Week 7 - part 1 :Variability

B
7.1 Variability of spike trains
Biological Modeling of ns-expe“mef”\tls e
.2 Sources of Variability*
Ne“ral Netwnrks - Is variability equal to noise?
7.3 Poisson Model

-Three definitions of Rate code

Week 7 - Variability and Noise: 7.4 Stochastic spike arrival

The question of the neural code - Membrane potential fluctuations

Wulfram Gerstner 1.5. Stochastic spike firing

EPFL. Lausanne. Switzerland - stochastic integrate-and-fire



Neuronal Dynamics - /.1. Variability
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Neuronal Dynamics - /.1 Variability invive

Spontaneous activity in vivo  Variability
- of membrane potential?

- of spike timing?

awake mouse, cortex, freely whisking,
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Detour: Receptive fields in V5/MT

Nature Reviews | Neuroscience

cells In visual cortex MT/V5
respond to motion stimull

@/




Neuronal Dynamics - /.1 Variability invive

15 repetitions of the same random dot motion pattern
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Neuronal Dynamics - /.1 Variability invive
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Kreiman, Koch,
and Fried (2005).
Nature, 435:1102-1107.



Neuronal Dynamics - /.1 Variability invitro

4 repetitions of the same time-dependent stimulus,

brain slice




Neuronal Dynamics - /.1 Variability

In vivo data
- looks ‘noisy’

INn vitro data
- fluctuations

Fluctuations
-of membrane potential
-of spike times

fluctuations=noise?

relevance for coding?

source of fluctuations?

model of fluctuations?



Week 7 — part 2 : Sources of Variability

(W
J 7.1 Variability of spike trains
Biological Modeling of ns-exe“mef”\tls m——
.2 Sources of Variability

7.3 Three definitions of Rate code
- Poisson Model

Week 7 - Variability and Noise: 7.4 Stochastic spike arrival

The question of the neural code - Membrane potential fluctuations

Wulfram Gerstner 1.5. Stochastic spike firing

EPFL. Lausanne. Switzerland - stochastic integrate-and-fire



Neuronal Dynamics - 1.2. Sources of Variability

- Intrinsic noise (lon channels)

-Finite number of channels
-Finite temperature
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Neuronal Dynamics - 1.2. Sources of Variability

- Intrinsic noise (lon channels)

-Finite number of channels
-Finite temperature

-Spike arrival from other neurons
=) -Beyond control of experimentalist

Check Intrinisic noise by removing the network




Neuronal Dynamics - 7.2 Variability in vitro

neurons are fairly reliable
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REVIEW from 1.9: How good are integrate-and-fire models?

B  experiment
S R | 20mv
M| ™
o T_ w - /\M\/‘v\// WM
\ J /ﬂ 20MS

_ | o | Badel et al., 2008
Aims: - predict spike initiation times g1y possible, because

- predict subthreshold voltage  neurons are fairly reliable



Neuronal Dynamics - 1.2. Sources of Variability

- Intrinsic noise (lon channels)

-Finite temperature OO(\\(\‘Q
5“\6\

-Spike arrival from other neurons
=) -Beyond control of experimentalist

Check network noise by simulation!




Neuronal Dynamics - 1.2 Sources of Variability

The Brain: a highly connected system

Brain

High connectivity:
systematic, organized In local populations
but seemingly random

Distributed architecture

10
10 neurons

4 .
10 connections/neurons




Random firing In a population of LIF neurons

A [HZ]
N 10

N
Neuron #

input {low rate
*high rate

Population
- 50 000 neurons
- 20 percent inhibitory

-randomly connected

Vogels et al., 2005
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Random firing In a populatlon of LIF neurons

input Flow rate
*high rate

Population

- 50 000 neurons

- 20 percent inhibitory

- randomly connected
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Neuronal Dynamics - 71.2. Interspike interval distribution

- Variability of interspike intervals (1SI) here in simulations,

1007 T but also in vivo
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Variability of spike trains:
broad ISI distribution

Brunel,

J. Comput. Neurosc. 2000
Mayor and Gerstner,

Phys. Rev E. 2005

Vogels and Abbott,
J. Neuroscience, 2005



Neuronal Dynamics - 1.2. Sources of Variability

- Intrinsic noise (lon channels)

In vivo data
- looks ‘noisy’

In vitro data
—>small fluctuations ) o0
c e . - ::" ‘ \\
—nearly deterministic e L D GO(\“\\Qo




Neuronal Dynamics - Quiz1.1.

A- Spike timing in vitro and in vivo

[ ] Reliability of spike timing can be assessed by repeating several times the
same stimulus

[ ] Spike timing In vitro iIs more reliable under injection of constant current than
with fluctuating current

[ ] Spike timing In vitro is more reliable than spike timing in vivo

B — Interspike Interval Distribution (I1SI)

[ ] An Isolated deterministic leaky integrate-and-fire neuron driven by a constant
current can have a broad ISI

[ ] A deterministic leaky integrate-and-fire neuron embedded into a randomly
connected network of integrate-and-fire neurons can have a broad ISl

[ ] A deterministic Hodgkin-Huxley model as in week 2 embedded into a randomly
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I connected network of Hodgkin-Huxley neurons can have a broad |ISI




Week 7 - part 3 : Poisson Model - rate coding
M
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EEEEEEEEEEEEEEEEE \J 7.1 Variability of spike trains
- experiments

Biological Moueling of \ 7.2 Sources of Variability?
Neural Networks

- Is variability equal to noise?

7.3 Poisson Model

- Poisson Model

Week 7 - Variability and Noise:

The question of the neural code 14 Stochastlc splke arrlval

- Membrane potential fluctuations

Wuliram Gerstner 7.5. Stochastic spike firing
EPFL, Lausanne, Switzerland - stochastic integrate-and-fire



Neuronal Dynamics —7.3 Poisson Model

Homogeneous Poisson model: constant rate

Blackboard:
Poisson model

At

Probability of finding a spike P. = p, At

stochastic spiking - Poisson model



Neuronal Dynamics - 1.3 Interval distribution

Probabillity of firing:

At

P = oo At —

(i) Continuous time (ii) Discrete time steps

prob to ‘survive’

At 50 Blackboard:

Poisson model

d
as(tl ) =—py S, |1,)



Exercise 1.1 and 1.2: Poisson neuron

| & ‘ S | | | | Poisson rate >

—  stimulus

. 1.1. - Probabllity of NOT firing during time t?
1.2. - Interval distribution p(s)?

1.3.- How can we detect If rate switches from
L0 — 1

' (1.4 at home:)
-2 neurons fire stochastically (Poisson) at 20Hz.
I Percentage of spikes that coincide within +/-2 ms?)

- Start 9:50 - Next lecture at 10:15|




Week 7 - part 3 : Poisson Model - rate coding

B .
EEEEEEEEEEEEEEEEE \J 7.1 Variability of spike trains
- - - - experiments
Biological Moueling of \l 7.2 Sources of Variability?
Neural Networks - Is variability equal to noise?
7.3 Poisson Model

- Poisson Model

Week 7 - Variability and Noise:

The question of the neural code 14 Stochastlc splke arrlval

- Membrane potential fluctuations

Wuliram Gerstner 7.5. Stochastic spike firing
EPFL, Lausanne, Switzerland - stochastic integrate-and-fire



Neuronal Dynamics —7.3 Inhomogeneous Poisson Process

ate changes RERNEN I

— i i i i i i —

At

Probability of firing P. = p(t) At
{
Survivor function S(t|f) =exp(- | p(t)dt)
f
Interval distribution p(t[f) = p(t) exp(—j St dt)

t



Neuronal Dynamics - Quiz7.2.

‘A Homogeneous Poisson Process:

1A spike train Is generated by a homogeneous Poisson
‘process with rate 25Hz with time steps of 0.1ms.

I[ ] The most likely interspike interval iIs 25ms.

:[] The most likely interspike interval is 40 ms.

I[ ]| The most likely interspike interval is 0.1ms

'[1 We can't say.

:B Inhomogeneous Poisson Process:

'A spike train Is generated by an inhomogeneous
.Pmsson process with a rate that oscillates periodically
'(sme wave) between 0 and 50Hz (mean 25Hz). A first
|sp|ke has been fired at a time when the rate was at its
‘maximum. Time steps are 0.1ms.

I[ ] The most likely interspike interval is 25ms.

:[] The most likely interspike interval is 40 ms.

1| ] The most likely interspike interval is 0.1ms.

'[1 We can't say.



Neuronal Dynamics - 1.3. Three definitions of Rate Godes

3 definitions
-Temporal averaging

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)



Neuronal Dynamics - /.3. Rate codes: spike count

Variability of spike timing

a

v
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rate as a (hormalized) spike count:

stim
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temporal average
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single neuron/single trial:
temporal average ] |
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Neuronal Dynamics - 7.3. Spike count: FANO factor

- sp__
trial 1 =
trial N =
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Neuronal Dynamics - 1.3. Three definitions of Rate Godes

3 definitions
| -Temporal averaging (spike count) Problem: slow!!!

ISI distribution (regularity of spike train)
Fano factor (repeatability across repetitions)

- Averaging across repetitions

- Population averaging (‘spatial’ averaging)



Neuronal Dynamics - 7.3. Three definitions of Rate Godes

3 definitions
\ -Temporal averaging

Problem: slow!!!

- Averaging across repetitions

- Population averaging



PSTH

Neuronal Dynamics - 1.3. Rate codes
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Neuronal Dynamics - 1.3. Rate codes: PSTH

Averaging across repetitions

single neuron/many trials: ot |
average across trials ' '

K repetitions | | |
n(t;t + At) L]

K At

Stim(t PSTH(t

K=50 trials

PSTH(t) =




Neuronal Dynamics - 7.3. Three definitions of Rate Godes

3 definitions
\ -Temporal averaging

\l - Averaging across repetitions

Problem: not useful
for animalt!!

- Population averaging



tivity

Neuronal Dynamics - 1.3. Rate codes

population of neurons

neuron 1

i
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neuron 2
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Neuronal Dynamics - 7.3. Rate codes: population activity

population activity - rate defined by population average

population
A

m

‘natural readout’ population A(t) =

postsynaptic |

. neuron | |

N(t;t + At)

activity NATL




Neuronal Dynamics - 1.3. Three definitions of Rate codes

Three averaging methods

-over time
Too slow

. e
single neuron (O for animal!!!

- over repetitions

single neW’@ Not possible
for animal!l!
- over population (space)

many neurons B




Neuronal Dynamics —7.3 Inhomogeneous Poisson Process
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Neuronal Dynamics - Quiz1.3.

Rate codes. Suppose that in some brain area we have a group of 500 neurons. All
neurons have identical parameters and they all receive the same input. Input is given by
sensory stimulation and passes through 2 preliminary neuronal processing steps before it
arrives at our group of 500 neurons. Within the group, neurons are not connected to each
other. Imagine the brain as a model network containing 100 000 nonlinear integrate-and-

fire neurons, so that we know exactly how each neuron functions. -

Experimentalist A makes a measurement in a single trial on all 500 neurons using a multi- ,:'
electrode array, during a period of sensory stimulation. |

Experimentalist B picks an arbitrary single neuron and repeats the same sensory
stimulation 500 times (with long pauses in between, say one per day).

Experimentalist C repeats the same sensory stimulation 500 times (1 per dav). but everv
day he picks a random neuron (amongst the 500 neurons) Start at 1050
" ]

All three determine the time-dependent firing rate. Discussion at 10:55

'] Aand B and C are expected to find the same result.
] A and B are expected to find the same result, but that of C is expected to be different.
] B and C are expected to find the same result, but that of A is expected to be different.

None of the above three options Is correct.




Week 7 — part 4 :Stochastic spike arrival
I

ECOLE POLYTECHNIQUE
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J 7.1 Variability of spike trains

Neuronal Dynamics: - experiments

Computational Neuroscience ! 7-2 Sources of Variability?

_ - Is variability equal to noise?
of Single Neurons \l7.3 Three definitions of Rate code

- Poisson Model

Week 7 - Variability and Noise:
The question of the neural code - Membrane potential fluctuations
Wulfram Gerstner 1.5. Stochastic spike firing

- stochastic integrate-and-fire

EPFL, Lausanne, Switzerland



Neuronal Dynamics - /.4 Variability invivo

Spontaneous activity In vivo

Variablility
of membrane potential?

awake mouse, freely whisking,
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Random firing In a populatlon of LIF neurons

input Flow rate
*high rate

Population

- 50 000 neurons

- 20 percent inhibitory

- randomly connected
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Neuronal Dynamics - 7.4 Membrane potential fluctuations

from neuron’s point
of view:
stochastic spike arrival

Pull out one neuron
‘Network noise’

R\
‘A‘Q‘Q "‘ ‘ ‘ b \)\\O‘\




Neuronal Dynamics - 7.4. Stochastic Spike Arrival

Blackboard  Total spike train of K presynaptic nheurons
now!

— i i i i i i —

spike train

- Probability of spike arrival:
e‘.’,,.O ‘,.’ 1 / PF — Kp() At
Take At = 0 expectation

S(t):ZZ5(t—tkf)




Neuronal Dynamics — Exercise 2.1NOW
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Passive membrane

T %u:—(u—urest) +RIY(t) ——— u(t) = Zjdsf(s)&(t—tkf—s)

A leaky Iintegrate-and-fire neuron without threshold :
(=passive membrane) receives stochastic spike arrival, :
described as a homogeneous Poisson process. :
Calculate the mean membrane potential. To do so, use i
the above formula. Start at 11:35. :

Discussion at 11:48




Neuronal pdynamics - Quiz14

A linear (=passive) membrane has a potential given by

u(t) =Y ot f (t-t)5-t,) +2 O/\Q

Suppose the neuronal dynamics are given by

4 %u:_(u_urest) +qz 5(t_tf)
f

[ ] the filter f Is exponential with time constant 7
| ] the constant a Is equal to the time constant 7

[ ] the constant a is equal to U .

[ ] the amplitude of the filter f Is proportional to g

[ ] the amplitude of the filter fis g




Neuronal Dynamics —7.4. Calculating the mean

702 W) k)

97 (1 ZmZﬁMtt (t-t) X(t)

mean: assume Poisson ProCess

<syn > Zwk jdtat t) <Z St ) > *6(6\66 <X(’[)>: Jdt'f(t—t')<z 5(’['—'[kf)>
1<

fof ©
\) — 'f ! l
g :%ZWK jdt'a(t—t') Vi <X(t)> jdt (-t )/’?(t )
k rate of Inhomogeneous
Poisson process

> atf(e-t)5(t-t))

f



Week 7 — part 5 : Stochastic spike firing in integrate-and-fire models
I L

ECOLE POLYTECHNIQUE
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J 7.1 Variability of spike trains

Biological Modeling and dns'expe”mef”\tls I
Neural Networks e varbity saual o noce

- Is variability equal to noise?

\l7.3 Three definitions of Rate code

- Poisson Model

Week 7 - Variability and Noise: \/7.4 Stochastic spike arrival
The question of the neural code - Membrane potential fluctuations

Wulfram Gerstner 7.5. Stochastic spike firing
EPFL, Lausanne, Switzerland - Stochastic Integrate-and-fire




Neuronal Dynamics - 1.9. Fluctuation of current/potential

g Synaptic current pulses of shape «a
= R0 =2 w ), alt-t)
NL k f
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Neuronal Dynamics - /.9. Fluctuation of potential

for a passive membrane, we
can analytically predict the
mean of membrane potential
fluctuations

Passive membrane
=Leaky Integrate-and-fire
without threshold

Passive membrane

T %u =—(U-Upg) +RIP(1)

ADD THRESHOLD
- Leaky Integrate-and-Fire



Neuronal DYynamics — 7.5. Stochastic leaky integrate-and-fire

noisy Input/ diffusive noise/

20 N P, stochastic spike arrival
- 1.0 I I — ——d
0.0 Mwwﬁ Wﬁf W
O I 5IO I 1(50 I 150 I 200 U(t)
t [ms]
01 [ subthreshold regime:
ISl distribution - firing driven by fluctuations
= | | - broad ISI distribution
P - - In vIvo like
0.0 t—rr—r - —

O 50 100 150 200
S



Neuronal Dynamics week 9- References and Suggested Reading

Reading: W. Gerstner, W.M. Kistler, R. Naud and L. Paninski,
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OR W. Gerstner and W. M. Kistler, Spiking Neuron Models, Chapter 5, Cambridge, 2002
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epsps. J . Neurosci., 13:334-350.
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THE END




