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  Week 8 – part 1 :Variation of membrane potential 



Crochet et al., 2011 

awake mouse, cortex, freely whisking,  

Spontaneous activity in vivo 

Neuronal Dynamics – 8.1 Review: Variability in vivo 

Variability  

- of membrane potential?  

- of spike timing? 



Neuronal Dynamics – 8.1 Review. Variability 

Fluctuations 

-of membrane potential 

-of spike times 

 fluctuations=noise? 

 model of fluctuations? 

 relevance for coding? 

 source of fluctuations? 

In vivo data 

    looks ‘noisy’ 

 

In vitro data 

    fluctuations 

         



- Intrinsic noise (ion channels) 

Na+ 

K+ 

-Finite number of channels 

-Finite temperature 

-Network noise (background activity) 

-Spike arrival from other neurons 

-Beyond control of experimentalist 

Check intrinisic noise by removing the network 

Neuronal Dynamics – 8.1. Review Sources of Variability 



- Intrinsic noise (ion channels) 

Na+ 

K+ 

-Network noise  

Neuronal Dynamics – 8.1. Review: Sources of Variability 

In vivo data 

    looks ‘noisy’ 

 

In vitro data 

   small fluctuations 

   nearly deterministic 

         



Neuronal Dynamics – 8.1 Review: Calculating the mean 
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Neuronal Dynamics – 8.1. Fluctuation of potential 

for a passive membrane, predict   

-mean  

-variance 

of membrane potential fluctuations 

Passive membrane 

=Leaky integrate-and-fire 

 without threshold 
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Synaptic current pulses of shape 
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Neuronal Dynamics – 8.1. Fluctuation of current/potential 
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Neuronal Dynamics – 8.1 Calculating autocorrelations 
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White noise: Exercise 1.1-1.2 now 
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Input starts here 

Assumption: 

far away from theshold 

Variance of voltage at time t  

Next lecture: 

   9:56 



Diffusive noise (stochastic spike arrival) 
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Neuronal Dynamics – 8.1 Calculating autocorrelations 
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Stochastic spike arrival:  

  excitation, total rate  
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Synaptic current pulses 

Exercise 2.1-2.3 now: Diffusive noise (stochastic spike arrival) 

 

1. Assume that for t>0 spikes arrive stochastically with rate  

- Calculate mean voltage 

2. Assume autocorrelation   

  

                        - Calculate    
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Assumption:  

stochastic spiking 

 rate  

   

Poisson spike arrival: Mean and autocorrelation of filtered signal  
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8.1 Variation of membrane potential 

       - white noise approximation 

8.2 Autocorrelation of Poisson 

8.3 Noisy integrate-and-fire  
      - superthreshold and subthreshold 

8.4 Escape noise 
           -renewal model 

  Week 8 – part 2 : Autocorrelation of Poisson Process 



Stochastic spike arrival: 

Justify autocorrelation of spike input: 

Poisson process in discrete time 

In each small time step  

Prob. Of firing  

 
Firing independent between one time step and the next 

tp
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Blackboard 



Stochastic spike arrival:  

  excitation, total rate  

Exercise 2 now: Poisson process in discrete time 

Show that  autocorrelation  

   for     
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In each small time step  

Prob. Of firing  

 
Firing independent between one time step and the next 

Show that  in an a long interval of duration T, 

      the expected number of spikes is     
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Next lecture:  

10:46 
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Probability of spike in time step: 

Neuronal Dynamics – 8.2. Autocorrelation of Poisson 

t

spike train  

math detour 

       now! 

Probability of spike 

 in  step n AND step k 
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Autocorrelation (continuous time) 



Quiz – 8.1. Autocorrelation of Poisson 

t

spike train  
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The Autocorrelation (continuous time) 

 

 

Has units 

 

[ ] probability (unit-free) 

[ ] probability squared (unit-free) 

[ ] rate (1 over time) 

[ ] (1 over time)-squred 
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           -renewal model 

  Week 8 – part 3 : Noisy Integrate-and-fire 



Neuronal Dynamics – 8.3 Noisy Integrate-and-fire 

for a passive membrane, we 

can analytically  predict the 

mean of membrane potential 

fluctuations 

Passive membrane 

=Leaky integrate-and-fire 

 without threshold 
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ADD THRESHOLD 

 Leaky Integrate-and-Fire 
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Neuronal Dynamics – 8.3 Noisy Integrate-and-fire 



I(t) 

fluctuating input current 

fluctuating potential 

Random spike arrival 

Neuronal Dynamics – 8.3 Noisy Integrate-and-fire 



stochastic spike arrival in I&F – interspike intervals 

I 
0I

ISI distribution 

Neuronal Dynamics – 8.3 Noisy Integrate-and-fire 

0( ) ( ) ( )synRI t RI t t

white noise 



Superthreshold vs. Subthreshold regime 

Neuronal Dynamics – 8.3 Noisy Integrate-and-fire 



u(t) 

Neuronal Dynamics – 8.3. Stochastic leaky integrate-and-fire 

noisy input/ diffusive noise/ 

stochastic spike arrival 

subthreshold regime: 
  - firing driven by fluctuations 

  - broad ISI distribution 

  - in vivo like 

   

ISI distribution 



Crochet et al., 2011 

awake mouse, freely whisking,  

Spontaneous activity in vivo 

Neuronal Dynamics – review- Variability in vivo 

Variability  

of membrane potential?  

Subthreshold regime 



fluctuating potential 
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for a passive membrane, we 

can analytically  predict the 

amplitude of membrane 

potential fluctuations 

Leaky integrate-and-fire 

in subthreshold regime 

 In vivo like 

Stochastic spike arrival: 

Neuronal Dynamics – 8.3 Summary:Noisy Integrate-and-fire 
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8.1 Variation of membrane potential 

       - white noise approximation 

8.2 Autocorrelation of Poisson 

8.3 Noisy integrate-and-fire  
      - superthreshold and subthreshold 

 

  Week 8 – Noisy input models:  barrage of spike arrivals 

THE END  
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8.6 Comparison of noise models 
 

  Week 8 – part 4 : Escape noise 



- Intrinsic noise (ion channels) 

Na+ 

K+ 

-Finite number of channels 

-Finite temperature 

-Network noise (background activity) 

-Spike arrival from other neurons 

-Beyond control of experimentalist 

Neuronal Dynamics – Review: Sources of Variability 

Noise models? 



 escape process, 

stochastic intensity 

    

 stochastic spike arrival 

     (diffusive noise) 

Noise models 
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Relation between the two models: 

  later  

Now: 

Escape noise! 
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Neuronal Dynamics – 8.4 Escape noise 
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Neuronal Dynamics – 8.4 stochastic intensity 
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Escape rate = stochastic intensity 
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Neuronal Dynamics – 8.4 mean waiting time 
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Neuronal Dynamics – 8.4 escape noise/stochastic intensity 

Escape rate = stochastic intensity 

                       of point process 

( ) ( ( ))t f u t
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Neuronal Dynamics –  Quiz 8.4 
Escape rate/stochastic intensity in neuron models 

[ ] The escape rate of a neuron model has units one over time 

[ ] The stochastic intensity of a point process has units one over time 

[ ] For large voltages, the escape rate of a neuron model always saturates 

     at some finite value 

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is proportional to the escape rate  

[ ] After a step in the membrane potential, the mean waiting time until a spike is 

fired is equal  to the inverse of the escape rate  

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  only 

depends on the external input current but not on the time of the last reset 

[ ] The stochastic intensity of a leaky integrate-and-fire model with reset  depends 

on the external input current AND on the time of the last reset 
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  Week 8 – part 5 : Renewal model 



Neuronal Dynamics – 8.5.  Interspike Intervals 
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Example:  

nonlinear integrate-and-fire model 

deterministic part of input 
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 escape rate 
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exponential stochastic intensity 
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Neuronal Dynamics – 8.5.  Interspike Interval distribution 

t 

t 



 escape process 
A 

u(t) 

t

t

dtt
^

)')'(exp()ˆ( ttS I

Survivor function 

t 

)(t

))(()( tuft

escape rate 

t

t

dttt
^

)')'(exp()()ˆ( ttPI

Interval distribution 

Survivor function 

escape 

 rate 

)ˆ()()ˆ( ttStttS IIdt
d

Examples now 

u 

Neuronal Dynamics – 8.5.  Interspike Intervals 
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Neuronal Dynamics – 8.5.  Renewal theory  
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Neuronal Dynamics – 8.5.  Time-dependent Renewal theory  
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Neuronal Dynamics – Homework assignement 



Neuronal Dynamics – 8.5.  Firing probability in discrete time 
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Neuronal Dynamics – 8.5.  Escape noise - experiments 
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Jolivet et al. , 

J. Comput. Neurosc. 

2006 



Neuronal Dynamics – 8.5.  Renewal process, firing probability 

Escape noise = stochastic intensity 

 

-Renewal theory 

         - hazard function 

          - survivor function 

          - interval distribution 

-time-dependent renewal theory 

-discrete-time firing probability 

-Link to experiments 

 

  basis for modern methods of 

  neuron model fitting 
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  Week 8 – part 6 : Comparison of noise models 



 escape process 

   (fast noise) 
 stochastic spike arrival 

     (diffusive noise) 
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noisy integration 

Neuronal Dynamics – 8.6. Comparison of Noise Models 



Assumption:  

stochastic spiking 

 rate  

   

Poisson spike arrival: Mean and autocorrelation of filtered signal  
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Filter 



Stochastic spike arrival:  

  excitation, total rate Re 

  inhibition, total rate Ri 
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Synaptic current pulses 

Diffusive noise (stochastic spike arrival) 

)()()( ttIRuuu
dt

d
rest

Langevin equation, 

Ornstein Uhlenbeck process 

Blackboard 



Diffusive noise (stochastic spike arrival) 
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Math argument: 

  - no threshold 

  - trajectory starts at 

     known value 



Diffusive noise (stochastic spike arrival) 
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Membrane potential density: Gaussian 

p(u) 

constant input rates 

no threshold 

Neuronal Dynamics – 8.6. Diffusive noise/stoch. arrival 

A) No threshold, stationary  input 
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noisy integration 
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Membrane potential density:  
Gaussian at time t 

p(u(t)) 

Neuronal Dynamics – 8.6 Diffusive noise/stoch. arrival 

B) No threshold, oscillatory  input 
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noisy integration 
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Membrane potential density 

u 

p(u) 

Neuronal Dynamics – 6.4. Diffusive noise/stoch. arrival 

C) With threshold, reset/ stationary  input 



Superthreshold vs. Subthreshold regime 

u 
p(u) p(u) 

Nearly Gaussian 

subthreshold distr. 

Neuronal Dynamics – 8.6. Diffusive noise/stoch. arrival 

Image: 

Gerstner et al. (2013) 

Cambridge Univ. Press; 

See: Konig et al. (1996)  



 escape process 

   (fast noise) 
 stochastic spike arrival 

     (diffusive noise) 
A C 

u(t) 

noise 

     white 

(fast noise) 

    synapse 

(slow noise) 

(Brunel et al., 2001) 
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Neuronal Dynamics – 8.6. Comparison of Noise Models 

Stationary input: 

-Mean ISI 

 

 

 

 

-Mean firing rate 

Siegert 1951 



Neuronal Dynamics – 8.6 Comparison of Noise Models 

Diffusive noise 

    - distribution of potential 

     - mean interspike interval 

 FOR CONSTANT INPUT 

 

   - time dependent-case difficult 

 

Escape noise 
     - time-dependent interval  

        distribution 



 stochastic spike arrival 

     (diffusive noise) 

Noise models: from diffusive noise to escape rates 
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Comparison:  diffusive noise vs. escape rates 

))(()( 0 tuft

escape rate 

)
2

))((
exp(

2

2

0 tu )]('1[ 0 tu))('),(()( 00 tutuft

subthreshold 

potential 

Probability of first spike 

diffusive 

escape 

Plesser and Gerstner (2000) 



Neuronal Dynamics – 8.6 Comparison of Noise Models 

Diffusive noise 

    - represents stochastic spike arrival 

     - easy to simulate 

     - hard to calculate 

 

Escape noise 
     - represents internal noise 

     - easy to simulate 

     - easy to calculate 

     - approximates diffusive noise  

     - basis of modern model fitting methods 



Neuronal Dynamics –  Quiz 8.4. 
A. Consider a leaky integrate-and-fire model with diffusive noise: 

[ ] The membrane potential distribution is always Gaussian. 

[ ] The membrane potential distribution is Gaussian for any time-dependent input. 

[ ] The membrane potential distribution is approximately Gaussian for any time-dependent input,  

     as long as the mean trajectory stays ‘far’ away from the firing threshold. 

[ ] The membrane potential distribution is Gaussian for stationary input in the absence of a threshold. 

[ ] The membrane potential distribution is always Gaussian for constant input and fixed noise level. 

B. Consider  a leaky integrate-and-fire model with diffusive noise for time-dependent input. The above figure 

    (taken from an earlier slide) shows that 

[ ] The interspike interval distribution is maximal where the determinstic reference trajectory is closest to the threshold. 

[ ] The interspike interval vanishes for very long intervals if the determinstic reference trajectory  

   has stayed  close to the threshold before - even if for long intervals it is very close to the threshold 

[ ] If there are several peaks in the interspike interval distribution, peak n is always of smaller amplitude than peak n-1. 

[ ] I would have ticked the same boxes (in the list of three options above)  

           for a leaky integrate-and-fire model with escape noise. 


