Unsupervised vs. reinforcement learning
(viaamode of rat navigation)
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When an axon of cell j repeatedly or persistently
takes part in firing cell i, then j’ sefficiency as one
of the cellsfiring i isincreased

Hebb, 1949

- local rule
- simultaneously active (correlations)

Hebbian L earning

Hebbian Learning

item memorized

Hebbian Learning

Recall:
Partial info

item recalled = Associative memory

Hebbian Learning in experiments (schematic)
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When an axon of cell j repeatedly or persistently
takes part in firing cell i, then j’ sefficiency as one
of the cellsfiring i isincreased

Hebb, 1949
- local rule

- simultaneoudly active (correlations)

Rate model:

active = high rate = many spikes per second

Hebbian Learning
= unsupervised learning

Reinforcement Learning
=reward + Hebb

success

Classification of plasticity:
unsupervised vs reinforcement

LTP/LTD/Hebb
Theoretical concept
- passive changes
- exploit statistical correlationg
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Functionality
-useful for development

( wiring for receptivefields)

Reinforcement Learning
Theoretical concept

- conditioned changes

- maximise reward

P success
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Functionality

- useful for learning
a new behavior

Introduction to reinforcement learning
(viaamode of rat navigation)

behavior
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Introduction to reinforcement learning
(viaamode of rat navigation)

=P -Basics or rat navigation

-Place cells and Rat hippocampus
-A model of spatial representation
-Learning to find the goal location

-Reward based learning

-Reinforcement | earning theory

-Eligibitiy traces

-the full model: behavioral experiments




Biological Principles of Learning:
gpatial learning
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Place cells- sensitiveto spatial location

Map neurons
brain

—0

Environment

box —4 /] Placefields

/,,,--L obstacle

goal

SPATIAL REPRESENTATION
= Model of placecells

GOAL LEARNING
% Reward-based learning system

Introduction to reinforcement learning
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Neurophysiology of the Rat Hippocampus

ﬂ&'?;

-?h\-_=

rat brain

Placefield

pyramidal cells




Hippocampal Place Cells

placefield

Dependson

- visua cues

- worksaso in the dark

e Placefield

The Neural Model: Place Cells

Hippocampus

CA3-CAl

Visual Path
Processing Integrator
\_Visual Stimuli__/ | | \nternal Stimuli /

The Neural Model Place Cells

Hippocampus / recording

placefields

The Neural Model: Place Cells

I CA3-CA1 populationfiring I

place field center

Center of mass
of placecell activity EI

SPATIAL REPRESENTATION
& Model of placecels

— GOAL LEARNING
» Reward-based learning system

Rewar d-based Action Learning

Hippocampal place cells = fuzzydiscretisation
of continuous space

Assign ‘value' to statesand actions

Action Learning (Bellman equation/dyn Programming)

reinforcement-learning
in continuous space

Spatial representatin\(Q-learning)

External Internal
stimuli stimuli

goa,




Rewar d-based Action Learning

Connectionreinforced
action a at states |successful
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Action a=north

|| Success=reward - exp reward

&(s)=r(s)+gxg,(s)

L State _#_a(':t:ivity r(s)

X1}

Rewar d-based Action Learning

Connectionreinforced if
action a at state s ccessful

)

Reward,.

N

il Success=reward - exp reward |

predicted

.

Dopamine neurons
o (W. Schultz)

N"B Reward

Reward-based Action Learning

Connectionreinforced if
action a at states  successful

Success signal

Local rule,
conditioned on global success

Introduction to reinforcement lear ning
(viaamodel of rat navigation)

-Basicsor rat navigation

-Place cells and Rat hippocampus

-A model of spatial representation

-Learning to find the goal location
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=P -Reinforcement |earning theory

-Eligibitiy traces
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Rewar d-based Action Learning

Connectionreinforced if
action a at states successful

O s=state
a=action

R% ¢ =reward

O s'=new action

Iterative Update
DQ(s:a)=h [r-Q(a)]

Blackboard:

Q(s,a)=expectedreward
o

Qls.a)= a Psa:@ sRsa® s
<

|Exercise now. lterative updatel
Oystate
a=action

R&% ¢ =reward

Q s=newaction

a) Show that an empirical evaluation of Q(s,a) by averagingthe
therewards for action a over kor (k+1) trials, leadsto an
iterative update rule of the form _

b) Calculate eta. DQ(sa)=h [r-Q(a)]

c) Give an intuitive explanation of the update rule

o
Qsa=qaq P% <R« expected reward




Rewar d-based Action Learning

Connectionreinforced if
action a at states  successful

Blackboard:

Qsa)= § PR«
s

Update

DQ(s:a)=h [r-Q(s.a)] DQ(s,:a)=h [r-(Q(s,8)-Q(s ,a))]

Rewar d-based Action Learning

Connectionreinforced if
action a at states  successful

Success signal

@ Function approximation

Qu(sa)= & won(9)
i1

e Lo

Update of Q = update of weights

DQ(s,a)=h [r-(Q(s,a)-Q(s.a))]

@ Synaptic update of current action a

Reward-based Action Learning

Connectionreinforced if
action a at states  successful

Success signal

Molecular mechanism?}

Changes in synaptic connections

Success signal
dopamine

D CaMIKIl = Ca-Calmodulin dependent
Protein Kinase2

PK A= cAM Pdependent protein kinase

vesicles

Reward-based Learning TD( ) Qs

SARSA

DQ(s,a)=h [r-(Q(s,a)-Q(s,a))]

policy for action choice:
Pick most often action

a, =argmaxQ,(s,a)




Exer cise now

» Update of Q values in SARSA
DQ(s.:@)=h [r-(Q(s,a)-Q(s'.a'))]

= policy for action choice:
Pick most often action

a =agmaxQ,(s,a)

Consider a linear sequence

of states. Reward only at goal.

Actionsare up or down.

a) Initialise Q valuesat 0. Sart at
top. Howdo Q valuesdevelop?

b) Q valuesafter 3 completetrials?

goal

Problem: learning isslow

- Slow diffusion of information
across several states

a =argmaxQ,(s,a)

Consider alinear sequence

of states. Reward only at goal.

Actions are up or down.

a) InitialiseQ valuesat 0. Sart at
top. Howdo Q valuesdevelop?

b) Q valuesafter 3 completetrials?

goal

I ntroduction to reinfor cement learning
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Reward-based Learning TD( )

w TDerror in SARSA
|d = Ria- [Qu(5.2)- 92Qu(s.2)]

& policy for action choice:
Pick most often action

a, =argmaxQ,(s,a)
a

# Function approximation

3
Qu(sa =a w'x(s)
i=1

@ Synaptic update

= Eligibility trace (memory at synapse):

id ey(t) if exploiting

&) =rjra+i 0 pre post

\ i if exploring
P"Z post
-

Rewar d-based Action Learning

Connectionreinforced if
action a at states successful

Success signal .
[T Tun Learning Rule
2
Dw,; =hd, e,

e .“.'i 18 Spatial
T T Representation

Introduction to reinforcement learning
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— -the full model: behavioral experiments




Validating the M odel

The KHEPERA mobile miniaturerobot

Experimental arena

422 x 316 pixels

Open-field Navigation Experiments

robot trajectory (Biol. Cybern., 2000)

Navigation map
after 20trainingtrials

Classification of plasticity:
unsupervised vs reinforcement

LTP/LTD/Hebb Reinforcement Learning
Theoretical concept Theoretical concept
- passive changes - conditioned changes
- exploit statistical correlationg - maximise reward
) success
A
pre pre /
0
e N
Functionality Functionality
-useful for development - useful for learning
(wiring for receptivefields) a new behavior

Plasticity models:
unsupervised vs reinforcement

STDP/Hebb Reinforcement Learning
theoretical Protocol
- maximise reward

% success
’ Y7
Model Model
- STDP (see above) - spike-based model ?
| Dwj, 1 prexpost + other terms| [Dw; 1 successq prexpost + otherterms)|

Timing issues in Reinforcement Learning
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| Success signal is delayed |
Spiketimescale 1-10 ms
Reward delay  100-5000 ms

[ >Need memory trace (eligibility trace) |




