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1. Classification as a geometric problem



Previous slide.

… and now we really start.



The problem of Classification

input

car (yes or no)

output

the classifier



Previous slide.

We focus on the task of classification.

To be concrete we consider images. The task of the classifier is to say: yes or no.

In the concrete example: ‘yes’ means that there is a car on the image

Even though we visualize the input as a two-dimensional image, the input to the 

networks really just is a  vector x of pixel values (Blackboard 1)



The problem of Classification

input

+1 yes (or 0 for no)

output

the classifier

f(x)

vector x



Previous slide.

The input is a vector x

The classifier is a function f(x) 

that maps the input to the output

The output is binary: +1 or 0.



Blackboard 1:

from images to vector



Blackboard 2:

from  vectors to classification



Classification as a geometric problem
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Blackboard 2:

from  vectors to classification

x

x
o

Blackboard 1:

from images to vector



Previous slide.

Classification means: assigning a +1 to some inputs (e.g. cars) and 0 to other 

inputs (not cars).

Classification corresponds to a separating (by some surface) the positive 

examples (green crosses) from the negative ones (red circles).

The space is the space of input vectors x



Classification as a geometric problem

Task of Classification 

= find a separating surface in the high-dimensional input space

Classification by discriminant function d(x)

 d(x)=0 on this surface; d(x)>0 for all positive examples x

d(x)<0 for all counter examples x
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linearly

separable

problem

d(x)=0 

𝑑 𝒙𝜇 > 0



Previous slide.

The discriminant function d(x) takes inputs x and maps these to:

d(x)>0 for all positive examples x

d(x)<0 for all counter examples x

d(x)=0 on the separating surface

Solving a classification problem therefore is equivalent to finding a discriminant 

function.

A linear discriminant function will become important in the next section.
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1. Classification as a geometric problem

2. Supervised learning



Previous slide.

We now turn to supervised learning in order to learn a classifier. Remember that a 

classifier implements a discriminant function.



Data base for Supervised learning 

input

car (yes)

Classifier

output

Techerteacher

𝒙𝜇

 

 𝑦𝜇 = 1𝑡𝜇 = 1target output classifier output



Previous slide.

To construct such a discriminant function we need a data base for supervised 

learning. 

The problem is called supervise learning because we assume that a teacher has 

previously looked at the examples and assigned labels.

A label 𝑡𝜇 = 1 for an input vector 𝒙𝜇 means that this input pattern belongs to the 

class (positive example)

A label 𝑡𝜇 = 0 for an input vector 𝒙𝜇 means that this input pattern does not belong

to the class (counter-example)



Supervised learning 

input

car =yes

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

target output

𝑡𝜇 = 1

P data points

𝑡𝜇 = 0 car =no



Previous slide.

The data base for supervised learning contains P data points, each consisting of a 

pair of input and target output.



Data base for Supervised learning 

input

car (no)

Classifier

output

Techerteacher

𝒙7

𝑡7 = 1target output classifier output
error!

 𝑦7 = 0



Previous slide and next slide.

The basic idea of supervised learning is that the actual output of the classifier is 

compared with the target output. If there is a mismatch, then the error can be 

used to optimize the function f(x) of the classifier.



Error in Supervised learning 

input

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

target output

P data points

for each data point      , the classifier gives an output  𝑦
𝜇

 𝑦𝜇 ≠ 𝑡𝜇

𝒙𝜇

 use errors                 for optimization of classifier 

Remark: for multi-class problems y and t are vectors

Remark: Errors can be used to define a ‘Loss function’. 



Previous slide.

A single-class classifier has a single binary target output 𝑡𝜇 = 0 𝑜𝑟 1.

For a multi-class classifier the target output is a vector.



Summary: Supervised learning 

input

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

target output

1. Data base

for        compare classifier output  𝑦
𝜇

with 𝑡𝜇

 𝜇 𝐸 ( 𝑦𝜇, 𝑡𝜇)

𝒙𝜇

3. A method to minimize the errors

2. A way to measure errors

Error function/Loss function



Previous slide.

Supervised learning needs three things:

A data base with labels 𝑡𝜇

A way to measure the differences between target 𝑡𝜇 and actual output 𝑦𝜇

This is usually done with a loss function (also called error function)

A method to minimize the errors by changing the parameters of the classifier. In 

the case of Neural Networks: change the parameters of the network.We will see a 

first method in the next section
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2. Supervised learning

3. Simple Perceptron



Your notes.



3.  Single-Layer networks: simple perceptron 

output

the classifier

f(x)

vector x

 𝑦 = 𝑔  

𝑘

𝑤𝑘 𝑥𝑘

𝑤𝑘

𝑥𝑘

+1 if  

0  if

 𝑦 = 𝑓(𝒙)

 𝑦 = 𝑔 𝑎′ =
𝑎′ > 𝜗
𝑎′ < 𝜗



Previous slide.

So far we have not specified the function f(x) of the classifier.

Now we assume that the classifier consists of a single artificial model neuron.

Each component 𝑥𝑘of the input vector is multiplied by a weight  𝑤𝑘 .

The function g( ) is some nonlinear function.



Blackboard 3: Geometry of 

perceptron: hyperplane



Your notes.



Single-Layer networks: simple perceptron 

input

output

vector x

 𝑦
𝜇

= 𝑔  

𝑘

𝑤𝑘 𝑥𝑘

𝑤𝑖𝑘

𝑥𝑘



 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛  𝑘 𝑤𝑘 𝑥𝑘 − 𝜗 ]

a

a’
a’

g(a’)

g(a’)=
1    if a’> 




0.5 if a’=
0    if a’<



Previous slide.

Top line: Often we choose for g a step  function with threshold 𝜗 .

The total effective input activation of the neuron is called a (including the 

threshold) or a’ (before the threshold is subtracted).
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imposes a linear

separation

Single-Layer networks: simple perceptron 

vector x

𝑤𝑖𝑘

𝑥𝑘

 𝑦 = 0.5[1 + 𝑠𝑔𝑛  𝑘 𝑤𝑘 𝑥𝑘 − 𝜗 ]

𝑑 𝒙 =  

𝑘

𝑤𝑘 𝑥𝑘 − 𝜗 = 0

Discriminant function



Previous slide.

A single artificial model neuron implements a linear separation of the positive and 

negative examples. Thus the discriminant function is a hyperplane.

Consider as a discriminant function

The output of the simple perceptron is a nonlinear function (step function) applied 

on 𝑑 𝒙 . The Critical case is 𝑑 𝒙 =0. 

Positive examples have  𝑑 𝒙 > 0.
Negative examples have  𝑑 𝒙 <0.

𝑑 𝒙 =  

𝑘=1

𝑁

𝑤𝑘 𝑥𝑘 − 𝜗 = 0



x
x

x
x

o
o

o

o

remove threshold: add a constant input 

𝑤𝑖𝑘

𝑥𝑘

𝑑 𝒙 =  

𝑘=1

𝑁

𝑤𝑘 𝑥𝑘 − 𝜗 = 0

𝒙 ∈ 𝑅𝑁

x

x
x

o
o

o
o

x

-1

0

𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝑑 𝒙 =  

𝑘=1

𝑁+1

𝑤𝑘 𝑥𝑘 = 0



Previous slide.

The hyperplane has a distance 𝜗 /|w| from the origin.

Formally, we can represent the threshold by an additional weight 𝑤𝑁+1 = 𝜗
which is multiplied with a constant input 𝑥𝑁+1 = −1.

In this (N+1)-dimensional space, the hyperplane passes through the origin.



Single-Layer networks: simple perceptron 

a simple perceptron 

- can only solve linearly separable problems

- imposes a separating hyperplane

- for               hyperplane goes through origin

- threshold parameter       can be removed by 

adding an input dimension 

- in N+1 dimensions hyperplane always

goes through origin

- we can adapt the weight vector to the

problem: this is called ‘learning’

𝜗

𝜗 = 0



Previous slide.

Thus, a simple perceptron can only solve linearly separable problems. Important 

for the following is that the positioning of the hyperplane in the high-dimensional 

space can be changed by adapting the weight vector to the data base.
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1. Classification as a geometric problem

2. Supervised learning

3. Simple Perceptron

4. Perceptron Algorithm



Previous slide.

We now study a first algorithm to minimize errors.



Perceptron algorithm: turn weight vector (in N+1 dim. )

ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒: 𝑑 𝒙 =  

𝑘=1

𝑁+1

𝑤𝑘 𝑥𝑘 = 𝒘𝑇𝒙 = 0

x

x x
x

o

o

o
o

x

x x
x

o

o

o
o

𝒘 𝒘

idea: ‘turn weight vector’



Previous slide.

In the following we always work in N+1 dimensions and exploit that the 

hyperplane goes through the origin.

Left: one of the examples is misclassified.

Right: all examples are correctly classified.

Idea: Turn weight vector in appropriate direction to go from the situation on the left 

to the situation on the right.



Perceptron algorithm 

geometry of perceptron algorithm:  

turn weight vector ∆𝒘~𝒙𝜇

Perceptron algo (in N+1 dimensions): 

- set g = 0.1

(1) cycle many times through all patterns

- choose pattern 𝜇
- calculate output

- update by 

- iterate 𝜇 ← (𝜇 + 1)𝑚𝑜𝑑𝑷, back to (1)

(2) stop if no changes for all P patterns

∆𝒘 = 𝛾[𝑡𝜇 −  𝑦
𝜇
]𝒙𝜇

 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛(𝒘𝑇𝒙𝜇)]



Previous slide.

A change of the weight vector (during the update step) happens only if the actual 

output  𝑦
𝜇

for pattern  𝒙𝜇 is not equal to the target output 𝑡
𝜇

.

And the change of the vector w is proportional to 𝒙𝜇 of the misclassified pattern.

parallel if target +1, antiparallel if target 0.

Classic Perceptron algo: 

The cycling can be deterministic (loop through patterns in  a fixed order) 

Alternative:

You cycle stochastically (during a given cycle, pick each pattern once, but in 

random order).



Blackboard 4: geometry of 

the perceptron algorithm:

Turn weight vector

∆𝒘 = 𝛾[𝑡𝜇 −  𝑦
𝜇
]𝒙𝜇

 𝑦
𝜇

= 0.5[1 + 𝑠𝑔𝑛(𝒘𝑇𝒙𝜇)]

update

output



Your notes.



Perceptron algorithm: theoreom

x

x x
x

o

o

o
o

𝒘

If the problem is linearly separable, the perceptron 

algorithm converges in a finite number of steps.

Proof: in many books, e.g.,

Bishop, 1995,
Neural Networks for Pattern Recognition



Previous slide.

Important: Convergence is only guaranteed if the problem is linearly separable.

At the beginning, the weight vector may oscillate. However, the norm of the 

weight vector increases during learning, so that the angle by which it rotates gets 

smaller and smaller until it no longer changes (for linearly separable problems).

For problems that are not linearly separable, oscillations will continue for ever.



Summary: Perceptron algorithm

x

x x
x

o

o

o
o

𝒘

- Perceptron algorithm can solve

linearly separable problems

- Cycle several times though all patterns

until nothing changes during a full cycle

- Update proportional to weight vector 

- Proof shows: - initial value of w not important

- learning rate g not important

Reason: length of w grows, but only direction matters

∆𝒘~𝒙𝜇



Your notes.



Quiz: Perceptron algorithm 

The input vector has N dimensions and we apply a perceptron algorithm.

[ ] A change of parameters corresponds always to a rotation of the separating

hyperplane in N dimensions.

[ ] A change of the separating hyperplane implies a rotation of the hyperplane 

in N+1 dimensions.

In the following change of length means 𝒘 + ∆𝒘 = β𝒘 i.e., same direction

[ ] An increase of  the length of the weight vector implies an increase of the

distance of the hyperplane from the origin in N dimensions.

[ ] An increase of the length of the weight vector implies that the hyperplane

does not change in N dimensions

[ ] An increase of the length of the weight vector implies that the hyperplane

does not change in N+1 dimensions

[ ]

[x]

[ ]

[ ]

[x]



Your notes.
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5. Gradient descent and sigmoidal output unit



Sigmoidal output unit

x

x
x

o
o

o
o

x

-1

0

𝑤𝑖𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇 = 𝑔( 𝑘=1
𝑁+1 𝑤𝑘 𝑥𝑘

𝜇
)

𝑔 𝑎 =
exp(𝑎)

1 + exp(𝑎)
=

1

1 + exp(−𝑎)

𝑎

1

0

A saturating nonlinear function with a smooth transition from 0 to 1.

with 



Previous slide. 

We return to our choice of the nonlinear function g().

Instead of a threshold function, we can also work with a sigmoidal function.

The definition of the total input activation a is the same as before.

Instead of a step we now have a smooth transition from zero to one.

Note that the discriminant function is the same as for the simple perceptron with 

step output.



Supervised learning with sigmoidal output 

input

output

Techerteacher

𝒙7

 

 𝑦7 = 0.2𝑡7 = 1target output classifier output
error!

𝜗
Classifier

𝒇(𝒙7) = 𝑔 𝒘𝑇𝒙𝜇



Previous slide.

The notion of mismatch in the output works for the smooth output neuron 

analogously to the case of the binary one that we have studied before



𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇

𝑎

1

0

𝐸(𝒘) =
1

2
 

𝜇=1

𝑃

𝑡
𝜇

−  𝑦𝜇 2

Loss function: define quadratic error

gradient descent

Supervised learning with sigmoidal output 

𝑤𝑘

𝐸
∆𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘



Previous slide.

Since an error measure has to be always positive, we square the difference 

between actual output and target output.

The error function is this squared difference summed over all patterns in the data 

base. This error function is called the squared error or the quadratic error 

function. We will see other error functions in later weeks.

Most of the learning rules that we consider in this class are based on gradient 

descent:

The weight 𝑤𝑘 is updated by an amount  ∆𝑤𝑘 proportional to the gradient 
𝑑𝐸

𝑑𝑤𝑘

The amplitude of the update is given by the learning rate gamma.

There is a negative sign because the aim is the REDUCE the error in each step.

With small enough learning rate, the gradient descent algorithm will end up close 

to a minimum of the error function. It jitters around the minimum because of the 

finite learning step gamma.

There is no reason that it should end up in a global minimum.



𝑤𝑁+1 = 𝜗

𝑥𝑁+1 = −1𝒙 ∈ 𝑅𝑁+1

𝐸(𝒘) =
1

2𝑃
 

𝜇=1

𝑃

𝑡
𝜇

− 𝑦
𝜇 2

Quadratic error

gradient descent

Gradient descent 

𝑤𝑘

𝐸
𝑤𝑘 = −𝛾

𝑑𝐸

𝑑𝑤𝑘

Exercise 1.1 now: 
- calculate gradient 

- limit to one pattern

- geometric interpretation?

 𝑦
𝜇

= 𝑔 𝒘𝑇𝒙𝜇



Exercise Sheet

Pause video now 
- calculate gradient 

- apply only 1 pattern

- geometry/vector?



Exercise 1.1 now: 
- calculate gradient 

- apply only 1 pattern

- geometry/vector?

Lecture continues

in 10 minutes



Gradient descent calculation: ‘batch’ and ‘online’

(



Your notes.

(



Gradient descent algorithm (stochastic gradient descent)

x

x x
x

o

o

o
o

𝒘

∆𝒘 = 𝛾𝛿(𝜇)𝒙𝜇

- amount of change depends 

on         , prop. to  the

(signed) output mismatch

for this data point

- change implemented 

even if ‘correctly’ classified

- change proportional to 𝒙𝜇

- similar to perceptron 

algorithm

𝛿(𝜇)

After presentation of pattern 𝒙𝜇 update the weight vector by

𝛿 𝜇 = 𝑡𝜇 −  𝑦
𝜇

𝑔′



Previous slide.

Gradient descent can be done in two different modes:

Batch algorithm: we keep the sum over all patterns 

one update step after all patterns have been presented.

updates are repeated several times.

Online algorithm: one update step after each single pattern.

(patterns can be chosen stochastically or cyclically:

the online algo is also called stochastic gradient descent)

one ‘epoch’ = all patterns presented once. 

repeated for many epochs until convergence

Structure of online algorithm similar to perceptron algorithm.

Main difference: the mismatch                is smooth here

Similar to perceptron, if a positive example is misclassified, the weight vector 

turns in direction of this input pattern. 

The geometric picture is hence the same as for the Perceptron algorithm.

𝛿(𝜇)



Stochastic gradient descent algorithm (for simple perceptron)

Gradient Descent: Simple Perceptron (in N+1 dimensions) 

- set 𝜸 = 0.01 (learning rate; P patterns in total, index m)

- choose M (number of epochs)

(1) For counter k < P M 

- randomly choose pattern 𝜇
- calculate output

- update by 

- increase counter k k+1

(2a) stop if change during last P patterns was acceptably small

(2b) else, decrease 𝛾 , reset k to k=1 and return to (1) 

∆𝒘 = 𝛾 𝑡𝜇 −  𝑦
𝜇

𝑔′𝒙𝜇

 𝑦
𝜇

= 𝑔(𝒘𝑇𝒙𝜇)



Previous slide.

This is a sketch of the resulting stochastic gradient descent algorithm, i.e., an

online algorithm: one update step after each single pattern.

(patterns are chosen stochastically here) 

one ‘epoch’ = all patterns presented once (on average!)

The update steps are repeated for  (several times) M epochs until convergence.

The amount of jittering can be reduced by lowering the value of the learning rate 

gamma after M epochs.



Learning outcome and conclusions for today:

- understand classification as a geometrical problem

- discriminant function of classification

- linear versus nonlinear discriminant function

- linearly separable  problems

- perceptron algorithm

- gradient descent for simple perceptrons

- understand learning as a geometric problem



Previous slide.

- Classification is equivalent to finding a separating surface in the high-

dimensional input space

- This surface can be defined by the condition d(x)=0 where d is the discriminant 

function

- A generic data base for supervised learning requires a nonlinear discriminant 

function

- A simple perceptron can only implement a linear discriminant function: the 

separating hyperplane

- The perceptron algorithm turns the separating hyperplane in N+1 dimensions

- A quadratic error function gives rise to a stochastic gradient descent algorithm

- Geometrically the stochastic gradient descent algorithm also turns the 

hyperplane in N+1 dimensions, very similar to the perceptron algorithm



The 

END

Reading for this week:

Bishop, Ch. 4.1.7 of

Pattern recognition and Machine Learning

or

Bishop, Ch. 3.1-3.5 of

Neural networks for pattern recognition

Motivational background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Goodfellow et al., Ch. 1 of

Deep Learning



Previous slide.

The suggested reading is important, in particular if you are not able to attend the 

class in a given week.

In all the following weeks, the suggested reading will always be listed on slide 2, 

at the beginning of the lecture, so that it is easy to find.


