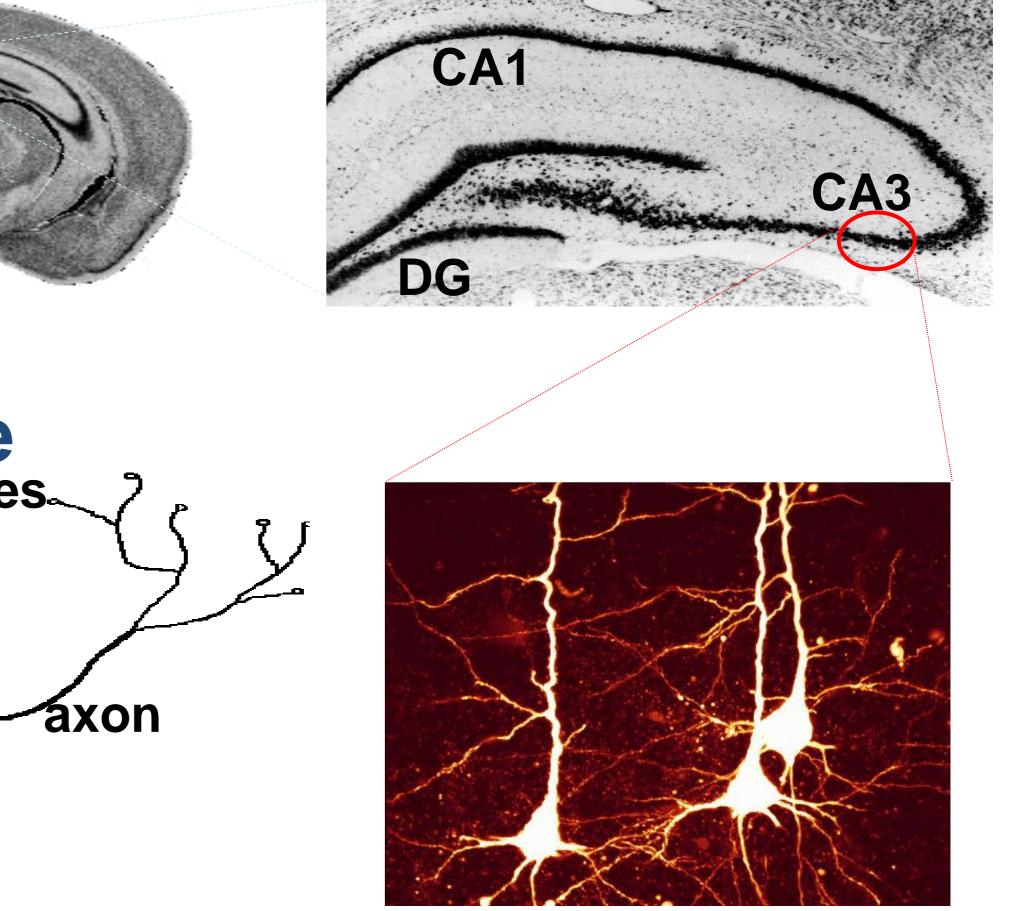
Possible interpretation of head direction cells: always some cells active → indicate current orientation

Week 11-part 5: Hippocampal place cells



rat brain

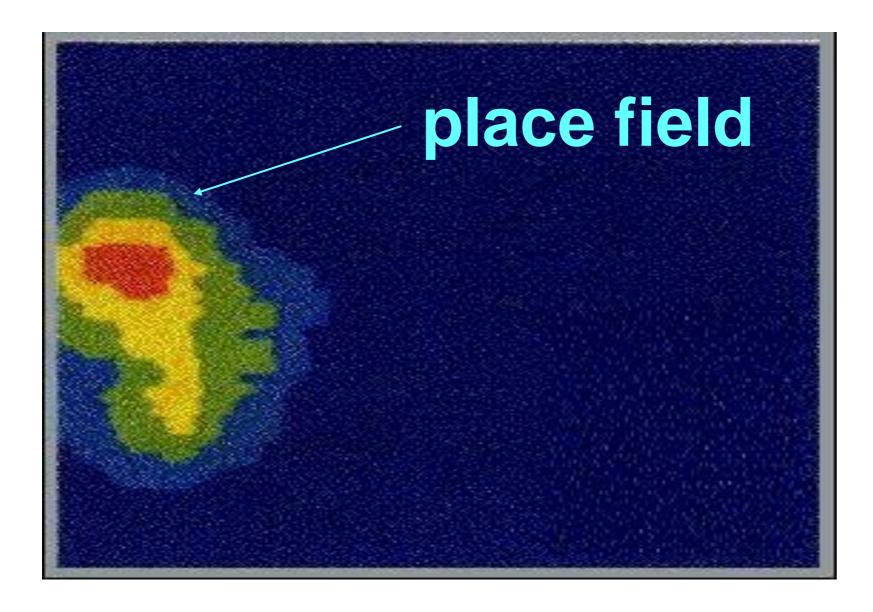


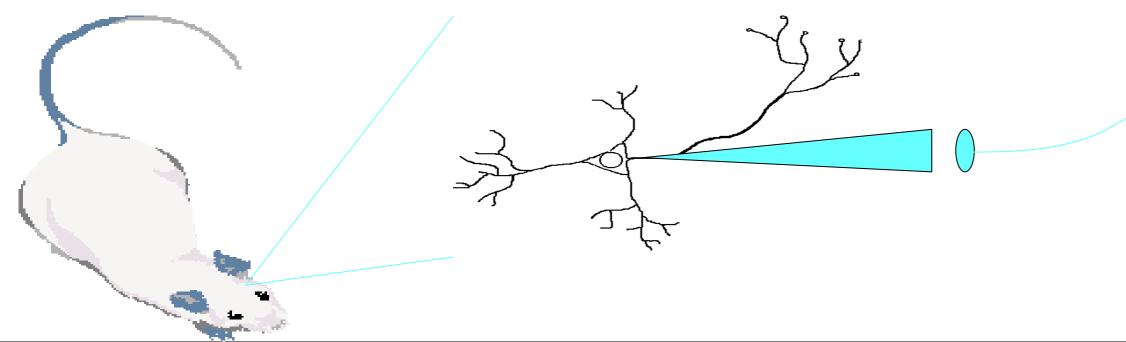


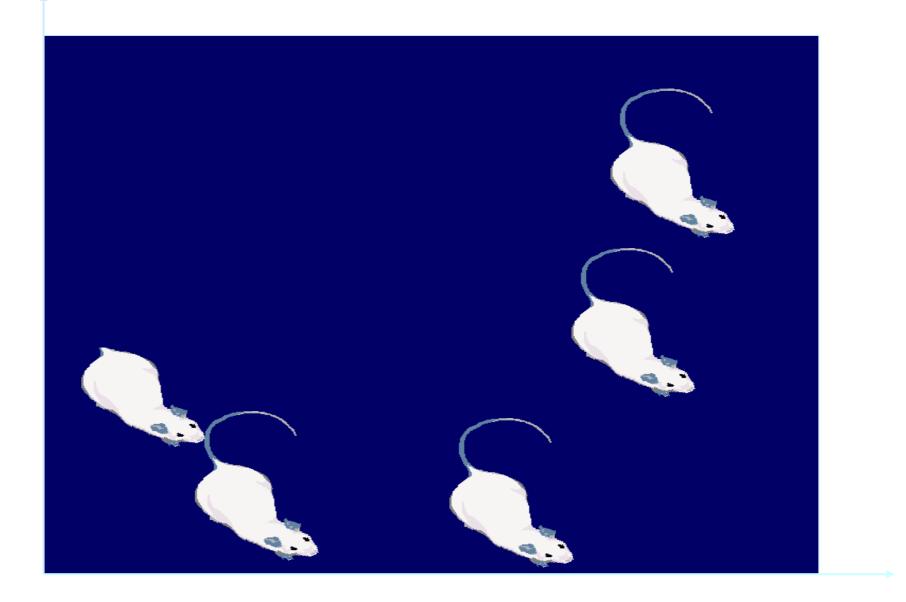
pyramidal cells

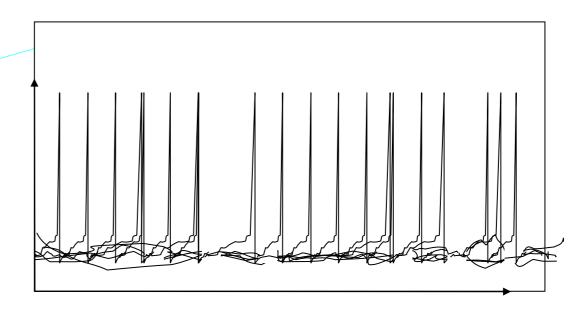
Week 11-part 5: Hippocampal place cells

Main property: encoding the animal's location





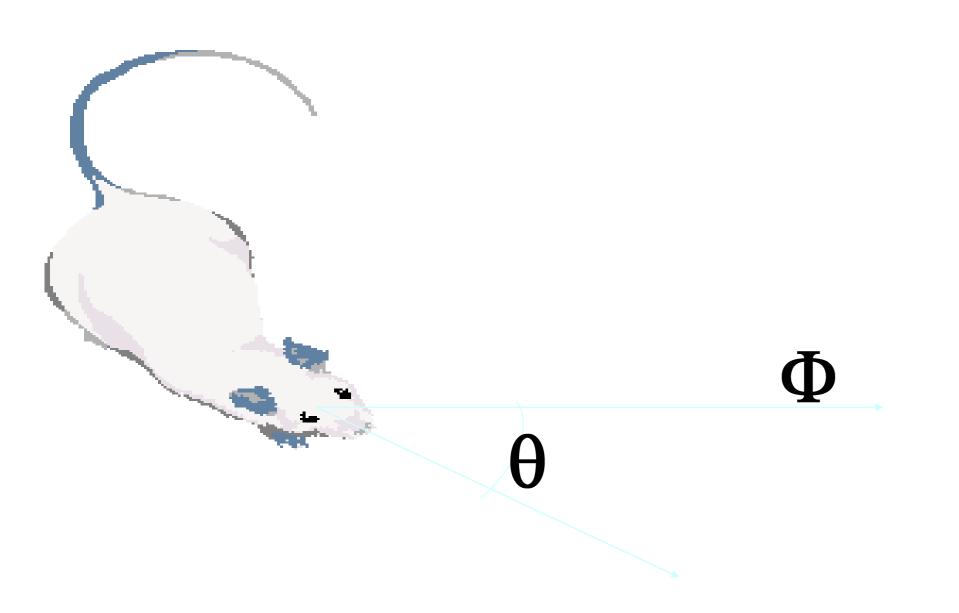


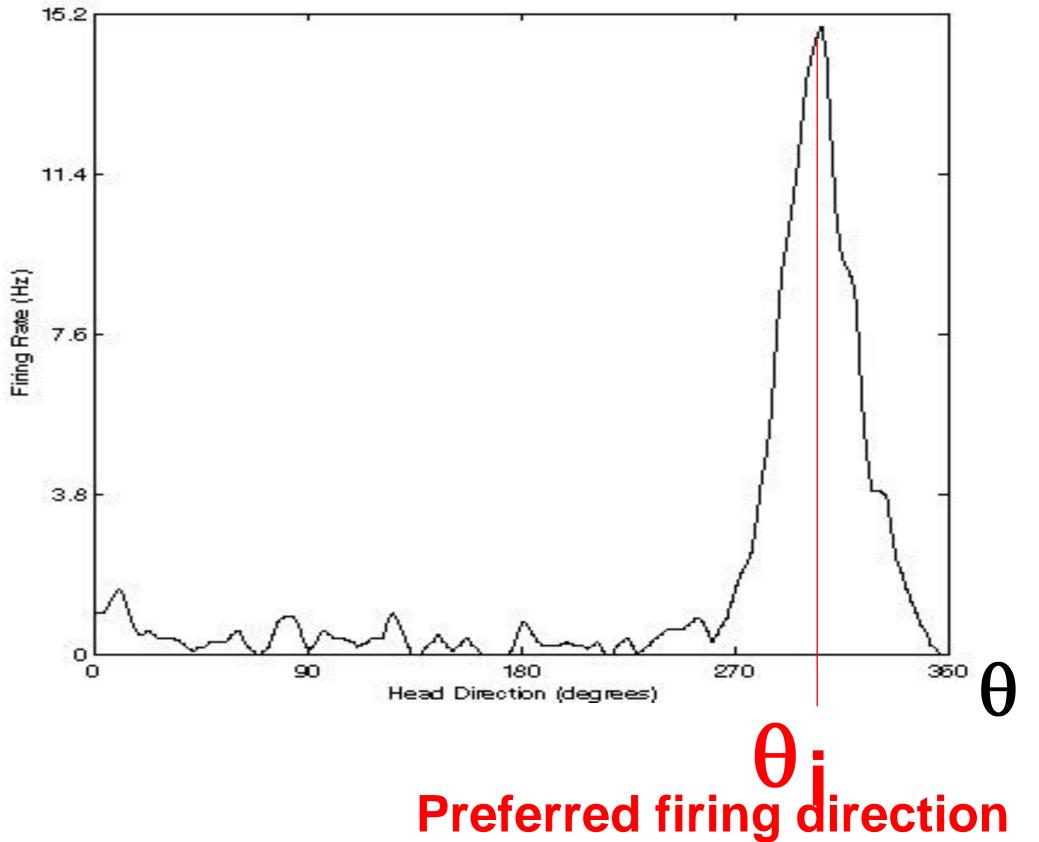


Week 11-part 5: Head direction cells

Main property: encoding the animal 's heading

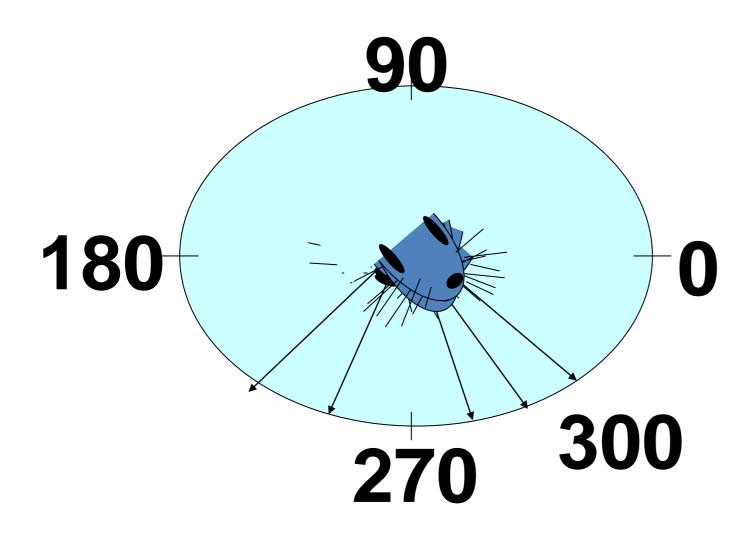
 $r_i(\theta)$



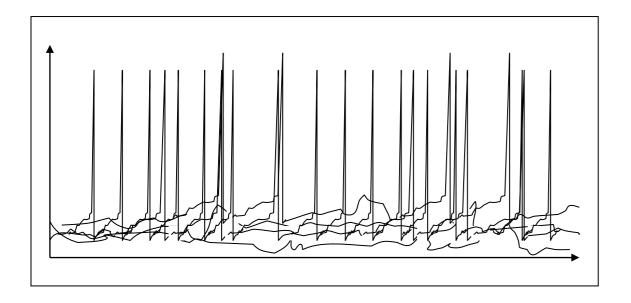


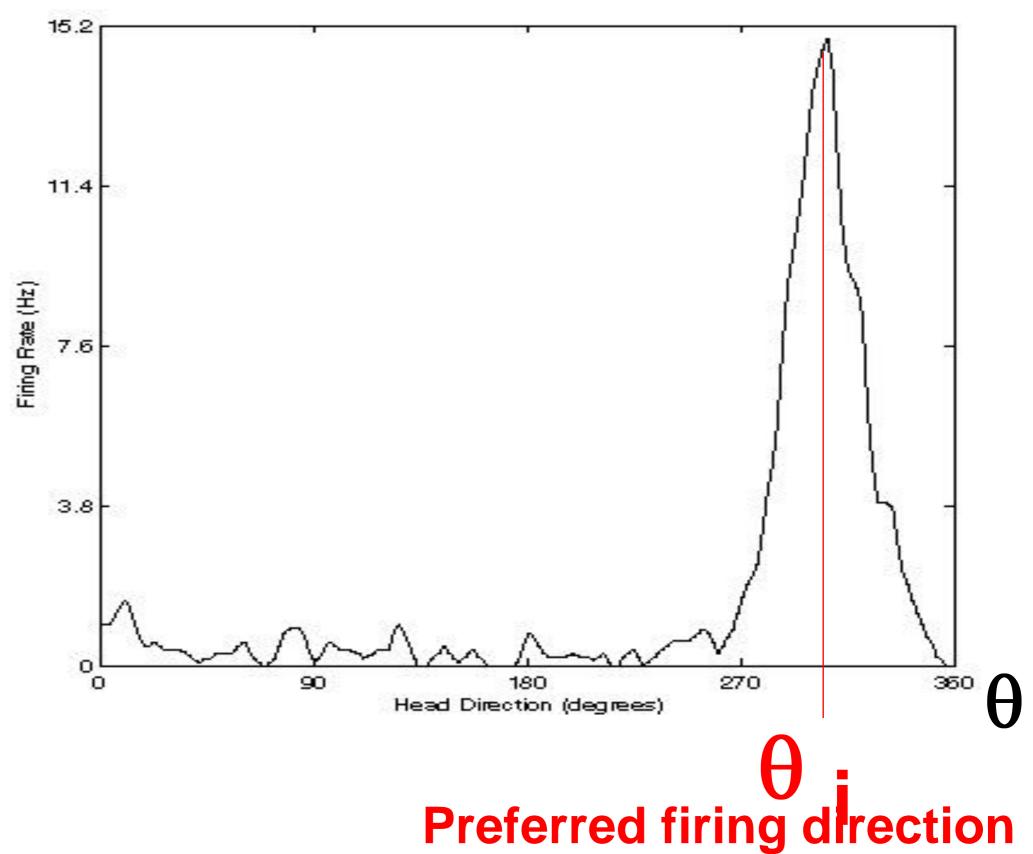
Week 11-part 5: Head direction cells

Main property: encoding the animal 's allocentric heading

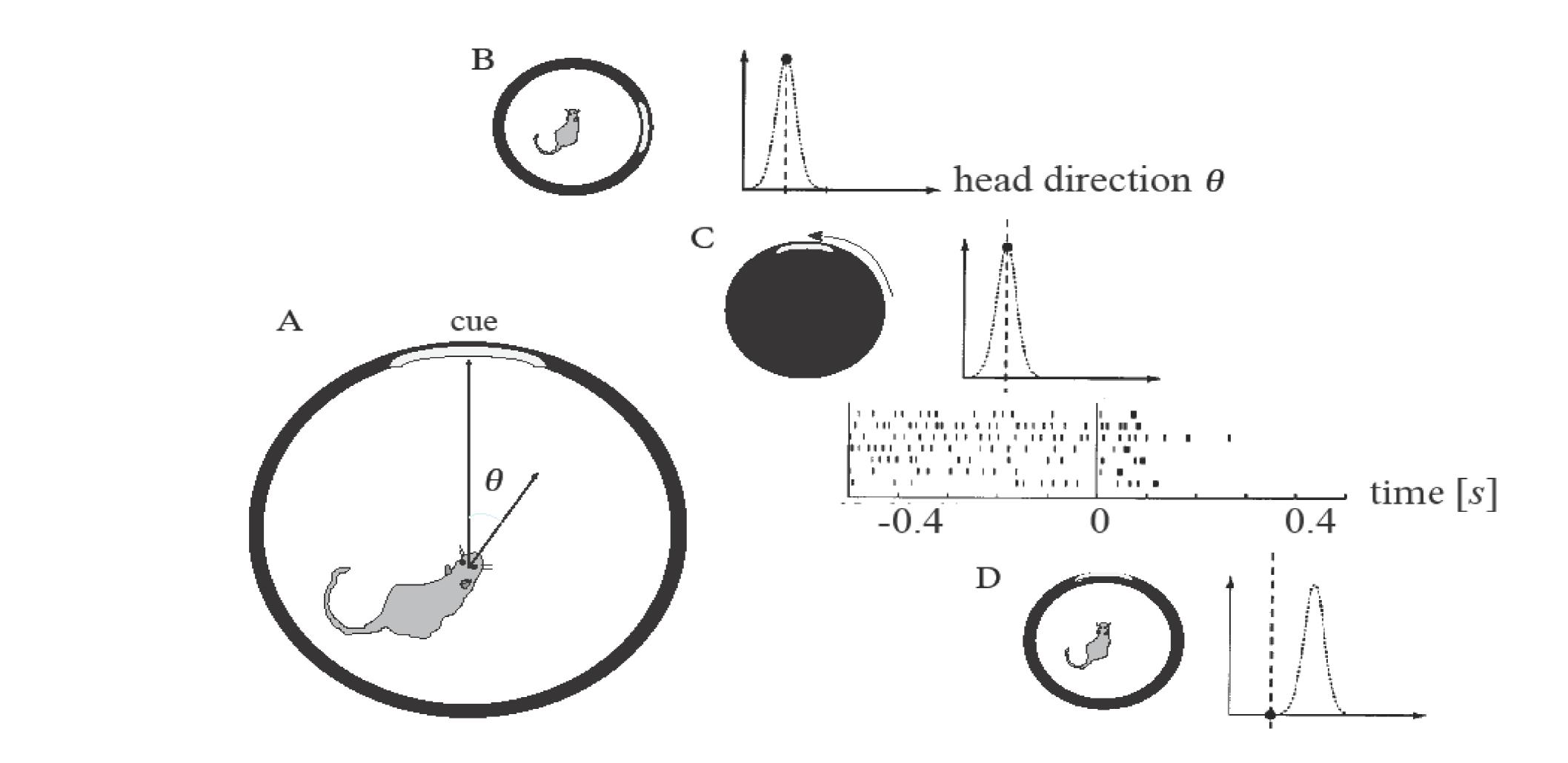


r_i (θ)





Week 11-part 5: Head direction cells



Week 11-Continuum models

11.1 Transients

- sharp or slow

11.2 Spatial continuum

- model connectivity
- cortical connectivity

11.3 Solution types

- uniform solution
- bump solution

11.4. Perception

11.5. Head direction cells