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Neuronal Dynamics - Review: Sources of Variability
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Neuronal Dynamics - 6.4 Escape noise
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Neuronal Dynamics - 8.4 stochastic intensity
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Neuronal Dynamics - 8.4 mean waiting time
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Neuronal Dynamics - 8.4 escape noise/stochastic intensity

Escape rate = stochastic intensity
of point process

p(t) = T (u(t))




Neuronal Dynamics - Quiz 8.4

Escape rate/stochastic intensity in neuron models
| ] The escape rate of a neuron model has units one over time
| ] The stochastic intensity of a point process has units one over time
| ] For large voltages, the escape rate of a neuron model always saturates

at some finite value
| ] After a step In the membrane potential, the mean waiting time until a spike Is
fired Is proportional to the escape rate
| ] After a step In the membrane potential, the mean waiting time until a spike Is
fired Is equal to the inverse of the escape rate
[ ] The stochastic intensity of a leaky integrate-and-fire model with reset only
depends on the external input current but not on the time of the last reset
| ] The stochastic intensity of a leaky integrate-and-fire model with reset depends
on the external input current AND on the time of the last reset



Week 8 - part 5 : Renewal model
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Neuronal Dynamics - 6.9. Interspike Interval distribution

escape process
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Neuronal Dynamics - 8.9. Interspike Intervals
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Example: |&F with reset, constant input
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Neuronal Dynamics - 8.9. Time-dependent Renewal theory

Example: I1&F with reset, time-dependent input,
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Neuronal Dynamics — Homework assignement

neuron with relative refractoriness, constant input
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Neuronal Dynamics — 8.5. Firing probability in discrete time
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Probabillity to survive 1 time step
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Neuronal Dynamics - 8.9. EScape noise - experiments
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Neuronal Dynamics — 8.5. Renewal process, firing probability

Escape noise = stochastic intensity

-Renewal theory

- hazard function
- survivor function
- Interval distribution

-time-dependent renewal theory
-discrete-time firing probabillity
-Link to experiments

- basis for modern methods of
neuron model fitting




Week 8 — part 6 : Comparison of noise models
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Poisson spike arrival: Mean and autocorrelation of filtered signal
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Diffusive noise (stochastic spike arrival)
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Diffusive noise (stochastic spike arrival)
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Diffusive noise (stochastic spike arrival)
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Neuronal Dynamics - 8.6. Diffusive noise/stoch. arrival

A) No threshold, stationary Input
Membrane potential density: Gaussian

U ‘_
/ U constant input rates
no threshold

Nnoisy Integration
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Neuronal Dynamics — 8.6 Diffusive noise/stoch. arrival
B) No threshold, oscillatory Input

Membrane potential density:
Gaussian at time t
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Neuronal Dynamics - 6.4. Diffusive noise/stoch. arrival

C) With threshold, reset/ stationary Input
Membrane potential density




Neuronal Dynamics - 8.6. Diffusive noise/stoch. arrival

Superthreshold vs. Subthreshold regime
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escape process
A (fast noise)
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Diffusive noise

- distribution of potential

- mean interspike interval
FOR CONSTANT INPUT

- time dependent-case difficult

Escape noise

- time-dependent interval
distribution



Noise models: from diffusive noise to escape rates

noisy integration

stochastic spike arrival
(diffusive noise)

escape rate 5
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Comparison: diffusive noise vs. escape rates

Plesser and Gerstner (2000)

Probability of first spike 0.3

diffusive
.1
""""""""" escape
. R B
1.0 - " - - "T"=""="—-—®="_-"=-="-=-==-=== -
subthreshold =
potential
£3_0) . . . 1
) 100D =3

T Imsl

escape rate

p(0) = T (U 1) ocexp- O [1+u'y ()]




Diffusive noise

- represents stochastic spike arrival

- easy to simulate
- hard to calculate

Escape noise

- represents internal noise

- easy to simulate

- easy to calculate

- approximates diffusive noise

- basis of modern model fitting methods



Neuronal Dynamics - Quiz 8.4.
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KY Integrate-and-fire model with diffusive noise:
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as long as the mean trajectory stays ‘far’ away from the firing threshold.
[ ] The membrane potential distribution is Gaussian for stationary input in the absence of a threshold.
| ] The membrane potential distribution is always Gaussian for constant input and fixed noise level.

B. Consider aleaky integrate-and-fire model with diffusive noise for time-dependent input. The above figure
(taken from an earlier slide) shows that

nike interval distribution iIs maximal where the determinstic reference trajectory Is closest to the threshold

nike interval vanishes for very long intervals if the determinstic reference trajectory

close to the threshold before - even if for long intervals it is very close to the threshold

[] If there are several peaks In the interspike interval distribution, peak n is always of smaller amplitude than peak n-1.

[] | would have ticked the same boxes (in the list of three options above)

for a leaky integrate-and-fire model with escape noise.

oution Is always Gaussian.
oution is Gaussian for any time-dependent input.

oution Is approximately Gaussian for any time-dependent input,

| & ] 100 =200
t Imsl



