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6.1 Synaptic plasticity
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6.1 Synaptic plasticity: Hebbian Learning

|
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When an axon of cell | repeatedly or persistently
takes part in firing cell I, then |'s efficiency as one
of the cells firing 1 Is increased Hebb. 1949

- local rule
- simultaneously active (correlations)



6.1 Synaptic plasticity: Hebbian Learning

Hebbian Learning




6.1 Synaptic plasticity: Hebbian Learning

item memorized



6.1 Synaptic plasticity: Hebbian Learning

Recall:
Partial info

item recalled



6.1 Synaptic plasticity

-Hebbian Learning
— - Experiments on synaptic plasticity

-Formulations of Hebbian Learning



6.1 Synaptic plasticity

Hebblan Learning In experiments (schematic)
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Classical paradigm of LTP induction — pairing
LTP induction:

Tast stimulus / tatanus at 100Hz‘émn depolarized

At 0.1 Hz neuron at-70mV Standard LTP
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Spike-timing dependent plasticity (STDP)
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6.1 Classification of synaptic changes

Inrduction of changes - |
- fast (If stimulated appropriately) ¢————_ é)ost
- |

- slow (homeostasis) J
Persistence of changes

- long (LTP/LTD)

- short (short-term plasticity)
Functionality

- useful for learning a new behavior

- useful for development (wiring for receptive field development)
- useful for activity control in network

- useful for coding




6.1 Classification of synaptic changes: Short-term plasticity
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6.1 Classification of synaptic changes: Long-term plasticity
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6.1 Classification of synaptic changes

Short-Term

2.0 1
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Time (ms)
hanges
- Induced over 0.1-0.5 sec

- recover over 1 sec

Protocol
- presynaptic spikes

Model
- well established

(Tosdyks, Senn, Markram)

Itage (mV)

vs/ Long-Term
LTP/LTD/Hebb

Changes

- Induced over 0.5-5sec
- remains over hours

Protocol
-presynaptic spikes + ...

Model
- we will see




6.1 Classification of synaptic changes: unsupervised learning

Hebbian Learning
= unsupervised learning
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6.1 Classification of synaptic changes: Reinforcement Learning

SUCCESS painforcement Learning
= reward + Hebb

Aw;; oc F(pre, post, SUCCESS)

.

local global




6.1 Classification of synaptic changes

unsupervised vs reinforcement

LTP/LTD/Hebb Reinforcement Learning
Theoretical concept Theoretical concept
- passive changes - conditioned changes
- | ISt | - maximise reward
exploit statistical correlations Xim W SUCCESS
Pl —— post Ple——
® - _ ®
. , |
J J ‘.
Functionality Functionality
-useful for development - useful for learning

( wiring for receptive fields) a hew behavior



Modulated Hebblan Learning
= neuromodulator + Hebb

Neuromodulator: Interestingness, surprise;
attention; novelty

AW; o F(prT, po‘st, MC‘)D)

local global




Quiz 6.1: Synaptic Plasticity and Learning Rules |

Long-term potentiation Learning rules
| ] has an acronym LTP [ ] Hebbian learning depends on
[ ] takes more than 10 minutes to induce presynaptic activity and on
| ] lasts more than 30 minutes state of postsynaptic neuron
| ] depends on presynaptic activity, but not [ ] Reinforcement learning

on state of postsynaptic neuron depends on neuromodulators

such as dopamine indicating

Short-term potentiation reward

| ] has an acronym STP

[ ] takes more than 10 minutes to induce

| ] lasts more than 30 minutes

| ] depends on presynaptic activity, but not
on state of postsynaptic neuron




Week 6: Hebbian Learning and Associative Memory

(O 6.1 Synaptic Plasticity

e - Hebbian Learning
Biological Modeling - Short-term Plasticity
oi Ne“““ NﬂtWﬂl‘kS - Long-term Plasticity

- Reinforcement Learning

Week 6 6.2 Models of synaptic plasticity
Hebbian LEARNING and - Hebbian learning rules

ASSOCIATIVE MEMORY 6.3 Hopfield Model
Wulfram Gerstner - probabilistic
EPFL, Lausanne, Switzerland - energy landscape

6.4 Attractor memories



6.2 Hebbian Learning (rate models)

|
pOSt

When an axon of cell | repeatedly or persistently
takes part in firing cell I, then |'s efficiency as one

of the cells firing 1 Is increased
- local rule HebD, 1943
- Simultaneously active (correlations)
Rate model:

active = high rate = many spikes per second




6.2 Rate-based Hebbian Learning
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6.2 Rate-based Hebbian Learning
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Hebbian Learning

Recall:
Partial info

item recalled



6.2 Rate-based Hebbian Learning
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Exercise 1 now: learning of prototypes |

Prototype | * Prototype interactions

pl p2 (1) W; = Z P Py
7

a) Show that (1) corresponds to a rate learning Tl&" " Pro'oYPes

(2) iwi,- = az°" (v P =P - 9) Next lecture
. 10:15

Assume that weights are zero at the beginning;

Each pattern is presented (enforced) during 0.5 sec (One after the other).
note that p4 =+1 but v; =0

. d re re 0S 0S corr re 0S
b) Compare with: —-w; =a,+a™vi™ +a™ v +a, v v+

c) Is this unsupervised learning?




The end




