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15.1 Populations of Neurons 

       - review: homogeneous population 

        - review: parameters of single neurons 

15.2 Integral equation 
      - aim: population activity 

      - renewal assumption         

15.3   Populations with Adaptation 
         -  Quasi-renewal theory 

15.4.  Coupled populations 

        -  self-coupling 

          -  coupling to other populations 

  Week 15 – Integral Equation for population dynamics 



Neuronal Dynamics – Brain dynamics is complex 

motor  

cortex 

frontal  

    cortex 

to motor 

output 

10 000 neurons 
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1mm 

Week 15-part 1:   Review:  The brain is complex  



Homogeneous population: 
-each neuron receives input 

    from k neurons in the population 

-each neuron receives the same 

    (mean) external input (could come from 

   other populations) 

-each neuron in the population has roughly 

     the same parameters 

Week 15-part 1:   Review: Homogeneous Population  

excitation 

inhibition 

Example: 2 populations 
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Week 15-part 1:   Review:  microscopic vs. macroscopic  

microscopic: 

-spikes are generated 

   by individual neurons 

-spikes are transmitted 

   from neuron to neuron 

macroscopic: 

-Population activity An(t) 

-Populations interact via 

       An(t) 
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Week 15-part 1:   Review: coupled populations  



Populations: 

  - pyramidal neurons in layer 5 of barrel D1 

  - pyramidal neurons in layer 2/3 of barrel D1 

  - inhibitory neurons in layer 2/3 of barrel D1 

   

Week 15-part 1:   Example: coupled populations in barrel cortex  

Neuronal Populations 
= a homogeneous group of neurons 

   (more or less) 

100-2000 neurons 

   per group (Lefort et al., NEURON, 2009) 

 
 different barrels and layers, different neuron types  different populations 



-Extract parameters for SINGLE neuron 
                     (see NEURONAL DYNAMICS, Chs. 8-11; review now) 

-Dynamics in one (homogeneous) population 

                   Today, parts 15.2 and 15.3! 

-Dynamics in coupled populations 
 

-Understand Coding in populations 

-Understand Brain dynamics 
 

 
Sensory input 

Week 15-part 1:   Global aim and strategy  
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Week 15-part 1:   Review:  Spike Response Mode (SRM)  



SRM +escape noise = Generalized Linear Model (GLM) 
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-spikes are events 

-spike leads to reset/adapt. currents/increased threshold 

-strict threshold replaced by escape noise:   

spike 

 Pr [ ; ] ( ) [ ( ) ( )]firein t t t t t f u t t t      

exp Jolivet et al., J. Comput. NS, 2006 



threshold 

threshold 

current 

current 

Input current: 

-Slow modulation 

-Fast signal 

Pozzorini et al.  

Nat. Neuros,  

2013 

Adaptation 

  - extends over several seconds 

  - power law 



Adaptation current 

Dyn. threshold 

Mensi et al. 2012, 

Jolivet et al. 2007 

Week 15-part 1:   Predict spike times + voltage with SRM/GLM  



threshold 

current 

current 

          Dynamic threshold 

Dyn. Threshold 

unimportant 

Dyn. Threshold 

VERY  IMPORTANT 

Fast Spiking  Pyramidal N. 

Different neuron types have different parameters 

Dyn. Threshold 

important 

Non-fast Spiking 

Mensi et al. 

2011 

Week 15-part 1:   Extract parameter for different neuron types  



-We can extract parameters for SINGLE neuron 
                     (see NEURONAL DYNAMICS, Chs. 8-11) 

-Different neuron types have different parameters 

 

 Model Dynamics in one (homogeneous) population 

                   Today, parts 15.2 and 15.3! 

 Couple different populations 
                        Today, parts 15.4! 
 

 
Sensory input 

Week 15-part 1:   Summary and aims  

Eventually: Understand Coding and Brain dynamics 
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I(t) 

Population of  Neurons? 

( )u t

Single neurons 
      - model exists 

      - parameters extracted from data 

      - works well for step current 

      - works well for time-dep. current 

Population equation for A(t) 

                          

Week 15-part 2:   Aim: from single neuron to population  

-existing models 

- integral equation 
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Question: – what is correct? 

Poll!!! 

A(t) ( ) ( ( ) ( ) ( ) )A t g I t G s A t s ds  

Wilson-Cowan 

Benda-Herz 

LNP 

current 

Ostojic-Brunel 

Paninski, Pillow 

Week 15-part 2:   population equation for A(t) ?    



Experimental data: Tchumatchenko et al. 2011 

See also: Poliakov et al. 1997 

Week 15-part 2:    A(t)  in experiments: step current, (in vitro) 



25000 identical model neurons   (GLM/SRM with escape noise) 

parameters extracted from experimental data 

response to step current 
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simulation data:  

Naud and Gerstner,  2012 

Week 15-part 2:    A(t)  in simulations : step current 



Week 15-part 2:    A(t)  in theory: an equation?  

Can we write down an equation for A(t) ? 

Simplification: Renewal assumption 
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h(t) Sum over all past spikes 

Keep only last spike 

    time-dependent renewal theory 



Week 15-part 2:    Renewal theory   (time dependent)  

( )h t

Potential (SRM/GLM) of one neuron 

 ˆt t  tu

last spike 

Keep only last spike   time-dependent renewal theory 



Week 15-part  2:  Renewal model –Example  
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nonlinear integrate-and-fire model 

deterministic part of input 
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 escape rate 
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Week 15-part  2:  Renewal model - Interspike Intervals 
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Week 15-part  2:  Renewal model – Integral equation 

population activity 
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Image: 

 Gerstner et al.,  

Neuronal Dynamics, Cambridge 

Univ. Press (2014) 

Gerstner 1995, 2000; Gerstner&Kistler 2002 

See also: Wilson&Cowan 1972 

Blackboard! 



Week 15-part  2:   Integral equation – example: LIF 
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 input 

population of 

leaky integrate-and-fire 

neurons w. escape noise 

simulation 

Image: Gerstner et al., Neuronal Dynamics, Cambridge Univ. Press 

exact for large population 

  N infinity 
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I(t) 

Population of  adapting Neurons? 

( )u t

Single neurons 
      - model exists 

      - parameters extracted from data 

      - works well for step current 

      - works well for time-dep. current 

Population equation for A(t) 

             - existing modes 

             - integral equation 

             

Week 15-part 3:   Neurons with adapation  

Real neurons show adapation on multipe time scales 
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Week 15-part 3:   population equation for A(t) ?    



I(t) 

Rate adapt. 
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Week 15-part 3:   neurons with adaptation – A(t) ?    

simulation 

LNP theory 



I(t) 

Population of  

Adapting Neurons? ( )u t

1) Linear-Nonlinear-Poisson (LNP):   fails! 

2) Phenomenological rate adaptation:   fails! 
3) Time-Dependent-Renewal Theory ? 

Week 15-part 3:   population equation for adapting neurons ?    

 Integral equation of previous section 



Spike Response Model (SRM) 
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interspike interval distribution 

last firing 

time 

Gerstner 1995, 2000; Gerstner&Kistler 2002 

See also: Wilson&Cowan 1972 



Week 15-part 3:   population equation for adapting neurons ?    



I 

Rate adapt. 

Week 15-part 3:   population equation for adapting neurons ?    

OK in late phase OK in initial phase 



I(t) 

Population of  

Adapting Neurons ( )u t

1) Linear-Nonlinear-Poisson (LNP):      fails! 

2) Phenomenological rate adaptation:   fails! 

3) Time-Dependent-Renewal Theory:    fails! 

4) Quasi-Renewal Theory!!! 

Week 15-part 3:   population equation for adapting neurons    



and 

h(t) 

Expand the moment 

generating functional 
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Week 15-part 3:   Quasi-renewal theory    

Blackboard! 
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Week 15-part 3:   Quasi-renewal theory    

Image:  

Gerstner et al.,  

Neuronal Dynamics,  

Cambridge Univ. Press 

PSTH or 

population activity A(t) 

predicted by 

quasi-renewal theory 



I(t) 

Population of  

Adapting Neurons? ( )u t

1) Linear-Nonlinear-Poisson (LNP):   fails! 

2) Phenomenological rate adaptation:   fails! 

3) Time-Dependent-Renewal Theory: fails! 

4) Quasi-Renewal Theory: works!!!! 

Week 15-part 3:   population equation for adapting neurons    
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Week 15-part 4:   population with self-coupling    

Same theory works 

- Include the self-coupling in h(t) 
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Week 15-part 4:   population with self-coupling    

Image:  Gerstner et al.,  

Neuronal Dynamics,  Cambridge Univ. Press 



Week 15-part 4:   population with self-coupling    

Image:  Gerstner et al.,  

Neuronal Dynamics,  Cambridge Univ. Press 

J0 



Week 15-part 4:   population with self-coupling    

instabilities 

and oscillations 

noise level 

delay 

stable asynchronous state 

Image:  

Gerstner et al.,  

Neuronal Dynamics,  

Cambridge Univ. Press 



Week 15-part 4:   multipe coupled populations 

Same theory works 
- Include the cross-coupling in h(t) 
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-We can extract parameters for SINGLE neuron 
                     (see NEURONAL DYNAMICS, Chs. 8-11) 

-Different neuron types have different parameters 

 

 Model Dynamics in one (homogeneous) population 

                   Today, parts 15.2 and 15.3! 

 Couple different populations 
                        Today, parts 15.4! 
 

 
Sensory input 

Week 15-part 1:   Summary and aims  

Eventually: Understand Coding and Brain dynamics 



The end 

Reading: Chapter 14 of 

NEURONAL DYNAMICS,  

Gerstner  et al., Cambridge Univ. Press (2014) 


