Week 15 - transients and rate models
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Biological Modeling
of Neural Networks: 15.1 Review Populations of Neurons

- Transients
15.2 Rate models

Week 15 - Fast Transients and
Rate models

Wulfram Gerstner
EPFL, Lausanne, Switzerland



Week 19-part 1: Review: The brain is complex
Neuronal Dynamics - Brain aynamics IS compiex

10 000 neurons motor
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Week 1o-part1: Review: Homogeneous Popuilation

Example: 2 populations

. — %) 7 excitation

Homogeneous population:

-each neuron receives input
from k neurons in the population
-each neuron receives the same
(mean) external input (could come from
other populations)
-each neuron In the population has roughly
the same parameters

Inhibition




Week 1o-part 1: Review: microscopic vs. macroscopic

mICroscopic: Macroscopic:

-Spikes are generated -Population activity An(t)
by Individual neurons -Populations interact via

-Spikes are transmitted An(t)

from neuron to neuron



Week 1o-part 1: Review: coupled populations




Week 15-part 1: Example: coupled populations in harrel cortex
Neuronal Populations

= a homogeneous group of neurons @l

(more or less)

Populations: @ /

- pyramidal neurons in layer 5 of barrel D1 I |

- pyramidal neurons in layer 2/3 of barrel D1
100-2000 neurons \!ll /

- Inhibitory neurons in layer 2/3 of barrel D1
per group (Lefort et al., NEURON, 2009)

different barrels and layers, different neuron types = different populations



Week 1o-part1: AU In experiments:light flash, in vive
Experimental data: marsalek et al., 1997
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Fig. 15.3: Transient response of neurons in visual cortex. At ¢t = 0 a high-contrast grating
is flashed on a gray screen. Top left: A neuron in visual cortex V1 of a behaving monkey
responds with a sharp onset after a latency of 27ms, as shown by the PSTH. Bottom left:



AWeek 15-part2: A/ in experiménts: auditory click stimulus
Experimental data: Sakata and Harris, 2009
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Fig. 15.2: Response of auditory neurons across different layers to short stimuli. A. Left
Schematic drawing of an electrode with 32 sites overlayed on top of stained cortical tissu
in order to show that the electrode crosses all cortical layers. Right: Spike responses o



Week 19-part 1: A/t in experiments: step current, Lin vitrod
Exgerlme taI data: Tchumatchenko et al. 2011

- 300ms
See also: Poliakov et al. 1997



Week 1o-part1: A4/ in simulations of integrate-and-fire neurons
Simulation data: Brunel et al. 2011
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Fig. 15.9: Slow (colored) diffusive noise versus white diffusive noise. A population of
integrate-and-fire models with a time constant of 7,,, = 20ms was simulated and responses
to a step stimulus reported in time bins of 1ms. A. Colored noise with a filtering time
constant 7,=10ms leads to an abrupt, instantaneous response. B. White noise leads to a

smoothly increasing fairly slow response. Figures adapted from (Brunel et al., 2001).



Week 1o-part 1. A/U in sSimulations of integrate-and-fire neurons
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Fig. 15.1: Transients and rate models. All neurons receive the same step current stim-
nlis at time t~~ = 100ms A randomlv connected network of RO excitatorv and 2000



Week 15 - transients and rate models
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Biological Modeling
Of Nﬂlll'ﬂl NBtWﬂI‘kS: Conclusion of part 1

Week 15 - Fast Transients and

Rate models Transients are very fast

Wulfram Gerstner -In experiments
EPFL, Lausanne, Switzerland -In simulations of spiking neurons



Week 19-part 2. FRate mode/ with differential equation

A(t) = g(h(t))

+ 9 h) = —h(t) + R- 1 (t)

dt B
S Input potential h(t) = J: £ s 1(t—s)ds

~

/

® L hn

Differential equation can be integrated!, exponential kernel



Week 19-part 2: Fare modefl- step current
A®) = g(h(t)) = g( [£(s)1 (t —s)ds)
AO [

() [ h®
| N\
\_ /

Example LNP rate model: Linear-Nonlinear-Poisson
Spikes are generated by a Poisson process, from rate model



Week 19-part 2. Wilson-Cowan model- step current

% A(t) = — A + g(h())
A
o/ ho
N\

4 N

Input potential h(t) = J: s I(t—s)ds+...

N /




Week 19-part 2: Rim: from single neuron to popuiation

Single neurons  Np |
- model exists u(t) //ﬁf
- parameters extracl  rom data
- works well for step ent (t)

- works well for tim< 7current

Population of Neurons?

Population equation for A(t)
* -existing models

- Integral equation




Week 19-part2: A/t in simulations : step current

25000 1dentical model neurons (GLM/SRM with escape noise)
parameters extracted from experimental data

0f
T 2§ — : response to step current
<10 - J-M simulation data:
U Naud and Gerstner, 2012
0 [ h)
N

g N

Input potential h(t) = f s I(t—s)ds+...

N /




Week 19-part 2: rate model

() |

1) LNP

e

A(t) = f (h(t)) — e"®

A(t)

n NP theory

~

simulation

Simple rate model:
- too slow during the transient
- No adaptation



Week 1o-part: rate model with adaptation

1) LNP

() | ‘

A(t) = f (h(t)) — e"®

n NP theory

~

a M
2) Rate adapt.

Benda-Herz -

simulation

——optimal filter
(rate

\_ Naud and Gerstner 2012 )

adaptation)



Week 19-part 2: rate model

Simple rate model:
- too slow during the transient
- N0 adaptation

Adaptive rate model:
- too slow during the transient
- final adaptation phase correct

Rate models can get the slow dynamics
and stationary state correct, but are
wrong during transient



Week 19-part 2: population equation for 4/ 7 ..

\ | l |

N(t; t + At)
N AT

pulation A(L) =
activity

A(t) ,V/Vils-alw\-powan T % A(t) = — A(t) + T (h(t))

A0/ NpOSWIICBIYREE) = f (h(t)) = f ( [£(s)1(t —s)ds)

aninski, Pillow

Aty __| current A(t) = g(l(t))
ao _ |Benda-Herz  A(t) = g(I(t) — [G(s)A(t —s)ds)




Week 10-part 2: improved rate models/population models

Improved rate models
a) rate model with effective time constant
- next slides
b) Integral equation approach
-> chapter 14



Week 19-part 2: Fate mode/ with eftective time constant

A(t) = F(h(t)) T (1) ~ F '/ A (t)
T (t) % h(t) _ h(t) TR (t) Ostojic-Brunel, 2011

S Alnput potential h(t) = J: g s I(t—s)ds
(t) [ h(t)

- Shorter effective time constant during high activity



Week 19-part 2: Fate mode/ with eftective time constant

A(t) = F(h(t)) Image: Gerstner et al.,
Neuronal Dynamics, CUP 2014
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-> Shorter effective time constant during high activity
-> Theory fits simulation very well



Week 19-part 2; Gonclusions

Rate models
- are useful, because they are simple
- slow dynamics and stationary state correct
- simple rate models have wrong transients
- Improved rate models/population activity models exist



The end

Reading: Chapter 15 of
NEURONAL DYNAMICS,
Gerstner et al., Cambridge Univ. Press (2014)




