Week 6: Hebbian Learning

Biological Modeling of Neural Networks

Week 6 Hebbian LEARNING and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

6.1 Synaptic Plasticity

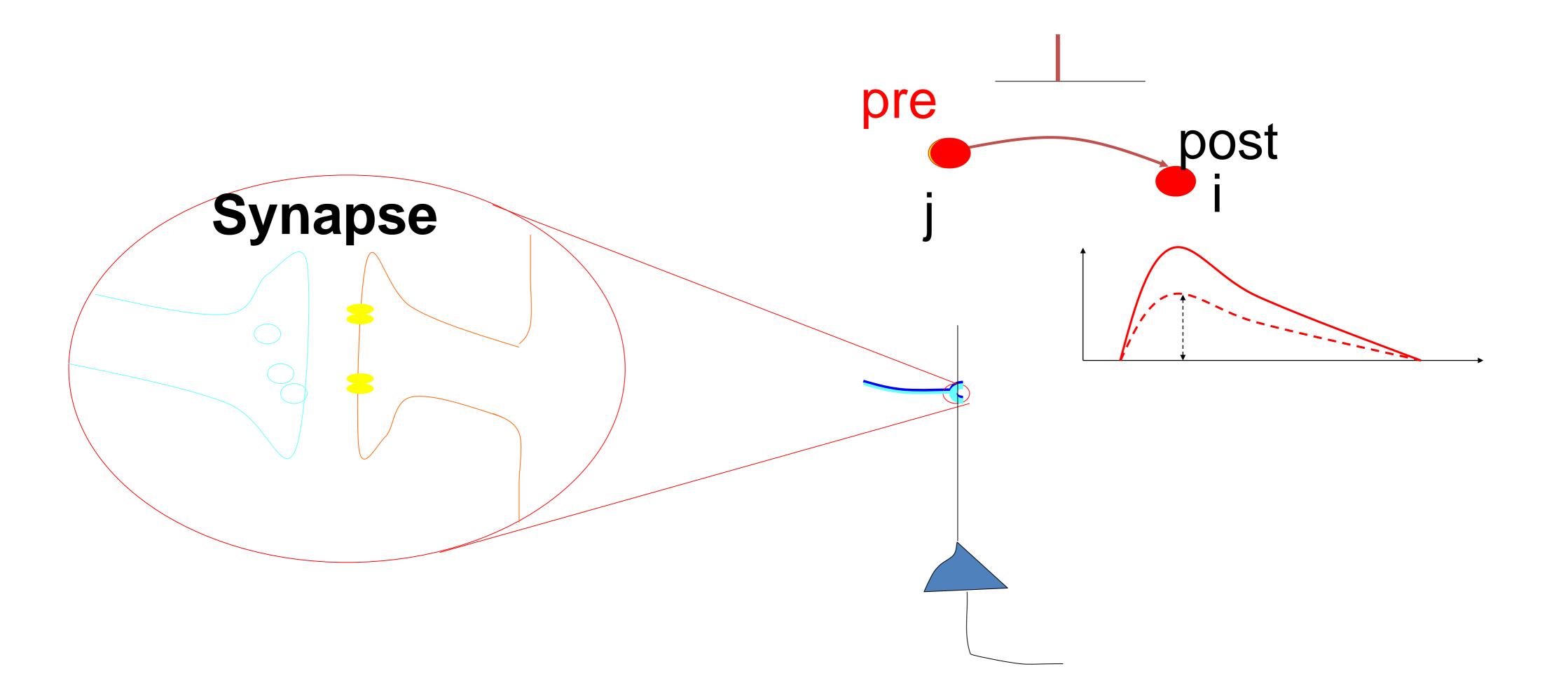
- Hebbian Learning
- Short-term Plasticity
- Long-term Plasticity
- Reinforcement Learning

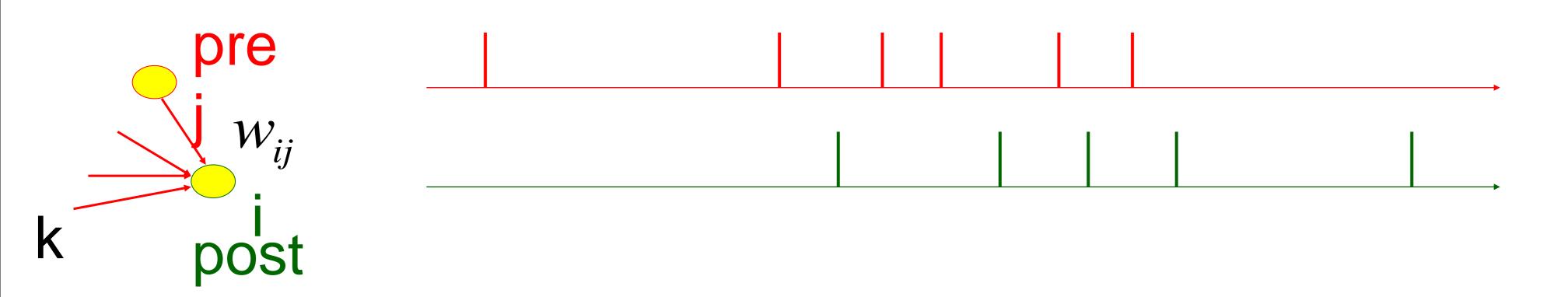
6.2 Models of synaptic plasticity - Hebbian learning rules

6.3

6.4

6.1 Synaptic plasticity

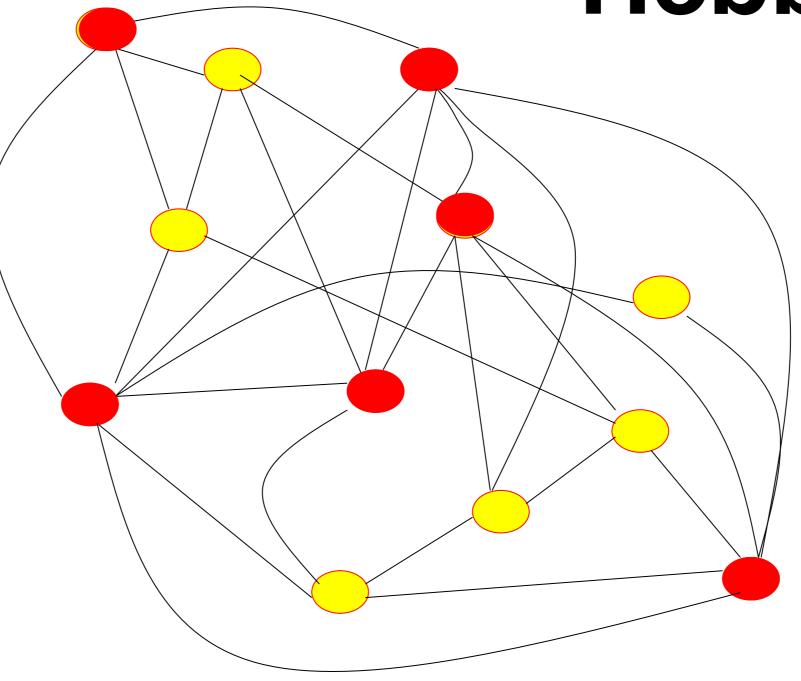




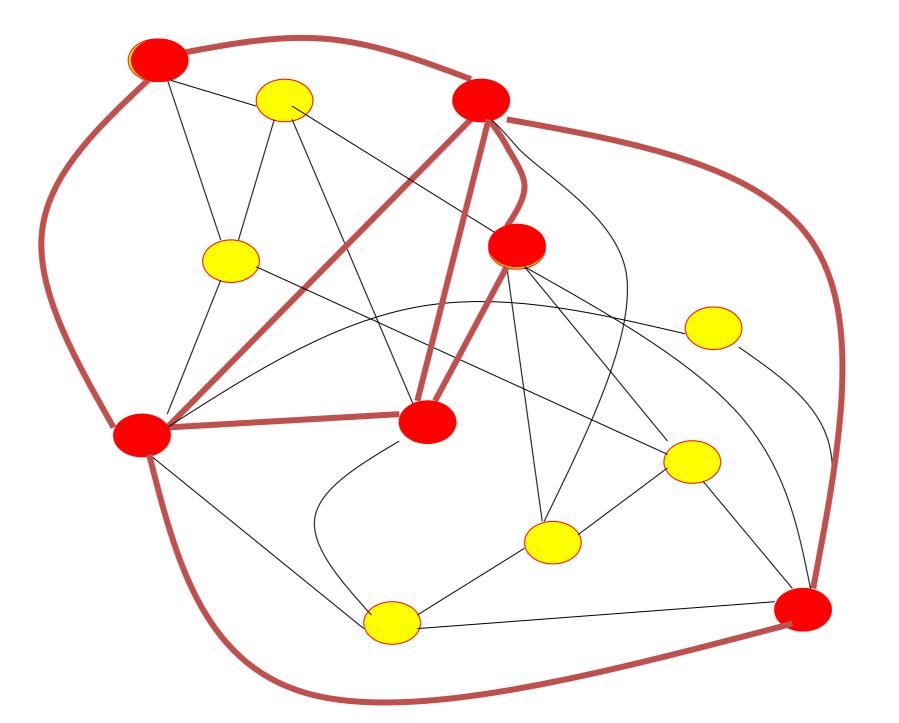
When an axon of cell j repeatedly or persistently takes part in firing cell i, then j's efficiency as one of the cells firing i is increased Hebb, 1949

- local rule

- simultaneously active (correlations)

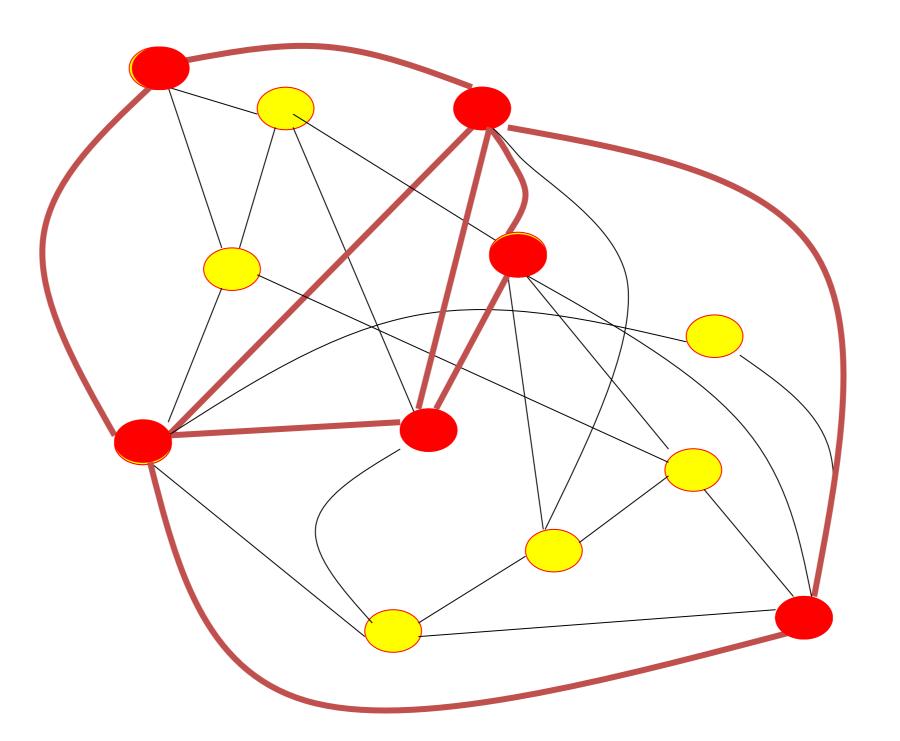


Hebbian Learning



item memorized

Recall: Partial info

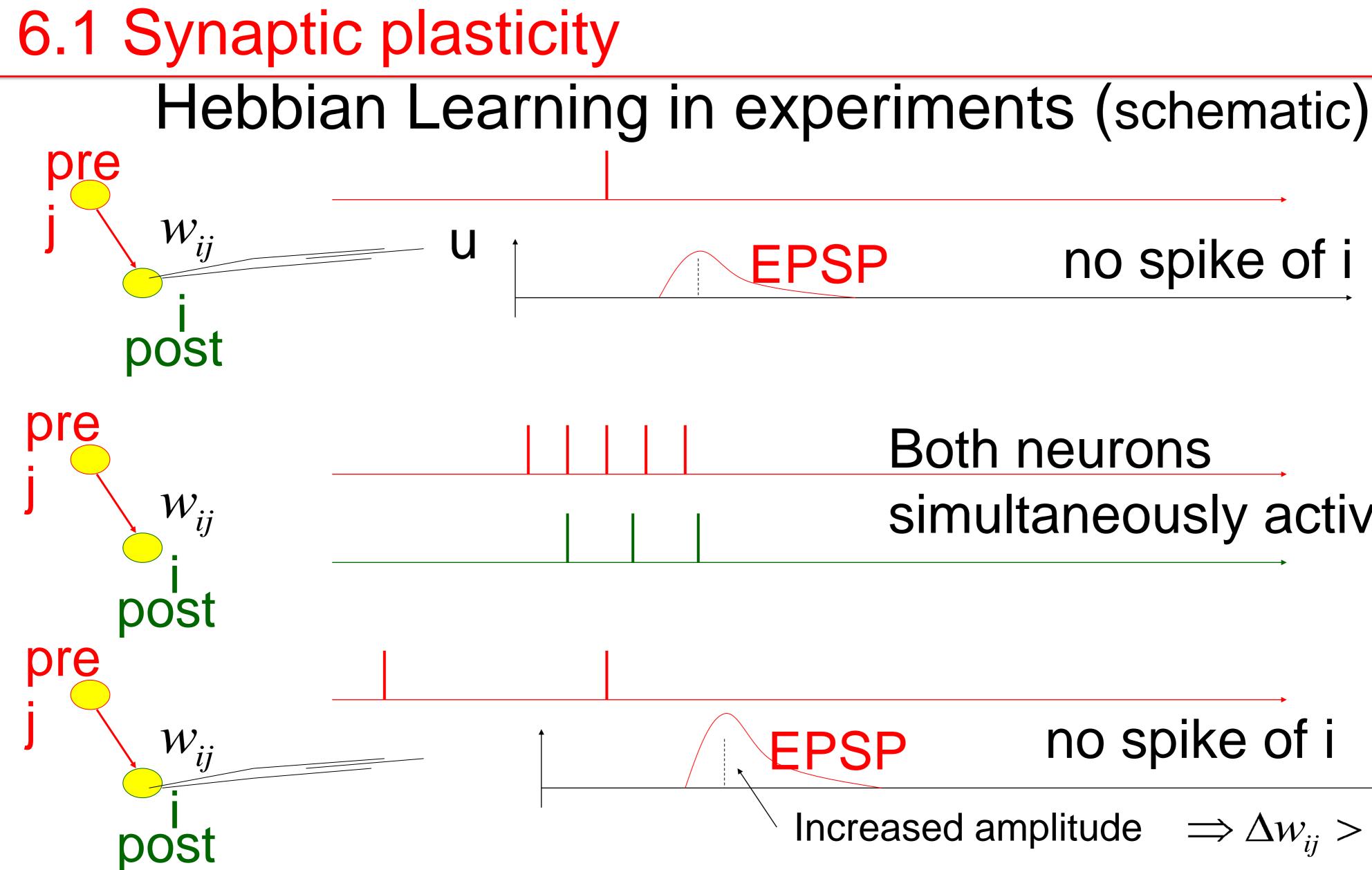


item recalled

6.1 Synaptic plasticity

-Hebbian Learning - Experiments on synaptic plasticity

-Formulations of Hebbian Learning



no spike of i EPSP

Both neurons simultaneously active

no spike of i EPSP

Increased amplitude

 $\Rightarrow \Delta w_{ii} > 0$

Classical paradigm of LTP induction – pairing

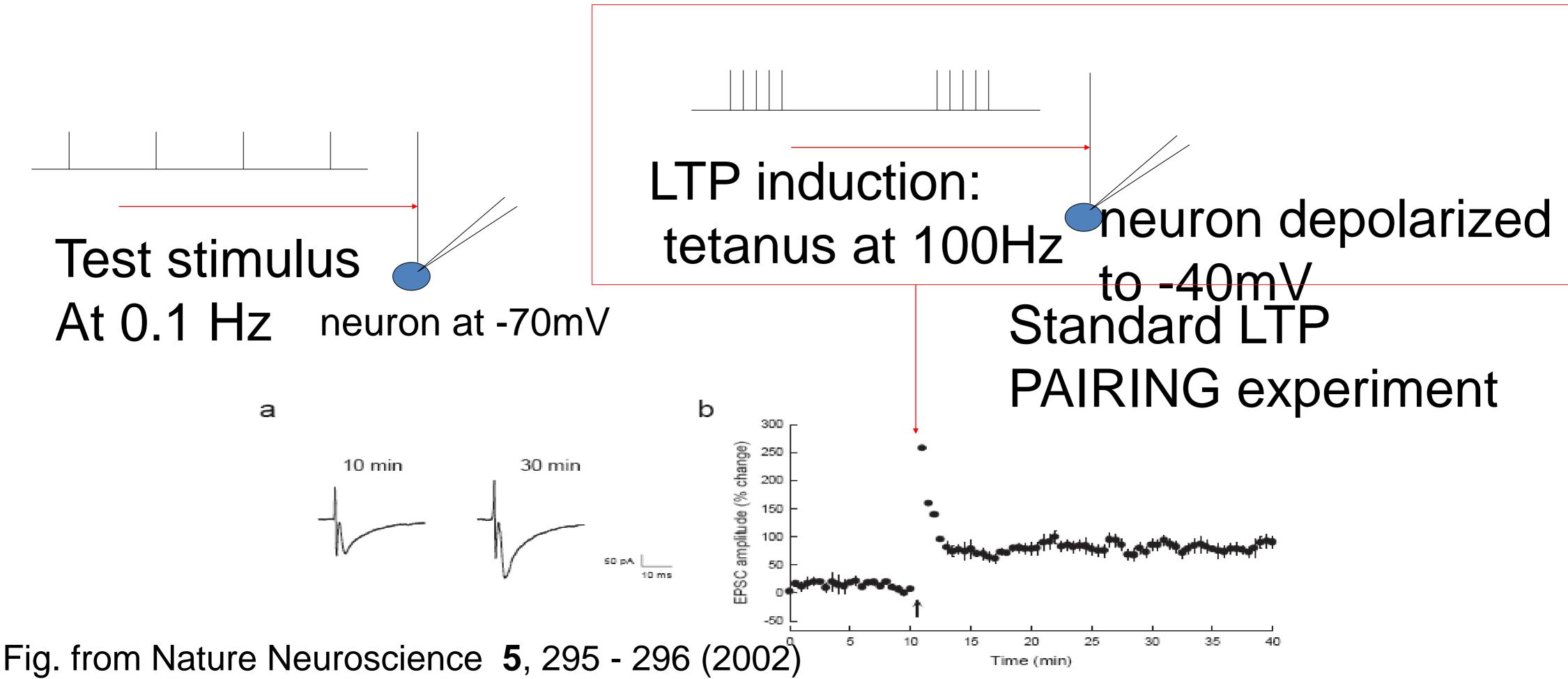
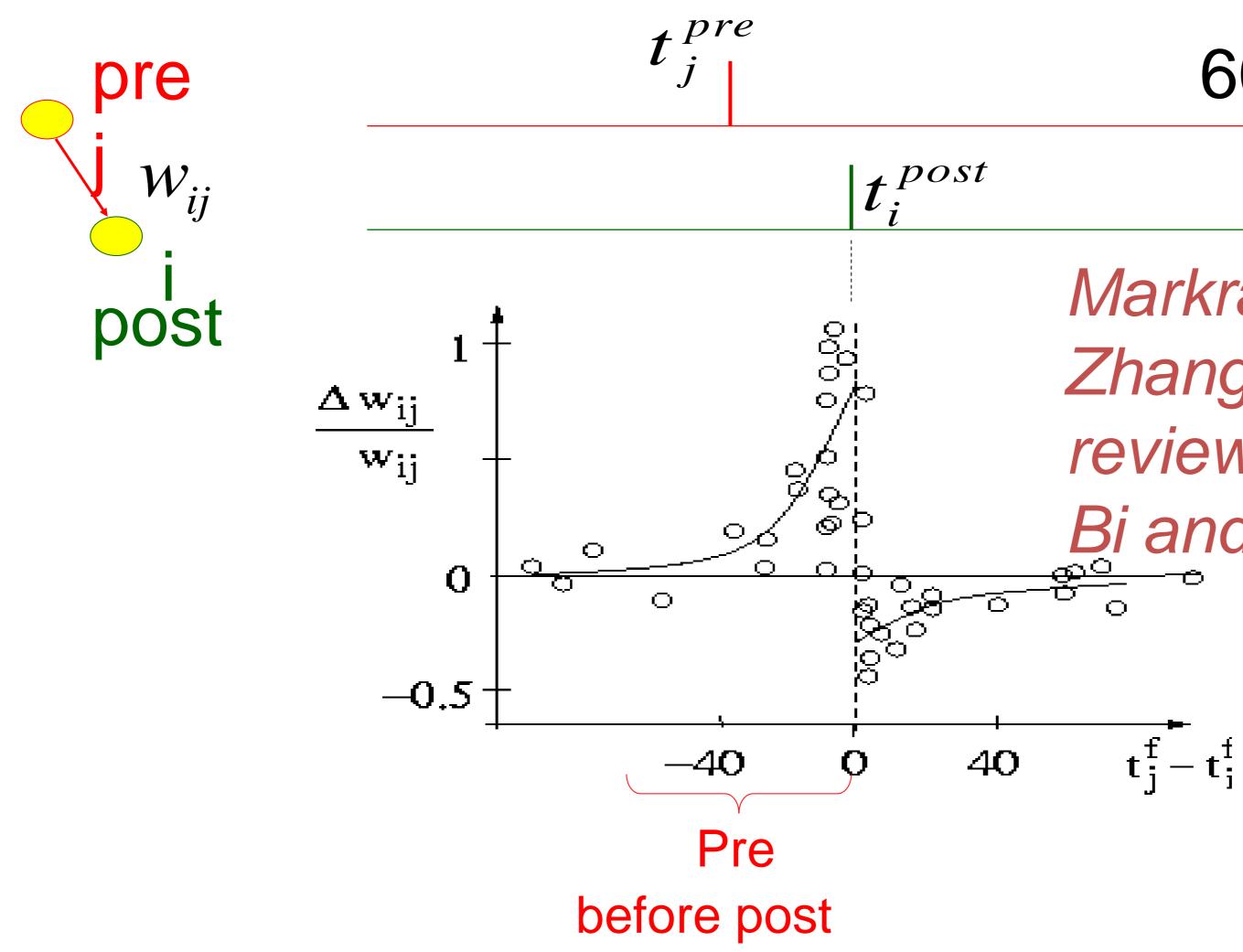


Fig. from Nature Neuroscience 5, 295 - 296 (2002) D. S.F. Ling, ... & Todd C. Sacktor See also: Bliss and Lomo (1973), Artola, Brocher, Singer (1990), Bliss and Collingridge (1993)

Spike-timing dependent plasticity (STDP)



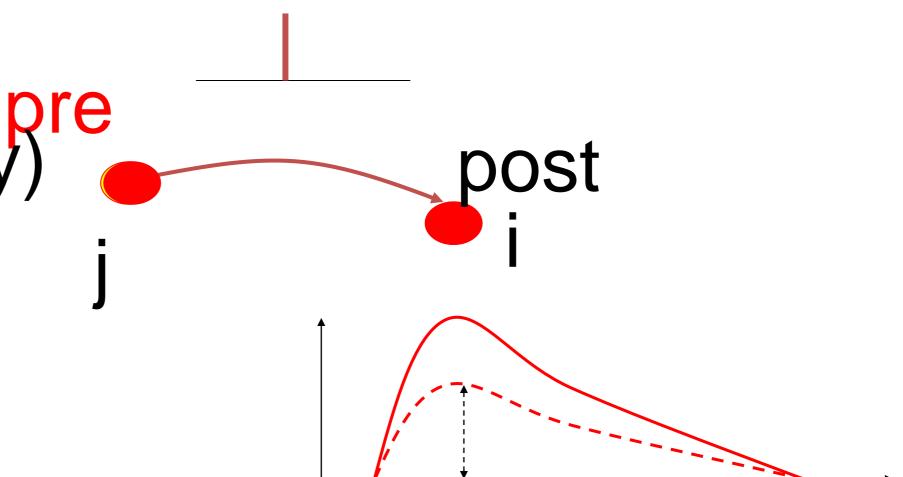
60 repetitions

Markram et al, 1995, 1997 Zhang et al, 1998 review: Bi and Poo, 2001

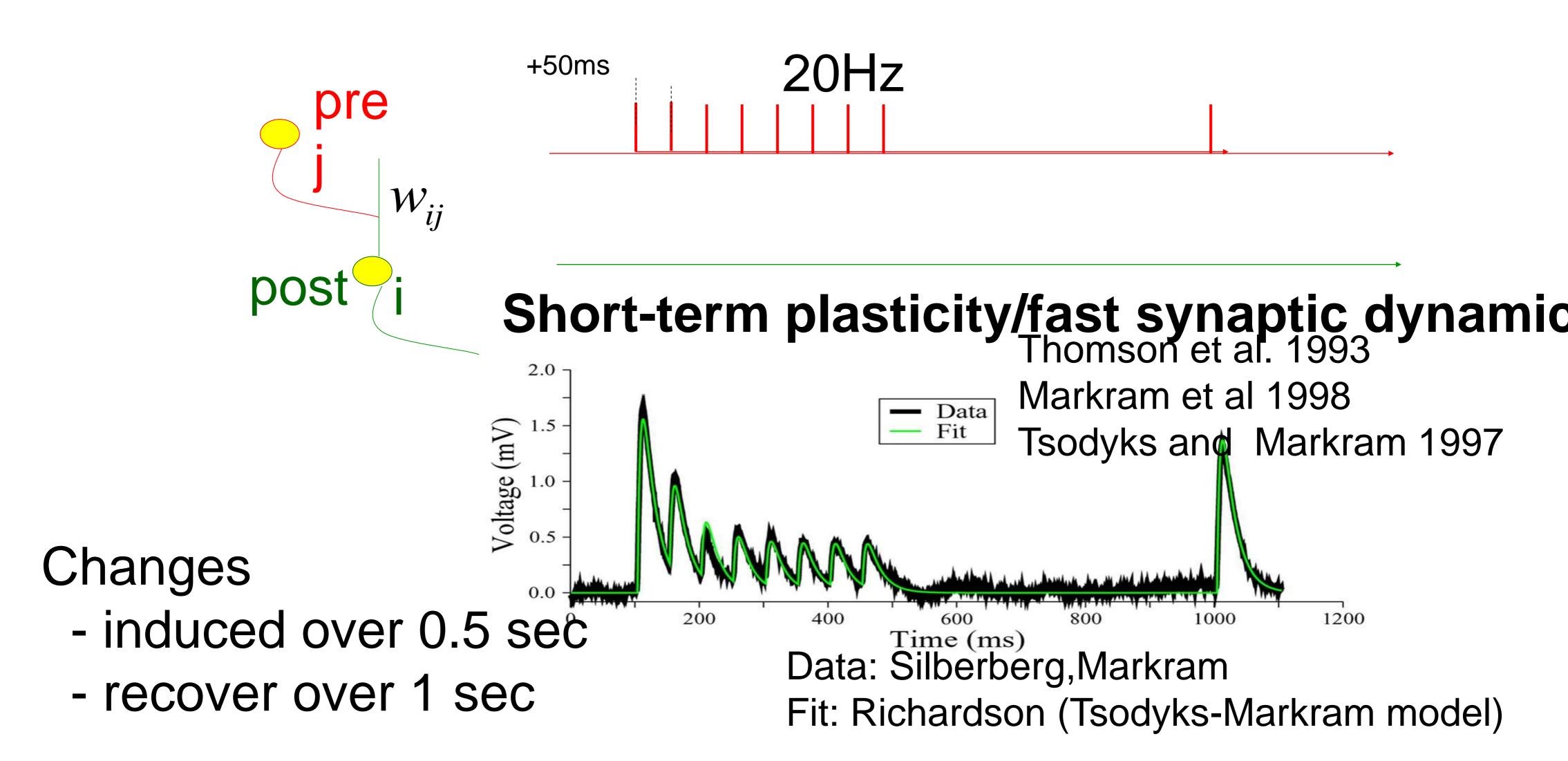
6.1 Classification of synaptic changes

Induction of changes

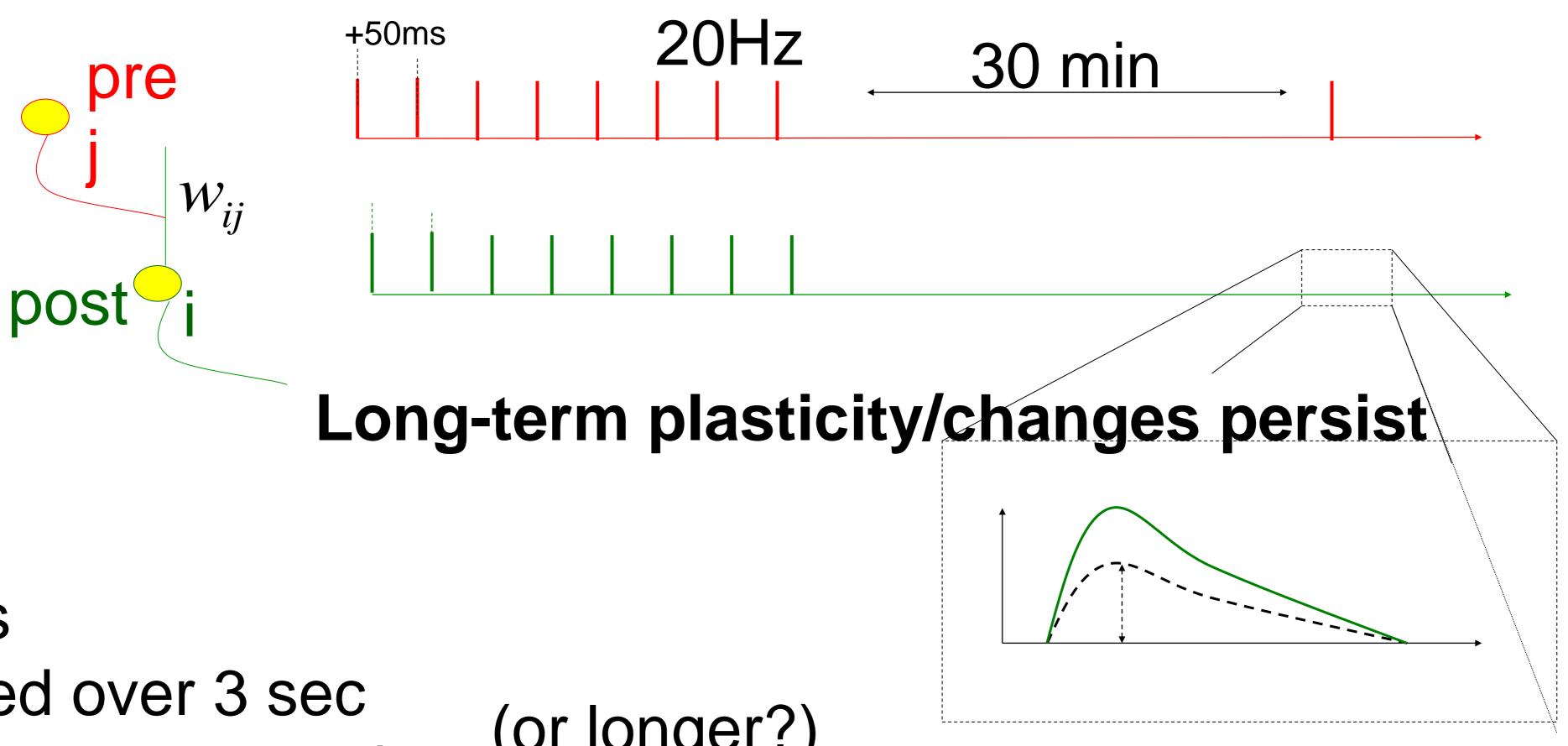
- fast (if stimulated appropriately)
- slow (homeostasis)
- **Persistence of changes**
 - long (LTP/LTD)
- short (short-term plasticity) **Functionality**
 - useful for learning a new behavior
 - useful for development (wiring for receptive field development)
 - useful for activity control in network
 - useful for coding



6.1 Classification of synaptic changes: Short-term plasticity



6.1 Classification of synaptic changes: Long-term plasticity

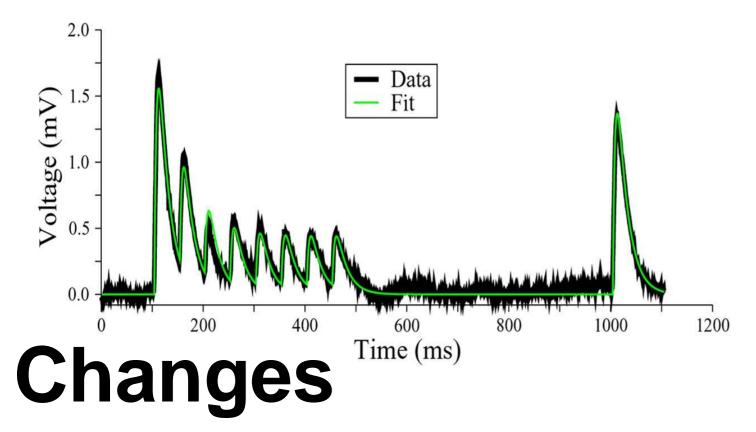


Changes

- induced over 3 sec
- persist over 1 10 hours

6.1 Classification of synaptic changes

Short-Term



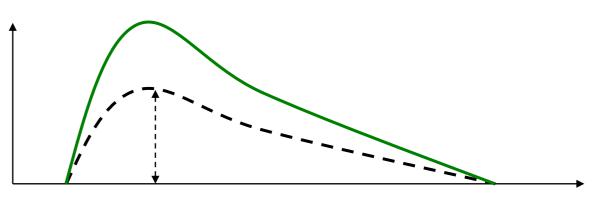
- induced over 0.1-0.5 sec
- recover over 1 sec

Protocol

- presynaptic spikes Model
 - well established

(Tosdyks, Senn, Markram)

vs/ Long-Term LTP/LTD/Hebb



Changes

- induced over 0.5-5sec
- remains over hours

Protocol

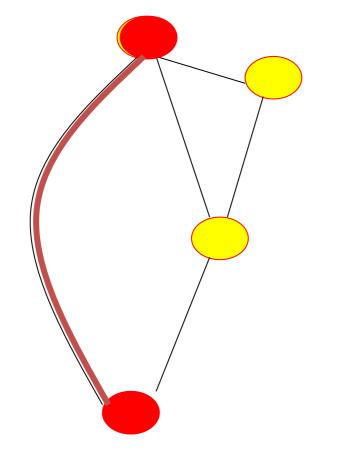
-presynaptic spikes + ...

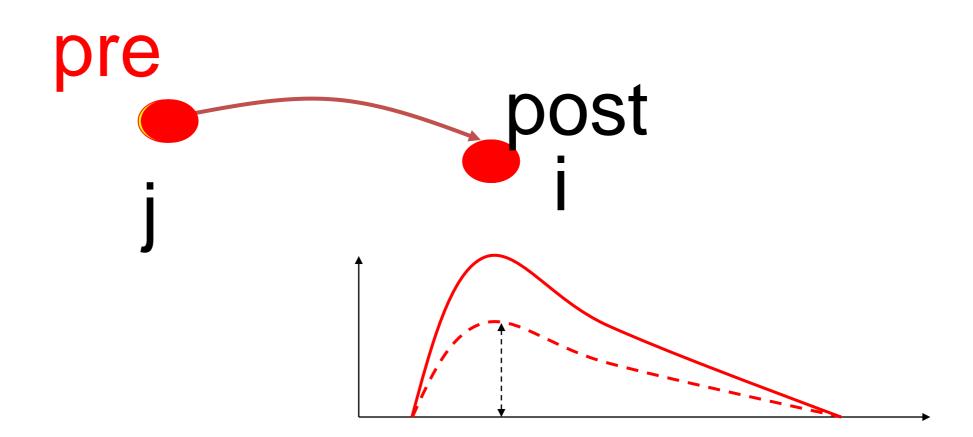
Model

- we will see

6.1 Classification of synaptic changes: unsupervised learning Hebbian Learning

Hebbian Learning = unsupervised learning

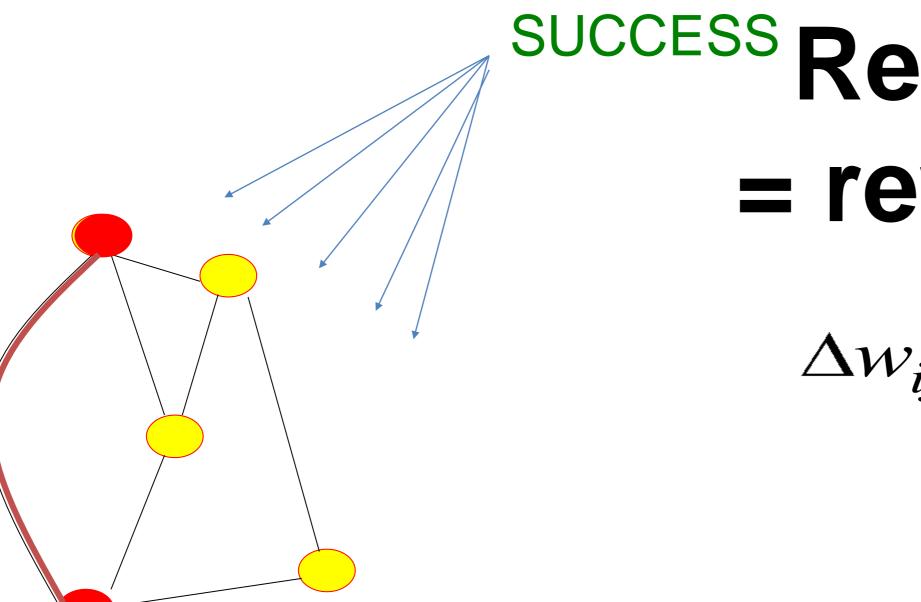




 $W_{ij} \mathcal{E} \left(-t_i^f \right)$

 $\Delta w_{ij} \propto F(pre, post)$

6.1 Classification of synaptic changes: Reinforcement Learning



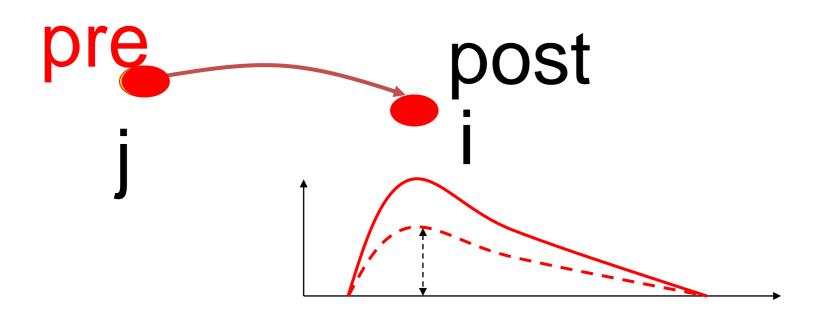
SUCCESS Reinforcement Learning = reward + Hebb

$\Delta w_{ij} \propto F(pre, post, SUCCESS)$ | | | | | | | | | | | | | local global

6.1 Classification of synaptic changes unsupervised vs reinforcement

LTP/LTD/Hebb **Theoretical concept**

- passive changes
- exploit statistical correlations



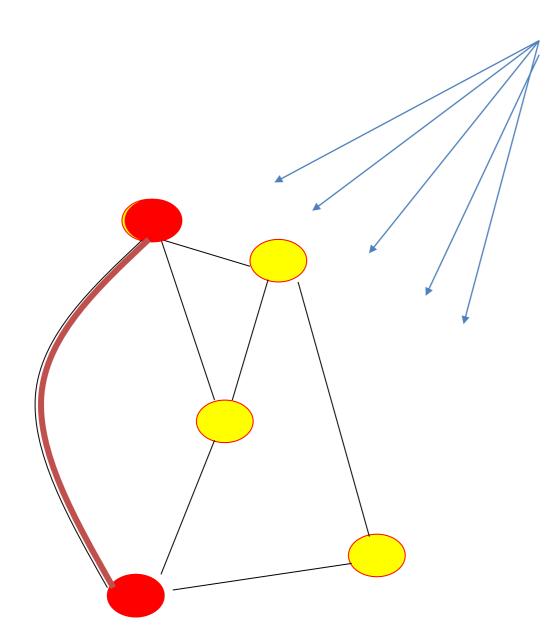
Functionality -useful for development (wiring for receptive fields)

Reinforcement Learning Theoretical concept

- conditioned changes
- maximise reward

Functionality - useful for learning a new behavior

Modulated Hebbian Learning = neuromodulator + Hebb



Neuromodulator: Interestingness, surprise; attention; novelty

$\Delta w_{ij} \propto F(pre, post, MOD)$ global local

Quiz 6.1: Synaptic Plasticity and Learning Rules

Long-term potentiation [] has an acronym LTP [] takes more than 10 minutes to induce [] lasts more than 30 minutes [] depends on presynaptic activity, but not on state of postsynaptic neuron

Short-term potentiation

- [] has an acronym STP
- [] takes more than 10 minutes to induce
- [] lasts more than 30 minutes
- [] depends on presynaptic activity, but not on state of postsynaptic neuron

Learning rules

- [] Hebbian learning depends on presynaptic activity and on state of postsynaptic neuron
- [] Reinforcement learning depends on neuromodulators such as dopamine indicating reward

Week 6: Hebbian Learning and Associative Memory

Biological Modeling of Neural Networks

Week 6 Hebbian LEARNING and ASSOCIATIVE MEMORY

Wulfram Gerstner EPFL, Lausanne, Switzerland

6.1 Synaptic Plasticity

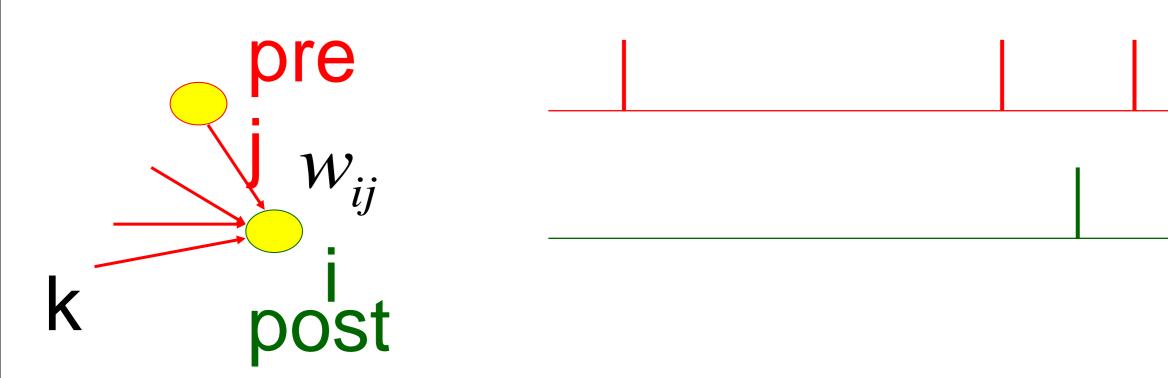
- Hebbian Learning
- Short-term Plasticity
- Long-term Plasticity
- Reinforcement Learning

6.2 Models of synaptic plasticity - Hebbian learning rules

6.3 Hopfield Model

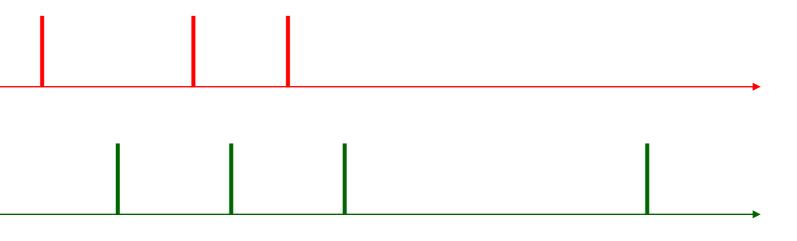
- probabilistic
- energy landscape
- 6.4 Attractor memories

6.2 Hebbian Learning (rate models)



When an axon of cell j repeatedly or persistently takes part in firing cell i, then j's efficiency as one of the cells firing i is increased Hebb, 1949 - local rule - simultaneously active (correlations)

Rate model: active = high rate = many spikes per second



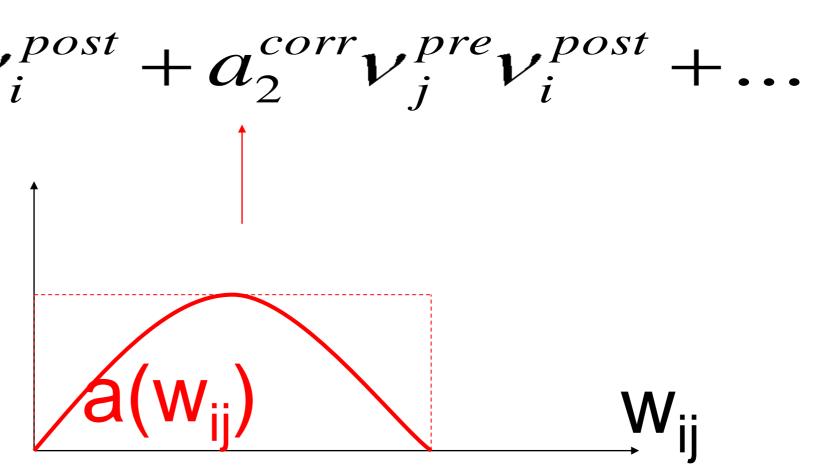
6.2 Rate-based Hebbian Learning

 \mathcal{W}_{ij} post

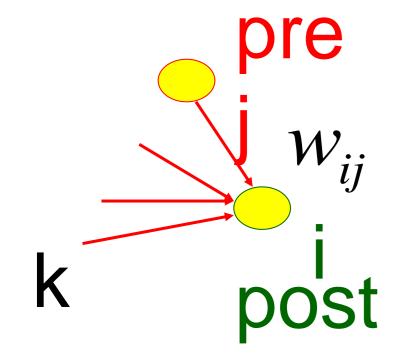
 $\frac{d}{dt}w_{ij} = F(w_{ij}; v_j^{pre}, v_i^{post})$

 $\frac{d}{dt}w_{ij} = a_0 + a_1^{pre}v_j^{pre} + a_1^{post}v_i^{post} + a_2^{corr}v_j^{pre}v_i^{post} + \dots$ $a = a(w_{ii})$

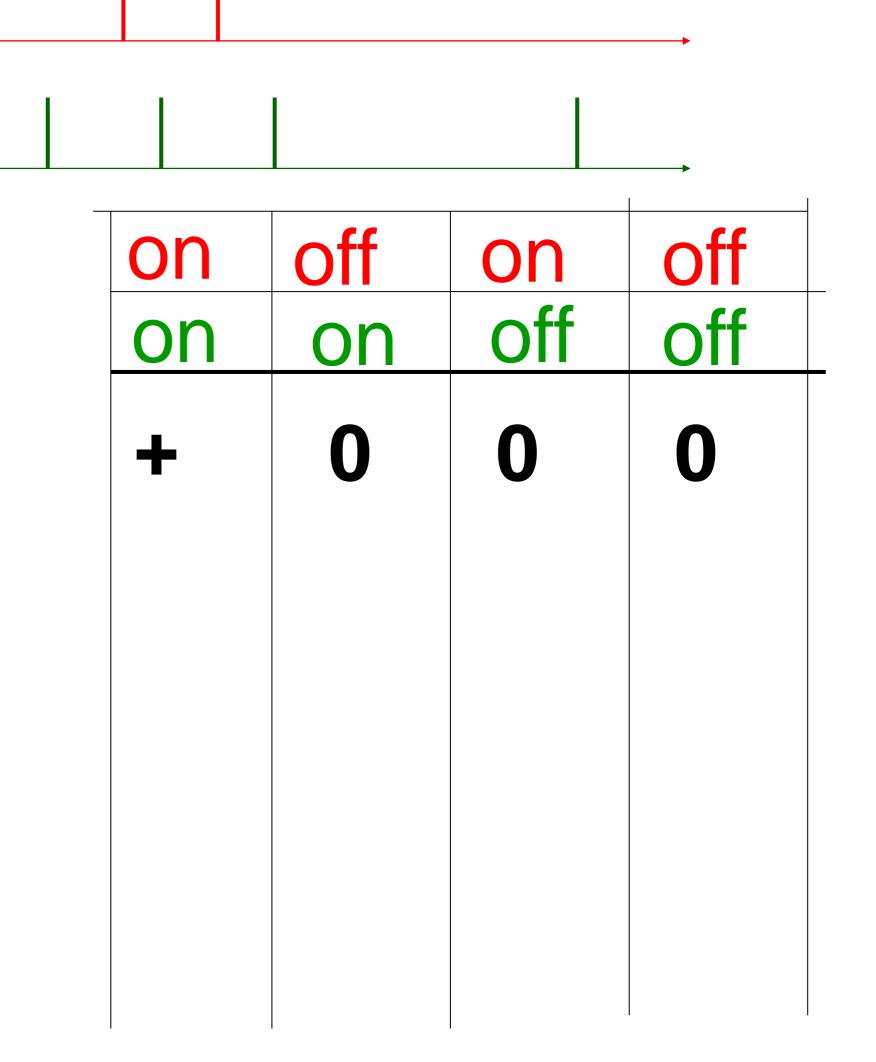
Blackboard



6.2 Rate-based Hebbian Learning

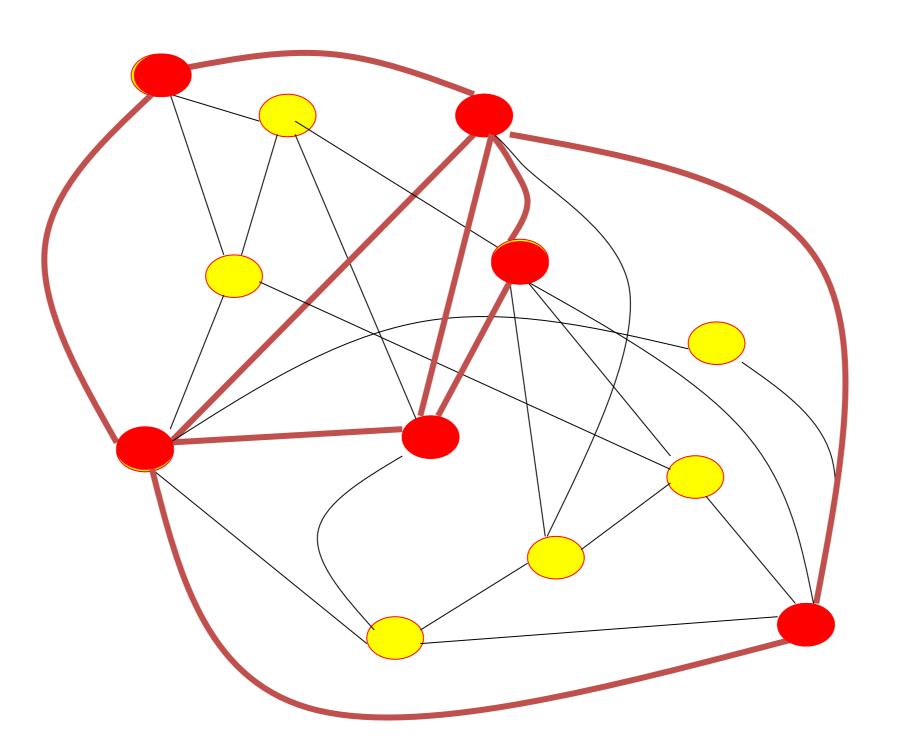


 $\frac{d}{dt}w_{ij} = a_2^{corr} v_j^{pre} v_i^{post}$



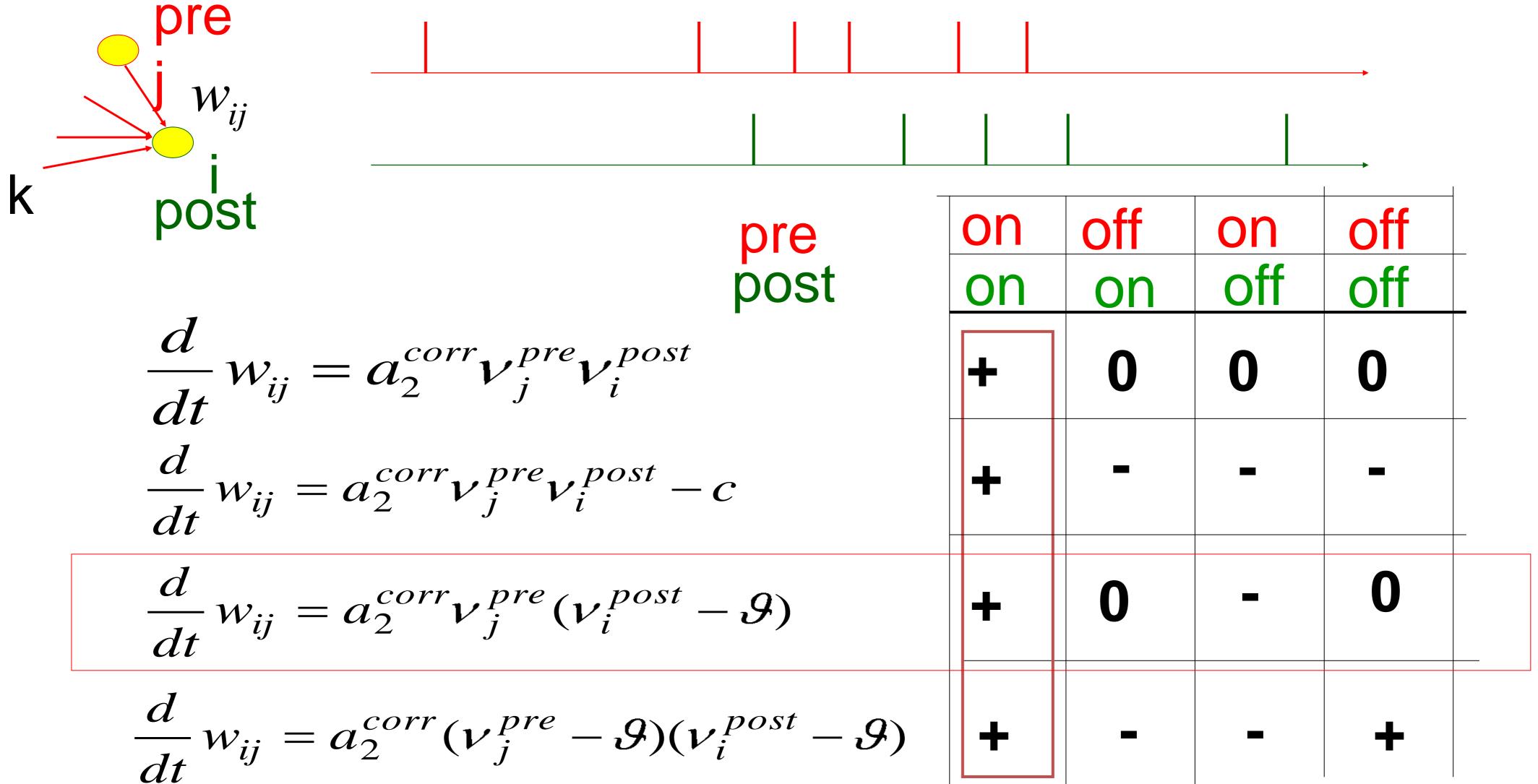
Hebbian Learning

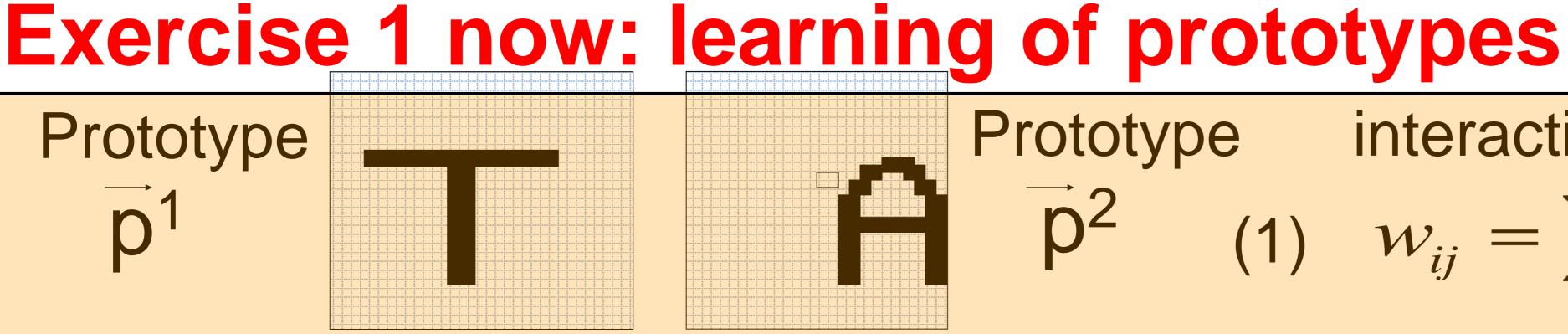
Recall: Partial info



item recalled

6.2 Rate-based Hebbian Learning





(2) $\frac{d}{dt}w_{ij} = a_2^{corr}(v_j^{pre} - \vartheta)(v_i^{post} - \vartheta)$

Assume that weights are zero at the beginning; Each pattern is presented (enforced) during 0.5 sec (One after the other). note that $p_i^{\mu} = \pm 1$ but $v_i \ge 0$ b) Compare with: $\frac{d}{dt}w_{ij} = a_0 + a_1^{pre}v_j^{pre} + a_1^{post}v_i^{post} + a_2^{corr}v_j^{pre}v_i^{post} + \dots$

c) Is this unsupervised learning?

Prototype interactions \vec{p}^2 (1) $w_{ij} = \sum p_i^{\mu} p_j^{\mu}$ a) Show that (1) corresponds to a rate learning rule Next lecture 10:15

The end

