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Week 14-part 1:   Review:  The brain is complex  
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Week 14-part 1:   Review:  The brain is complex  

-Complex internal dynamics 

-Memory 

-Response to inputs 

-Decision making 

-Non-stationary 

-Movement planning 

-More than one ‘activity’ value 



Liquid Computing/Reservoir Computing: 

 exploit rich brain dynamics  

Readout 1 

Readout 2 

Maass et al. 2002, 

Jaeger and Haas, 2004 

Review: 

Maass and Buonomano,  

 

Stream of  

sensory inputs 

Week 14-part 1:   Reservoir computing  



See Maass et al. 2007 

Week 14-part 1:   Reservoir computing  

-‘calculcate’ 3 4 

- if-condition on  
1



Modeling 
Hennequin et al. 2014, 

See also: 

Maass et al. 2002, 

Sussillo and Abbott, 2009 

Laje and Buonomano, 2012 

Shenoy et al., 2011 

 

Experiments of 
Churchland et al. 2010 

Churchland et al. 2012 

See also: 

Shenoy et al. 2011 

Week 14-part 1:   Rich dynamics  Rich neuronal dynamics  

 



-Long transients 

 

-Reliable (non-chaotic) 

 

-Rich dynamics (non-trivial) 

 

-Compatible with neural data (excitation/inhibition) 

 

-Plausible plasticity rules 

Week 14-part 1:   Rich neuronal dynamics:  a wish list  
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Week 14-part 2:   Review:  microscopic vs. macroscopic  



Homogeneous 

network: 
-each neuron receives input 

    from k neurons in network 

-each neuron receives the same 

    (mean) external input 

Week 14-part 2:   Review: Random coupling  

excitation 

inhibition 



Stochastic spike arrival:  

  excitation, total rate Re 

  inhibition, total rate Ri 
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Week 14-part 2: Review:  integrate-and-fire/stochastic spike arrival  

Firing times: 

Threshold crossing 
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Suppose 1 dimension 

Week 14-part 2:   Dynamics in Rate Networks   F-I curve 

  of rate neuron 

Slope 1 



Exercise 1: Stability of fixed point 

Next lecture: 
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Suppose 1 dimension 

Calculate stability,  

    take w as parameter 
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Suppose 1 dimension 

Week 14-part 2:   Dynamics in Rate Networks   

Blackboard: 

Two dimensions! 



( )i i ij j
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d
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Fixed point: 

0ir 

stable unstable 

Chaotic dynamics: 

  Sompolinksy et al. 1988 

  (and many others: 

Amari, ...  

 

1 '(0) ( 0)
d

F F x
dx

  

Random, 

10 percent connectivity 

Re( ) 1  Re( ) 1 

Week 14-part 2:   Dynamics in RANDOM Rate Networks   



Rajan and Abbott, 2006 

Image: Ostojic, Nat.Neurosci, 2014 

( ) ( )i i ij j i

j

d
r r F w r t

dt
   

Unstable dynamics and Chaos 

Image:  

Hennequin et al. Neuron, 2014 

chaos 



Image: Ostojic, Nat.Neurosci, 2014 
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Firing times: 

Threshold crossing 

Week 14-part 2:   Dynamics in Random SPIKING Networks   



Ostojic,  

Nat.Neurosci, 2014 

Week 14-part 2:   Stationary activity: two different regimes   

Switching/bursts  

 long autocorrelations: 

Rate chaos 

 

 
Re( ) 1 

Stable rate fixed point, 

microscopic chaos 



-Long transients 

 

-Reliable (non-chaotic) 

 

-Rich dynamics (non-trivial) 

 

-Compatible with neural data (excitation/inhibition) 

 

-Plausible plasticity rules 

Week 14-part 2:   Rich neuronal dynamics:  a wish list  
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Image:  

Hennequin et al. Neuron, 2014 

Re( ) 1  Re( ) 1 

Week 14-part 3:   Plasticity-optimized circuit 



Optimal control of transient dynamics in balanced networks 

supports generation of complex movements 

Hennequin et al. 2014, 

 

 



Random  stability-optimized circuit (SOC) 

Random 

 connectivity 



Random 

Week 14-part 3:  Random  Plasticity-optimized circuit 



study 

duration 

of transients 

F-I curve 

  of rate neuron 

slope 1/linear theory 

slope 1/linear theory 

a1= slowest 

      = most amplified 

Week 14-part 3:  Random  Plasticity-optimized circuit 



slope 1/linear theory 
F-I curve 

  of rate neuron 

a1= slowest 

      = most amplified 

Week 14-part 3:  Random  Plasticity-optimized circuit 



Optimal control of transient dynamics in balanced networks 

supports generation of complex movements 

Hennequin et al.  

NEURON 2014, 

 



Churchland et al. 2010/2012 Hennequin et al. 2014 

Week 14-part 3:   Application to motor cortex: data and model 



Comparison: weak random 

Hennequin et al. 2014, 

 

Week 14-part 3:   Random Plasticity-optimized circuit 



Random connections, fast 

‘distal’ connections, slow, 

  (Branco&Hausser, 2011) 

                structured 

12000 excitatory LIF = 200 pools of 60 neurons 

  3000 inhibitory LIF = 200 pools of  15 neurons 

Classic sparse random connectivity (Brunel 2000) 

Stabilizy-optimized random connections 

Overall: 

20% connectivity 

Fast  AMPA 

slow  NMDA 

Week 14-part 3:  Stability optimized SPIKING network 



Neuron 1 
Neuron 2 
Neuron 3 

Spontaneous 

  firing rate 

Single neuron  

different initial conditions 

Hennequin et al. 2014 

 

Classic sparse random connectivity (Brunel 2000) 

Week 14-part 3:  Stability optimized SPIKING network 



Hennequin et al. 2014 

 

Classic sparse random connectivity (Brunel 2000) 

Week 14-part 3:  Stability optimized SPIKING network 



-Long transients 

 

-Reliable (non-chaotic) 

 

-Rich dynamics (non-trivial) 

 

-Compatible with neural data (excitation/inhibition) 

 

-Plausible plasticity rules 

Week 14-part 3:   Rich neuronal dynamics:  a result list   
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  Hebbian Learning 

= all inputs/all times  are equal 

),( postpreFwij 

pre 
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Week 14-part 4:   STDP = spike-based Hebbian learning 

Pre-before post: potentiation of synapse 

Pre-after-post:     depression of synapse 



  Modulation of  Learning 

=  Hebb+ confirmation 
confirmation 

( , , )ijw F pre post CONFIRM 

local      global 

Functional Postulate 
Useful for learning the important stuff 

Many models (and experiments) of synaptic plasticity  

do not take into account Neuromodulators.  

Except: e.g. Schultz et al. 1997,  Wickens 2002, Izhikevich, 2007; Reymann+Frey 2007; 

                Moncada 2007,  Pawlak+Kerr 2008; Pawlak et al. 2010 



  Consolidation of  Learning 

Success/reward Confirmation  

-Novel 

-Interesting 

-Rewarding 

-Surprising 

Neuromodulators 

dopmaine/serotonin/Ach 

‘write now’  
to long-term memory’  

Crow (1968),  

Fregnac et al (2010),  

Izhikevich (2007) 



 Plasticity 

BUT 
   - replace by inhibitory plasticity  

                

            

 

 

   avoids chaotic blow-up of network 

   avoids blow-up of single neuron (detailed balance) 

   yields stability optimized circuits   

Vogels et al., 

Science 2011  

- here: algorithmically tuned 

Stability-optimized curcuits 



 Plasticity 

BUT 
 

    

 - replace by  3-factor plasticity rules  
                

            

 

- here: algorithmically tuned 

Readout 

Izhikevich, 2007 

Fremaux et al. 

   2012  Success signal 



Week 14-part 4:   Plasticity modulated by reward  

Dopamine encodes success= 

   reward – expected reward 

Dopamine-emitting neurons: 

   Schultz et al., 1997 

Izhikevich, 2007 

Fremaux et al. 

   2012  Success signal 



Week 14-part 4:   Plasticity modulated by reward  



Week 14-part 4:   STDP = spike-based Hebbian learning 

Pre-before post: potentiation of synapse 



Week 14-part 4:   Plasticity modulated by reward  

STDP with pre-before post: potentiation of synapse 



Week 14-part 4:   from spikes to movement  

How can the  

readouts 

 encode movement? 



Population vector coding of movements 

Schwartz et al.  

1988 

Week 14-part 5:   Population vector coding  



• 70’000 synapses 

• 1 trial =1 second 

• Output to trajectories via population vector coding 

• Single reward  at the END of  each trial based on 

similarity with a target trajectory 

Population vector coding of movements 

Fremaux et al., J. Neurosci. 2010 

Week 14-part 4:   Learning movement trajectories  
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Fremaux et al. J. Neurosci. 

2010 

QuickTime™ and a
 decompressor

are needed to see this picture.

R-STDP  
LTP-

only  

Week 14-part 4:   Learning movement trajectories  



Reward-modulated 
STDP for movement learning 

    

 - Readout connections, tuned 

          by  3-factor plasticity rule  
                

            

Fremaux et al. 

   2012  Success signal 

 
   Hebbian STDP  

 - inhibitory connections, tuned 

          by  2-factor STDP, for 

         stabilization  
                

Week 14-part 4:    Plasticity can tune the network and readout  

Vogels et al. 

   2011  



Exam: 
   - written exam 17. 06. 2014 from 16:15-19:00 

   - miniprojects counts 1/3 towards final grade 

   For written exam: 
-bring 1 page A5 of own notes/summary 

-HANDWRITTEN! 

Last Lecture TODAY 



Nearly the end: 

   what can I improve for the students next year? 

Integrated exercises? 

Miniproject?  

Overall workload ?(4 credit course = 6hrs per week)  

Background/Prerequisites?  

-Physics students 

-SV students 

-Math students 

Quizzes?  

Slides?  videos?  


