Week 13 – Membrane Potential Densities and Fokker-Planck Equation

Biological Modeling of Neural Networks:

Week 13 – Membrane potential densities and Fokker-Planck

Wulfram Gerstner EPFL, Lausanne, Switzerland

13.1 Review: Integrate-and-fire

- stochastic spike arrival

13.2 Density of membrane potential

- Continuity equation

13.3 Flux

- jump flux
- drift flux

13.4. Fokker – Planck Equation

- free solution

13.5. Threshold and reset

- time dependent activity
- network states

Week 13-part 1: Review: integrate-and-fire-type models

Week 13-part 1: Review: leaky integrate-and-fire model

 $\tau \cdot \frac{d}{dt}V = -V + RI(t); \quad V = (u - u_{eq})$

If firing: $u \rightarrow u_{reset}$

Week 13-part 1: Review: leaky integrate-and-fire model

Week 13-part 1: Review: microscopic vs. macroscopic

I(t)

Week 13-part 1: Review: homogeneous population

Homogeneous network:

-each neuron receives input from k neurons in network
-each neuron receives the same (mean) external input

population activity

Week 13-part 1: Review: diffusive noise/stochastic spike arrival

Stochastic spike arrival: excitation, total rate $R_{\rm e}$ inhibition, total rate R

$$\tau \frac{d}{dt} u = -(u - u_{eq}) + R \left\{ \sum_{k,f} q_e \delta(t - t) \right\}$$

$$EPSC$$

$$\frac{d}{dt} u = -(u - u_{eq}) + RI^{mean}$$

Synaptic current pulses

 $-t_k^f) - \sum_{k',f'} q_i \delta(t - t_{k'}^{f'}) \}$ k', f'

$$^{n}(t) + \xi(t)$$

Ornstein Uhlenbeck process

Week 13 part 2 – Membrane Potential Densities

Biological Modeling of Neural Networks:

Week 13 – Membrane potential densities and Fokker-Planck

Wulfram Gerstner EPFL, Lausanne, Switzerland

13.1 Review: Integrate-and-fire - stochastic spike arrival

13.2 Density of membrane potential

13.3 Flux

13.4. Fokker – Planck Equation

13.5. Threshold and reset

Week 13-part 2: membrane potential density

For any arbitrary neuron in the population

$$\tau \frac{d}{dt} u = -u + R(\sum_{k,f} q_e \delta(t - t_k^f)) - \sum_{k',f'} q_i d_k \delta(t - t_k^f) - \sum_{k',f'} q_k \delta(t - t_k^f) - \sum_{k',f'} q_i d_k \delta(t - t_k^f) - \sum_{k',f'} q_k \delta(t$$

EPSC

$$\frac{d}{dt}u = -\frac{u}{\tau} + \sum_{k,f} \frac{q_e}{C} \delta(t - \tau)$$

excitatory input spikes

Blackboard: density of potentials?

 $\delta(t-t_{k'}^{f'}))$

IPSC

 $-t_{k}^{f}$) + $I^{ext}(t)$

external current input

Week 13-part 2: continuity equation

 $\frac{d}{dt}p(u,t) = -\frac{d}{du}J(u,t)$

 $\tau \frac{d}{dt} u = -(u - u_{eq}) + R\left\{ \sum_{f} q_{e} \delta(t - t^{f}) \right\}$

b) spike arrival rate VC) spike arrival rate $\sum V_k$

Reference level *u*₀

a) Jump at time t What is the flux across uo?

Week 13 – Membrane Potential Densities and Fokker-Planck Equation

Biological Modeling of Neural Networks:

Week 13 – Membrane potential densities and Fokker-Planck

Wulfram Gerstner EPFL, Lausanne, Switzerland

13.1 Review: Integrate-and-fire

- stochastic spike arrival

13.2 Density of membrane potential

- continuity equation

13.3 Flux

- jump flux
- drift flux

13.4. Fokker – Planck Equation

13.5. Threshold and reset

Week 13-part 2: membrane potential density: flux by jumps

Α

t

Week 13-part 2: membrane potential density: flux by drift

t

a) flux caused by jumps due to stochastic spike arrival

b) flux caused bysystematic drift

 $\tau \frac{d}{dt} u = -(u - u_{eq}) + R \left\{ I^{ext(t)} + \sum_{f} q_e \delta(t - t^f) \right\}$

What is the flux across *u*₀? Reference level *u*₀

Jumps caused at spike arrival rate

Blackboard: Slope and density of potentials

Week 13 – Membrane Potential Densities and Fokker-Planck Equation

Biological Modeling of Neural Networks:

Week 13 – Membrane potential densities and Fokker-Planck

Wulfram Gerstner EPFL, Lausanne, Switzerland

13.1 Review: Integrate-and-fire

- stochastic spike arrival

13.2 Density of membrane potential

13.3 Flux

- continuity equation

13.4. Fokker – Planck Equation

- source and sink

13.5. Threshold and reset

Week 13-part 4: from continuity equation to Fokker-Planck

For any arbitrary neuron in the population

$$\frac{d}{dt}u = -\frac{u}{\tau} + \sum_{k,f} \frac{q_e}{C} \,\delta(t - t_k^f) - \sum_{k',f'} \frac{q_i}{C} \,\delta(t - t_{k'}^{f'}) + \frac{1}{C} I^{ext}(t)$$

EPSC

Continuity equation:

$$\frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} J(u,t)$$
 Flux:

Blackboard: Derive Fokker-Planck equation

external input **IPSC**

- jump (spike arrival) - drift (slope of trajectory)

Week 13-part 4: Fokker-Planck equation

Fokker-Planck

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial^2}{\partial u^2} p(u,t)$$

$$\tau \cdot \frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial}{\partial u} [\gamma(u,t) p(u,t)]$$

$$\sigma^2 = \frac{1}{2} \tau \sum_{k} v_k w_k$$

$$fokker-Planck$$

$$fokker-Planck$$

$$\tau \cdot \frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \sigma^2 \frac{\partial}{\partial u} [\gamma(u,t) p(u,t)]$$

Exercise 2: solution of free Fokker-Planck equation

Membrane potential density: Gaussian constant input rates U U no threshold p(u)

> Fokker-Planck $\tau \cdot \frac{\partial}{\partial t} p(u,t) = -\frac{\partial}{\partial u} [\gamma(u) p(u,t)] + \frac{\partial}{\partial u} [\gamma(u) p($ $\operatorname{drift}_{V(u) = -u + \tau \sum_{k} v_{k} w_{k} + RI(t)$

spike arrival rate

$$\sigma^{2} \frac{\partial^{2}}{\partial u^{2}} p(u,t)$$

$$f$$

$$diffusion$$

$$\sigma^{2} = \frac{1}{2} \tau \sum_{k} v_{k} w_{k}^{2}$$

Week 13 – Membrane Potential Densities and Fokker-Planck Equation

Biological Modeling of Neural Networks:

Week 13 – Membrane potential densities and Fokker-Planck

Wulfram Gerstner EPFL, Lausanne, Switzerland

13.1 Review: Integrate-and-fire

- stochastic spike arrival

13.2 Density of membrane potential

13.3 Flux

- continuity equation

13.4. Fokker – Planck Equation

13.5. Threshold and reset

Week 13-part 5: Threshold and reset (sink and source terms)

Membrane potential density

diffusion $\sigma^2 = \frac{1}{2}\tau \sum_k v_k w_k^2$

Week 13-part 5: population firing rate A(t)

Membrane potential density

Population Firing rate A(t): flux at threshold

Week 13-part 5: population firing rate A(t) = single neuron rate

Week 13-part 5: membrane potential density

Fig. 13.5: A. Membrane potential trajectories of 5 neurons (R = 1 and $\tau_m = 10 \text{ ms}$) driven by a constant background current $I_0 = 0.8$ and stochastic background input with $\nu_+ = \nu_- = 0.8 \text{ kHz}$ and $w_{\pm} = \pm 0.05$. These parameters correspond to $h_0 = 0.8$ and $\sigma = 0.2$ in the diffusive noise model. B. Stationary membrane potential distribution in the diffusion limit for $\sigma = 0.2$ (solid line), $\sigma = 0.1$ (short-dashed line), and $\sigma = 0.5$ (long-dashed line). (Threshold $\vartheta = 1$). C. Mean activity of a population of integrate-and-fire

Week 13-part 5: population activity, time-dependent

Fig. 13.4: Comparison of theory and simulation. **A**. Population firing rate A(t) as a function of time in a simulation of 1 000 neurons (histogram bars) compared to the prediction

Nykamp+Tranchina, 2000

Week 13-part 5: network states

 ${\mathcal T}$

$$\tau \frac{d}{dt} u = -(u - u_{eq}) + R \left\{ \sum_{k, \ldots} \frac{d}{dt} u = -(u - u_{eq}) + R \right\}$$

mean *I(T)* depends on state *I*₀ Variance/noise depends on state

 $I^{mean}(t) + \sigma\xi(t)$

Week 13-part 5: network states

Brunel 2000

- Calculate distribution p(u)
- Determine population firing rate A

12h00

Sign up for: - miniproject fraud detection interview

