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Neuronal Dynamics – Review: Nonlinear Integrate-and Fire 
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Neuronal Dynamics – 1.4. Leaky Integrate-and Fire revisited 
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Neuronal Dynamics – 1.4. Nonlinear Integrate-and Fire 
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Nonlinear Integrate-and-fire Model 
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Nonlinear Integrate-and-fire Model 
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Nonlinear Integrate-and-fire Model 
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Neuronal Dynamics – Review: Nonlinear Integrate-and-fire 

See: 

week 1, 

lecture 1.5 
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What is a good choice of f ? 

(ii) Extract f from more complex models 

(i) Extract f  from data 

reset rIf u then reset to u u(2) 

(1) 

Neuronal Dynamics – Review: Nonlinear Integrate-and-fire 



Neuronal Dynamics – 1.5. Inject current – record voltage 



Neuronal Dynamics – Inject current – record voltage 

Badel et al., J. Neurophysiology 2008 
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(i) Extract f  from data 

Pyramidal neuron Inhibitory 

interneuron 
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Exp. Integrate-and-Fire, Fourcaud et al. 2003 
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Best choice of f : linear + exponential 

reset rIf u then reset to u u
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BUT: Limitations – need to add 
-Adaptation on slower  time scales 

-Possibility for a diversity of firing patterns 

-Increased threshold      after each spike 

-Noise 

Neuronal Dynamics – Review: Nonlinear Integrate-and-fire 
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Neuronal Dynamics –  4.5.   Further reduction to 1 dimension 

Separation of time scales 
-w is nearly constant  

     (most of the time) 

2-dimensional equation 
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Crochet et al., 2011 

awake mouse, cortex, freely whisking,  

Spontaneous activity in vivo 

Neuronal Dynamics – 4.5 sparse activity in vivo 

-spikes are rare events 

-membrane potential fluctuates around ‘rest’ 

Aims of Modeling: - predict spike initation times 

                              - predict subthreshold voltage 
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Neuronal Dynamics –  4.5.   Further reduction to 1 dimension 

Separation of time scales 

 Flux nearly horizontal 
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Neuronal Dynamics –  4.5.   Further reduction to 1 dimension 

Hodgkin-Huxley reduced to 2dim 
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(i) Extract f  from more complex models 
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See week 3: 

2dim version of  

Hodgkin-Huxley 

Separation of time scales: 

Arrows are nearly horizontal 

resting state 

restw w
Spike initiation, from rest 

A. detect spike and reset 

B.  Assume w=wrest 
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(i) Extract f  from more complex models 
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Neuronal Dynamics –  4.5.  Nonlinear Integrate-and-Fire Model 

Image: Neuronal Dynamics,  

Gerstner et al., 

 Cambridge Univ. Press (2014) 
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Neuronal Dynamics –  4.5.  Nonlinear Integrate-and-Fire Model 

Image: Neuronal Dynamics,  

Gerstner et al., 

 Cambridge Univ. Press (2014) 
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Neuronal Dynamics –  4.5.  Exponential Integrate-and-Fire Model 

Image: Neuronal Dynamics,  

Gerstner et al., 

 Cambridge Univ. Press (2014) 
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Neuronal Dynamics –  4.5.  Exponential Integrate-and-Fire Model 
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Direct derivation from Hodgkin-Huxley 

Fourcaud-Trocme et al, J. Neurosci. 2003 



Neuronal Dynamics –  4.5.   Nonlinear Integrate-and-Fire Model 

Separation of time scales 

-w is  constant (if not firing)  

2-dimensional equation 
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and downswing of AP 
threshold+reset for firing  



Neuronal Dynamics –  4.5.   Nonlinear Integrate-and-Fire Model 

Separation of time scales 

-w is  constant (if not firing)  

2-dimensional equation 
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Crochet et al., 2011 

awake mouse, cortex, freely whisking,  

Spontaneous activity in vivo 

Neuronal Dynamics – 4.5 sparse activity in vivo 
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Aims of Modeling: - predict spike initation times 
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Neuronal Dynamics – 4.5.How good are integrate-and-fire models? 

Aims: - predict spike initation times 

          - predict subthreshold voltage 

Badel et al., 2008 

Add adaptation and 

refractoriness (week 7) 



Neuronal Dynamics –  Quiz 4.7. 
A. Exponential integrate-and-fire model.   

The model can be derived 

[ ] from a 2-dimensional model, assuming that the auxiliary variable w is constant. 

[ ] from the HH model, assuming that the gating variables h and n are constant. 

[ ] from the HH model, assuming that the gating variables m is constant. 

[ ] from the HH model, assuming that the gating variables m is instantaneous. 

 

 

B.  Reset.  

[ ] In a 2-dimensional model, the auxiliary variable w is necessary to implement a  

    reset of the voltage after a spike 

[ ] In a nonlinear integrate-and-fire model, the auxiliary variable w is necessary to 

implement a  reset of the voltage after a spike 

[ ] In a nonlinear integrate-and-fire model,  a  reset of the voltage after a spike is 

implemented algorithmically/explicitly 

 

 

 

 



Neuronal Dynamics –  Nonlinear Integrate-and-Fire 
Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski, 

Neuronal Dynamics: from single neurons to networks and  

models of cognition. Chapter 4: Introduction.  Cambridge Univ. Press, 2014 

OR W. Gerstner and W.M. Kistler, Spiking Neuron Models, Ch.3. Cambridge 2002 

OR J. Rinzel and G.B. Ermentrout,  (1989). Analysis of neuronal excitability and oscillations.  

In Koch, C. Segev, I., editors, Methods in neuronal modeling. MIT Press, Cambridge, MA.  
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