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  Week 8 – parts 4-6 Noisy Output: Escape Rate and Soft Threshold 



- Intrinsic noise (ion channels) 

Na+ 

K+ 

-Finite number of channels 

-Finite temperature 

-Network noise (background activity) 

-Spike arrival from other neurons 

-Beyond control of experimentalist 

Neuronal Dynamics – Review: Sources of Variability 

Noise models? 
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Neuronal Dynamics – 8.4 Escape noise 
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Example: leaky integrate-and-fire model 
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Neuronal Dynamics – 8.4 stochastic intensity 
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Escape rate = stochastic intensity 

                       of point process 

( ) ( ( ))t f u t 

t̂




u(t) 

t 

)(t

))(()(   tuft

escape rate 

u 

Neuronal Dynamics – 8.4 mean waiting time 
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Neuronal Dynamics – 8.4 escape noise/stochastic intensity 

Escape rate = stochastic intensity 

                       of point process 
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Neuronal Dynamics –  Quiz 8.4 
Escape rate/stochastic intensity in neuron models 

[ ] The escape rate of a neuron model has units one over time 

[ ] The stochastic intensity of a point process has units one over time 

[ ] For large voltages, the escape rate of a neuron model always saturates 

     at some finite value 

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is proportional to the escape rate  

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is equal  to the inverse of the escape rate  

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  only 

depends on the external input current but not on the time of the last reset 

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  depends 

on the external input current AND on the time of the last reset 
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8.1 Variation of membrane potential 

       - white noise approximation 

8.2 Autocorrelation of Poisson 

8.3 Noisy integrate-and-fire  
      - superthreshold and subthreshold 

8.4 Escape noise 
           - stochastic intensity 

8.5  Renewal models 
 

  Week 8 – part 5 : Renewal model 



Neuronal Dynamics – 8.5.  Interspike Intervals 
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Example:  

nonlinear integrate-and-fire model 

deterministic part of input 
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exponential stochastic intensity 
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Neuronal Dynamics – 8.5.  Interspike Interval distribution 
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Neuronal Dynamics – 8.5.  Interspike Intervals 
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Example: I&F with reset, constant input 
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Neuronal Dynamics – 8.5.  Renewal theory  
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Example: I&F with reset, time-dependent input,  
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Neuronal Dynamics – 8.5.  Time-dependent Renewal theory  
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Neuronal Dynamics – Homework assignement 



Neuronal Dynamics – 8.5.  Firing probability in discrete time 
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Neuronal Dynamics – 8.5.  Escape noise - experiments 
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Neuronal Dynamics – 8.5.  Renewal process, firing probability 

Escape noise = stochastic intensity 

 

-Renewal theory 

         - hazard function 

          - survivor function 

          - interval distribution 

-time-dependent renewal theory 

-discrete-time firing probability 

-Link to experiments 

 

  basis for modern methods of 

  neuron model fitting 
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Week 8 – Noisy input models: 

Barrage of spike arrivals 
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8.1 Variation of membrane potential 

       - white noise approximation 

8.2 Autocorrelation of Poisson 

8.3 Noisy integrate-and-fire  
      - superthreshold and subthreshold 

 

8.4 Escape noise 
           - stochastic intensity 

8.5  Renewal models 

8.6 Comparison of noise models 
 

  Week 8 – part 6 : Comparison of noise models 
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Neuronal Dynamics – 8.6. Comparison of Noise Models 



Assumption:  

stochastic spiking 

 rate  

   

Poisson spike arrival: Mean and autocorrelation of filtered signal  
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Stochastic spike arrival:  

  excitation, total rate Re 

  inhibition, total rate Ri 
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Diffusive noise (stochastic spike arrival) 
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Math argument: 

  - no threshold 

  - trajectory starts at 

     known value 



Diffusive noise (stochastic spike arrival) 


2

)()()()()( tututututu

)(tu

0( ) ( )u t u t

)()()( ttIRuuu
dt

d
rest  

Math argument 

( ') ( ) ( ) ( ') ( ) ( ')u t u t u t u t u t u t    

2 2[ ( )] [1 exp( 2 / )]uu t t    



u 
u 

Membrane potential density: Gaussian 

p(u) 

constant input rates 

no threshold 

Neuronal Dynamics – 8.6. Diffusive noise/stoch. arrival 

A) No threshold, stationary  input 
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Membrane potential density:  
Gaussian at time t 
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Neuronal Dynamics – 8.6 Diffusive noise/stoch. arrival 

B) No threshold, oscillatory  input 

)(tRIu
dt

du
i

i  

noisy integration 



u 

Membrane potential density 


u 

p(u) 

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival 

C) With threshold, reset/ stationary  input 



Superthreshold vs. Subthreshold regime 
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Neuronal Dynamics – 8.6. Diffusive noise/stoch. arrival 

Image: 

Gerstner et al. (2013) 

Cambridge Univ. Press; 

See: Konig et al. (1996)  
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Neuronal Dynamics – 8.6. Comparison of Noise Models 

Stationary input: 

-Mean ISI 

 

 

 

 

-Mean firing rate 

Siegert 1951 



Neuronal Dynamics – 8.6 Comparison of Noise Models 

Diffusive noise 

    - distribution of potential 

     - mean interspike interval 

 FOR CONSTANT INPUT 

 

   - time dependent-case difficult 

 

Escape noise 
     - time-dependent interval  

        distribution 
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Noise models: from diffusive noise to escape rates 
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Comparison:  diffusive noise vs. escape rates 
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Neuronal Dynamics – 8.6 Comparison of Noise Models 

Diffusive noise 

    - represents stochastic spike arrival 

     - easy to simulate 

     - hard to calculate 

 

Escape noise 
     - represents internal noise 

     - easy to simulate 

     - easy to calculate 

     - approximates diffusive noise  

     - basis of modern model fitting methods 



Neuronal Dynamics –  Quiz 8.4. 
A. Consider a leaky integrate-and-fire model with diffusive noise: 

[ ] The membrane potential distribution is always Gaussian. 

[ ] The membrane potential distribution is Gaussian for any time-dependent input. 

[ ] The membrane potential distribution is approximately Gaussian for any time-dependent input,  

     as long as the mean trajectory stays ‘far’ away from the firing threshold. 

[ ] The membrane potential distribution is Gaussian for stationary input in the absence of a threshold. 

[ ] The membrane potential distribution is always Gaussian for constant input and fixed noise level. 

B. Consider  a leaky integrate-and-fire model with diffusive noise for time-dependent input. The above figure 

    (taken from an earlier slide) shows that 

[ ] The interspike interval distribution is maximal where the determinstic reference trajectory is closest to the threshold. 

[ ] The interspike interval vanishes for very long intervals if the determinstic reference trajectory  

   has stayed  close to the threshold before - even if for long intervals it is very close to the threshold 

[ ] If there are several peaks in the interspike interval distribution, peak n is always of smaller amplitude than peak n-1. 

[ ] I would have ticked the same boxes (in the list of three options above)  

           for a leaky integrate-and-fire model with escape noise. 


