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- recognize/understand images:
pattern recognition

PrototypesNoisy image

Classification by closest prototype

AT pxpx −≤−

Blackboard :
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image

- recognize/understand images:
pattern recognition

Associative
memory/

collective
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Detour: magnetism
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Detour: magnetism

dynamics

Elementary magnet
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Si = -1
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Sum over all
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Associative  memory

dynamics
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Hopfield model
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Exercise now: learning of prototypes
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a) Show that (1) corresponds to a rate learning rule
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b) Compare with: 

Associative  memory

dynamics

( )[ ]∑=+ tSwtS jijji sgn)1(

Sum over all
interactions with i

blackboard
Hopfield model

Prototype

p1

Prototype

p2

µ

µ

µ
jiij ppw ∑=

interactions

Sum over all
prototypes



4

Associative  memory

dynamics
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Sum over all
interactions with i

DEMO

Hopfield model

Prototype

p1

µ

µ

µ
jiij ppw ∑=

interactions

Sum over all
prototypes

This rule
is optimal
for random
patterns

It does not work well
for correlated patters

Associative  memory

Hopfield model

Prototype

p1
Finds the  prototype
with maximal overlap

j
j

j Spm ∑= µµ

Interacting neurons

Computation
- without CPU,

- without explicit
memory unit
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Populations of spiking neurons
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Assumption of Stochastic spike arrival: 
network of exc. neurons, 
total spike arrival rate A(t)
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Synaptic current pulses of shape α
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Blackboard :
sum of EPSCs

Assumption of Stochastic spike arrival: 
network of exc. neurons, 
total spike arrival rate A(t)
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Population activity
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Step 1: Inject noise current

Measure frequency
f
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fully
connected

All neurons receive the same input (‘mean field’)
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Step 2 :  consider 1 neuron in the network

Step 3: assume Stationary State/Asynchronous State

fully connected
coupling J0/N

)( 0Igf =

extIAI += 00 γ
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A(t)=const
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1
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frequency (single neuron)

typical mean field
(Curie Weiss)

Step 4: close equation – calculate A0
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Step 3: assume Stationary State/Asynchronous State

fully connected
coupling J0/N

)( 0Igf =

extIAI += 00 γ

0A

A(t)=const

[ ]extIIA −= 00
1
γ

frequency (single neuron)

typical mean field
(Curie Weiss)

Step 4: close equation – calculate A0
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Random Connectivity/Asynchronous State
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(Amit&Brunel 1997, Brunel 2000)

Analogous for column
of 1 exc. + 1 inhib. Pop.
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Back to  Associative  memory 

Interacting neurons

Computation
- without CPU,

- without explicit
memory unit

-Possible with spiking neurons
-Calculation: mean-field
-Prototypes = random patterns

Associative  memory  - simple model

Interacting neurons

-Rate model
-Calculation: mean-field
-Prototypes = random patterns
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Associative  memory

Prototype

p1
Task: Find the  prototype
with maximal overlap

)( ϑµµ −=∑ j
j

j fpm

+/-1

)( 0Igf =µm
frequency (single neuron)

Pattern recognized

Pattern not recalled

Conclusion - Associative  memory 

Interacting neurons

Computation
- without CPU,

- without explicit
memory unit

-Possible with spiking neurons
-Calculation: mean-field
-Prototypes = random patterns

The end


