Week 5: Networks of Neurons-Introduction

Biological Modeling of Neural Networks

Week 5 NETWORKS of NEURONS and ASSOCIATIVE MEMORY

- Wulfram Gerstner
- EPFL, Lausanne, Switzerland

5.1 Introduction

- networks of neuron
- systems for computing
- associative memory

5.2 Classification by similarity

- 5.3 Detour: Magnetic Materials
- 5.4 Hopfield Model
- 5.5 Learning of Associations
- 5.6 Storage Capacity

Systems for computing and information processing

Distributed architecture (10¹⁰proc. Elements/neurons) No separation of processing and memory

Systems for computing and information processing

10 000 neurons 3 km wire

Systems for computing and information processing

- 1mm
- 10 000 neurons

Distributed architecture 10¹⁰ neurons 10⁴ connections/neurons

No separation of processing and memory

Associations, Associative Memory

Read this text NOW!

Noisy word

List of words

Your brain fills in missing information: 'associative memory'

Output the closest one

Week 5: Networks of Neurons-Introduction 5.1 Introduction

Biological Modeling of Neural Networks

Week 5 NETWORKS of NEURONS and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

- networks of neuron
- systems for computing
- associative memory

5.2 Classification by similarity

5.3 Detour: Magnetic Materials

5.4 Hopfield Model

5.5 Learning of Associations

5.6 Storage Capacity

5.2 Classification by similarity: pattern recognition

Noisy image

Prototypes

5.2 Classification by similarity: pattern recognition

Noisy image

Prototypes

Quiz 5.1: Connectivity

A typical neuron in the brain makes connections -To 6-20 neighbors

- -To 100-200 neurons nearby
- -To more than 1000 neurons nearby -To more than 1000 neurons nearby or far away.

In a typical cristal in nature, each atom interacts -with 6-20 neighbors -with 100-200 neurons nearby -with more than 1000 neurons nearby -with more than 1000 neurons nearby or far away.

Week 5: Networks of Neurons-Introduction

Biological Modeling of Neural Networks

Week 5 NETWORKS of NEURONS and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

J 5.1 Introduction

- networks of neuron
- systems for computing
 associative memory
- **5.2** Classification by similarity
 - 5.3 Detour: Magnetic Materials
 - 5.4 Hopfield Model
 - 5.5 Learning of Associations
 - 5.6 Storage Capacity

Noisy magnet

pure magnet

Elementary magnet

- $S_{i} = +1$
- S_i = -1

Blackboard: example

dynamics

 $S_i(t+1) = \operatorname{sgn}[\sum S_i(t)]$

Sum over all interactions with i

Anti-ferromagnet

blackboard

Elementary magnet

 $| S_i = +1$ $\uparrow \uparrow W_{ii} = +1$ $\downarrow S_i = -1$ $| | W_{ii} = -1 |$

dynamics $S_i(t+1) = \operatorname{sgn}[\sum w_{ij}S_j(t)]$ Sum over all interactions with i

5.3 Magnetism and memory patterns

blackboard

Hopfield model: Several patterns→ next section

Elementary pixel

 $S_{i} = +1$ $S_{i} = -1$ $W_{ij} = +1$ $W_{ij} = +1$ $W_{ij} = -1$

dynamics

 $S_i(t+1) = \operatorname{sgn}[\sum w_{ii}S_i(t)]$

Sum ovér all interactions with i

Exercise 1: Associative memory (1 pattern)

- **Elementary pixel** $W_{ij} = +1$ $W_{ij} = +1$
- $S_i = +1$ $S_i = -1$
 - dynamics

$$S_i(t+1) = \operatorname{sgn}[\sum_{j \in V} w_{ij}S_j(t)]$$

Sum over all interactions with i

Week 5: Networks of Neurons-Introduction

Biological Modeling of Neural Networks

Week 5 NETWORKS of NEURONS and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

J 5.1 Introduction

- networks of neuron
- systems for computing
 associative memory
- **5.2** Classification by similarity
- **5.3 Detour: Magnetic Materials**
 - 5.4 Hopfield Model
 - 5.5 Learning of Associations
 - 5.6 Storage Capacity

Prototype \vec{p}^1 **DEMO** dy S_i

Random patterns, fully connected: Hopfield model

This rule is very good $p_i^{\mu} p_j^{\mu}$ for **random** patterns It does not work well for correlated patters

$$S_{i}(t+1) = \operatorname{sgn}\left[\sum_{j} W_{ij}S_{j}\right]$$
$$W_{ij} = \sum_{j} W_{ij} = \sum_{j} W_{ij}$$

Blackboard

$m^{\mu}(t+1) = \frac{1}{N} \sum_{j} \xi^{\mu} S_{j} t + 1$

(t)

 $\sum p_i^{\mu} p_j^{\mu}$

overlap $m^{\mu}(t) = \frac{1}{N} \sum_{j} \xi^{\mu} S_{j} t$

Prototype D^1 Finds the closest prototype i.e. maximal overlap (similarity)

Hopfield model

Interacting neurons

Computation - without CPU, - without explicit memory unit

Exercise 3 (now)

Next lecture at 11h15

Prototype D^1 Assume 4 patterns. At time t=0, overlap with Pattern 3, no overlap with other patterns. discuss temporal evolution (of overlaps) (assume that patterns are orthogonal)

 $w_{ij} = \frac{1}{N} \sum p_i^{\mu} p_j^{\mu}$ $S_i(t+1) = \operatorname{sgn}[\sum_{i=1}^{\mu} w_{ij}S_j(t)]$

> Sum over all interactions with i

Week 5-5: Learning of Associations

Biological Modeling of Neural Networks

Week 5 NETWORKS of NEURONS and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

- **5.1** Introduction
 - networks of neuron
 - systems for computing
 associative memory
- **5.2** Classification by similarity
- **5.3 Detour: Magnetic Materials**
- **5.4 Hopfield Model**

5.5 Learning of Associations

5.6 Storage Capacity

5.5 Learning of Associations Where do the connections come from?

Hebbian Learning When an axon of cell j repeatedly or persistently takes part in firing cell i, then j's efficiency as one

of the cells firing i is increased

- local rule

Hebb, 1949

- simultaneously active (correlations)

5.5 Hebbian Learning of Associations

5.5 Hebbian Learning of Associations

item memorized

5.5 Hebbian Learning: Associative Recall

Recall: Partial info

item recalled

Tell me the code shape for the following list of 5 items:

be as fast as possible:

time

Tell me the **Color** for the following list of 5 items:

be as fast as possible:

Stroop effect:timeSlow response: hard to workAgainst natural associations

Hierarchical organization of Associative memory

Nommez au plus vite possible un exemple d'un /d'une name as fast as possible an example of a outil tool couleur color fruit fruit music instrument de musique instrument

Week 5-5: Learning of Associations

Biological Modeling of Neural Networks

Week 5 NETWORKS of NEURONS and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

- **5.1** Introduction
 - networks of neuron
 - systems for computing
 associative memory
- **5.2** Classification by similarity
- **5.3 Detour: Magnetic Materials**
- **5.4 Hopfield Model**
- **5.5 Learning of Associations**
 - 5.6 Storage Capacity

Q; How many prototypes can be stored?

dynamics

Q; How many prototypes can be stored?

Minimal condition: pattern is fixed point of dynamics

-Assume we start directly in one pattern

-Pattern stays

Attention: Retrieval requires more (pattern completion)

blackboard

Random patterns

eractions (1)
$$W_{ij} = \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

$$t+1) = \operatorname{sgn}[\sum_{j} w_{ij} S_{j}(t)]$$

Random patterns \rightarrow random walk a) show relation to erf function: importance of p/N b) network of 1000 neurons – allow at most 1 wrong pixel? c) network of N neurons – at most 1 promille wrong pixels?

End of lecture, exercise+ Computer exercise : 12:00

- Interactions (1) $W_{ij} = \sum p_i^{\mu} p_j^{\mu}$
- $S_i(t+1) = \operatorname{sgn}[\sum w_{ii}S_i(t)]$

Week 6 Review: storage capacity of Hopfield model

Minimal condition: pattern is fixed point of dynamics

-Assume we start directly in one pattern

-Pattern stays

Attention: Retrieval requires more (pattern completion)

Random patterns

- Interactions (1) $W_{ij} = \sum p_i^{\mu} p_j^{\mu}$
- \vec{p}^2 Dynamics (2) $S_i(t+1) = \operatorname{sgn}[\sum_{i}^{\mu} w_{ij}S_j(t)]$

Q; How many prototypes can be stored?

Week 6: Hopfield model continued

Biological Modeling of Neural Networks

Week 6 Hebbian LEARNING and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland 6 6 6

6.1 Stochastic Hopfield Model

- 6.2. Energy landscape
- 6.3. Low-activity patterns
- 6.4. Attractor memorie
 - spiking neurons
 - experimental data

6.1 Review: Hopfield model

Deterministic dynamics

 $S_i(t+1) = \operatorname{sgn}[\sum w_{ij}S_j(t)]$

6.1 Stochastic Hopfield model

Random patterns Interactions (1) $W_{ij} = \sum p_i^{\mu} p_j^{\mu}$

6.1 Stochastic Hopfield model: memory retrieval

6.1 Stochastic Hopfield model: memory retrieval

6.1 Stochastic Hopfield model Dynamics (2) $\Pr\{S_i (t+1) = +1 \mid h_i\} = g[h_i] = g\left[\sum_{i} w_{ii}S_i t\right]$

 $\Pr\{S_i (t+1) = +1 \mid h_i\} = g\left[\sum_{\mu} p_i^{\mu} m^{\mu} t\right]$

Assume that there is only overlap with pattern 17: two groups of neurons: those that should be 'on' and 'off'

$$\Pr\{S_i \ (t+1) = +1 \mid h_i = h^+\} = g \left[m_i \right]$$

$$\Pr\{S_i \ (t+1) = +1 \mid h_i = h^-\} = g\left[-\frac{1}{2}\right]$$

 $2m^{17}(t+1) = g\left[m^{17} t\right] + \{1 - g\left[-m^{17} t\right]\} - g\left[m^{17} t\right] - \{1 - g\left[-m^{17} t\right]\}$

blackboard

$$\begin{bmatrix} 17 & t \end{bmatrix}$$

 $m^{17} t \end{bmatrix}$

Week 6: Hopfield model continued

Biological Modeling of Neural Networks

Week 6 Hebbian LEARNING and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

6.1 Stochastic Hopfield Model

- 6.2. Energy landscape
- 6.3. Low-activity patterns
- 6.4. Attractor memorie
 - spiking neurons
 - experimental data

6.2 Symmetric interactions: Energy picture

Exercise 2 now: Energy picture $S_i(t+1) = \operatorname{sgn}[\sum w_{ij}S_j(t)]$ $E = -\sum_{i} \sum_{j} w_{ij} S_{i} S_{j}$ $m^3 = 1$

Next lecture 11:25

 $m^{17} = 1$

Week 6: Hopfield model continued

Biological Modeling of Neural Networks

Week 6 Hebbian LEARNING and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

6.1 Stochastic Hopfield Model

- 6.2. Energy landscape
- 6.3. Low-activity patterns
- 6.4. Attractor memories
 - spiking neurons
 - experimental data

6.3 Attractor memory

6.3 attractor memory with spiking neurons

Memory with spiking neurons -Mean activity of patterns? -Separation of excitation and inhibition? -Modeling? -Neural data?

6.3 attractor memory with low activity patterns

Random patterns +/-1 with zero mean \rightarrow 50 percent of neurons should be active in each pattern

$$w_{ij} = \frac{1}{N} \sum_{\mu} p_i^{\mu} p_j^{\mu}$$

Random patterns +/-1 with low activity (mean =a<0) \rightarrow 20 percent of neurons should be active in each pattern

$$w_{ij} = \frac{1}{N} \sum_{\mu} (p_i^{\mu} - b)(p_j^{\mu})$$

Some constant

			IN	

Ν

(-a)

activity

Week 6: Hopfield model continued

Biological Modeling of Neural Networks

Week 6 Hebbian LEARNING and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland 6 6 6

6.1 Stochastic Hopfield Model

- 6.2. Energy landscape
- 6.3. Low-activity patterns
- 6.4. Attractor memories
 - spiking neurons
 - experimental data

6.4 attractor memory with spiking neurons

Inh1

Hebb-rule: Active together

Exc

$w_{ij} = \frac{1}{N} \sum_{\mu} (p_i^{\mu} + 1)(p_j^{\mu} + 1)$

theta

Overlap with patterns 1 ... 3

Time

470 475

Time

Memory with spiking neurons -Low activity of patterns? -Separation of excitation and inhibitio -Modeling?

-Neural data?

6.4 memory data Human Hippocampus

Quiroga, R. Q., Reddy, L., Kreiman, G., Koch, C., and Fried, I. (2005). Invariant visual representation by single neurons in the human brain. Nature, 435:1102-1107.

6.4 memory data Delayed Matching to Sample Task Animal experiments

sample

i sample

6.4 memory data

sample

1S Miyashita, Y. (1988). Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature, 335:817-820.

match

6.4 memory data

match Rainer and Miller (2002). Timecourse of object-related neural activity in the primate prefrontal cortex during a short-term memory task. Europ. J. Neurosci., 15:1244-1254.

Exercise 3 NOW- from Hopfield to spikes

In the Hopfield model, neurons are characterized by a binary variable $S_i = +/-1$. For an interpretation in terms of spikes it is, however, more appealing to work with a binary variable x which is zero or 1. (i) Write $S_i = 2x_i$ - 1 and rewrite the Hopfield model in terms of x_i . What are the conditions so that the input potential is

$$h_i = \sum_{j} w_{ij} x_j$$

(ii) Repeat the same calculation for low-activity patterns and and weights

with some constants a and b

 $w_{ii} = \frac{1}{N} \sum (p_i^{\mu} - b)(p_i^{\mu} - a)$

