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Reinforcement Learning and SARSA 

Objectives for Lecture RL1 (Part 1-3)

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions, states and rewards

- Convergence in expectation, online and batch.

Part 1: Examples of Reward-based Learning 

Reading:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018)

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4

2
2



No labeled data?

Artificial Neural Networks for action learning

Replaced by:

‘Value of action’

- ‘goodie’ for dog

- ‘success’

- ‘compliment’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence



Previous slide. 

How does a human learn to play table tennis: How does a child learn to play the 

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the 

players during the learning phase. Rather the player ‘discovers’ good movements 

by rather coarse feedback. For example, the ball in table tennis does not land on 

the table as it should. That is bad (negative feedback). The ball has a great spin 

so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior 

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action, 

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the 

goodie for the dog, or just the feeling ‘now I did well’ for humans.



Reward information is available in the brain

Neuromodulator dopamine:

Signals “reward minus expected reward”

Dopamine

Schultz et al., 1997,

Waelti et al., 2001

Schultz, 2002

‘success signal’



Previous slide. 

Inside the brain, reward information is transmitted by the neuromodulator 

dopamine. Neurons that use dopamine as their chemical transmission signal are 

situated in nuclei below the cortex and have cables (axons) that reach out to vast 

areas of the brain.

As we will see later, neurons that communicate with the neuromodulator 

dopamine transmit a generic success signal that is not just reward, but something 

like ‘reward minus expected reward’.

To conclude, reward information is available throughout the brain.



Examples of reinforcment learning

Middle bar: shifted left or shifted right?

Observers get better at seeing 

the shift of the middle bar

Feedback: 

tone for wrong response

Tartaglia,Aberg,Herzog 2009

Min.

shift



Previous slide (This example is not shown in class) 

Let us look at a few additional examples, beyond table tennis.

Humans can get, by practice and feedback, better at recognizing a visual pattern 

with three bars. The task is to distinguish cases where the middle bar is shifted to 

the left from those where it is shifted to the right.

Bottom right: 

The minimal shift that is just recognizable decreases over time (1 block = 1 

practice session) indicating learning.

The feedback signal is just right or wrong.



Examples of reinforcement learning: animal conditioning



Previous slide. 

If you put a rat into an environment it will wander around. Suppose that, at some 

place, it discovers a food source hidden below the sand of the surface. 

After a couple of trials it will go straight to the location of the food source which 

implies that it has learned the appropriate sequence of actions in the environment 

to find the food source.



Examples of reinforcement learning: animal conditioning

Foster, Morris, Dayan 2000

Rats learn to find

the hidden platform

(Because they like to 

get out of the cold water)

Time to find platform

10                trials  

Morris Water Maze



Previous slide. 

Actual experiments for location learning are often performed in a Morris water 

maze. In the maze, there are 4 starting points and one target location which is a 

platform hidden (in milky water) just below the water surface. The rat does not like 

to swim in cold water and therefore tries to find the platform.

After a few trials it swims straight to the platform.

Bottom right: the time to reach the platform decreases over trials, indicating 

learning. 



Chess Artificial neural network 

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats  Lee Sedol

Go

Deep reinforcement learning



Previous slide. 

In chess a neural network trained by reinforcement learning discovers winning 

strategies by playing against itself. Similarly, a neural network playing Go against 

itself learns to play at a level so as to beat one of the world champions.

The aim of the class is to arrive at Deep Reinforcement Learning (Deep RL):

Today we start with (standard) RL, in a few weeks we turn to deep networks, and 

in May we will turn to Deep RL.



Deep reinforcement learning

Network for choosing action

2nd output for value of state:

probability to win

input

output

action:
Advance king

Learning by success signal

- change connections

aim:

- choose next action to win

aim for value unit:

- predict value of current 

position



Previous slide. 

At the end of this semester, you will be able to understand the algorithms and 

network structure used to achieve these astonishing performances. Important are 

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we 

can loosely define the value as the probability to win, or the ‘average reward’ that 

you can get starting from this state.

The input is a representation of the present state of the game.

Details will become clear toward the end of the semester; at the moment the aim 

is just to give you a flavor of the high-level concepts.



Deep Reinforcement Learning:

Control a dynamic system (minprojects)

advance push 

left

actions

value

Example: Play Pong (Atari game)



Previous slide. 

In the miniproject on RL, you will train a game. Training will be based on reward: 

successful  behavior  of the simulated agent will give positive rewards. 



Quiz: Rewards in Reinforcement Learning 

[ ] Reinforcement learning is based on rewards

[ ] Reinforcement learning aims at optimal action choices

[ ] In chess, the player gets an external reward after every move

[ ] In table tennis, the player gets a reward when he makes a point

[ ] A dog can learn to do tricks if you give it rewards at appropriate 

moments

[x]

[x]

[ ]

[x]

[x]



Previous slide. Your notes. 
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Reinforcement Learning and SARSA 

Part 2: Elements of Reinforcement Learning

- Examples of Reward-based Learning

- Elements of Reinforcement Learning



Previous slide.

We now start with the formalization of reinforcement learning 



Elements of Reinforcement Learning:

-states 

-actions

-rewards 



Previous slide. 

Reinforcement learning needs states, actions, and rewards.



Elements of Reinforcement Learning:

- discrete states 

- discrete actions 

- sparse rewards



Previous slide.

Note that, for standard formulations of Reinforcement Learning Theories this 

(normally)  implies discretizing space and actions.

We will study continuous-space formulations only next week. 



Elements of Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′

𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎1, 𝑎2 … 𝑎𝐴

a2

- current action: 𝑎𝑡



Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the 

transition (capital R with indices identifying the transition) from the actual reward 

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero 

rewards, except a single ‘goal’ state at the end. 



States in Reinforcement Learning:

- discrete states: 

starting state

arrival state 

𝑠

𝑠′

- current state: 𝑠𝑡

𝑠 𝑠′

state = current configuration/well-defined situation 

= generalized ‘location’ of actor in environment

a



Previous slide.

What are these discrete states?

Loosely speaking a state is the current configuration that uniquely describes the 

momentary situation. We can think of the   generalized ‘location’ of the actor in the 

environment

To get acquainted with this, let us look at an example.



reward if tip above line

From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

States?

 discretize!

Suppose 5 states per dimension,

How many states in total?

[ ] 5

[ ] 25

[ ] 125

[ ] 625

3 actions:        = no torque, 

= torque +1 at elbow,  

= torque -1 at elbow

a1

a2

a3

5x5x5x5=625



Previous slide. 

The aim of the acrobat is to move the tip above the blue line. To achieve this 

torque can be applied at the ‘elbow’ link. The second link is the ‘shoulder’.

There are three possible actions.

But what are the states? How many states do we have?



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

1st episode: long sequence of random actions

400th episode: short sequence of ‘smart’ actions



Previous slide.

An episode finishes if the target is reached. Over time episodes get shorter and 

shorter indicating that the acrobat has discovered (via reinforcement learning) a 

smart sequence of actions so as to reach the target (i.e., move the tip above the 

reference line)



From Book:

Sutton and Barto

Reinforcement Learning: Example Acrobot

after 400 episodes



Previous slide. 

One example of an action sequence, after learning, is shown.



Summary: Elements of Reinforcement Learning

- discrete actions: 

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

𝑎

- current actual reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

There can be MANY states

Often need to discretize first

( later we try to model in continuum)     

𝑎



Previous slide. 

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. For the moment we 

also think of the states as discrete (but next week we will go to continuous state 

space) 



Quiz: Reinforcement Learning for backgammon

From Book:

Sutton and Barto

Game position =

discrete states!

Suppose 2 pieces  per player,

How many states in total?

[ ] 100<n<500

[ ] 500<n<5000

[ ] 5 000<n<50 000

[ ] n>50 000

N>24x24x23x23>23x23x23x23>250 000



Previous slide. 

Backgammon game. There are 24 fields on the board. Players have several 

pieces. Pieces are protected if there are two of the same color on the same field.

To make it simply, we now consider that both players have two pieces each left.

How many  different states are there in total?



Wulfram Gerstner
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Reinforcement Learning and SARSA 

Part 3: One-step horizon (bandit problems)

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step horizon (bandit problems)



Previous slide. 

We start with the simplest discrete example: the game is over and reward is given 

after a single step.



coins

buttons

Slot Machine

3-armed bandid

action=button press

One-step horizon games (bandit)



Previous slide. 

The standard example is a multi-armed bandit, or slot machine: you have to 

choose between a few actions, and once you have pressed the button you can 

just wait and see whether you get reward or not.



One-step horizon games 𝑠

𝑠′

a1

Blackboard1:

Q-valuesQ-value:

Expected reward for

action a starting from s Q(s,a1)

Q(s,a)



Previous slide. 

One of the most central notion in reinforcement learning is the Q-value. 

Q(s,a) has two indices: you start in state s and take action a.

The Q-value Q(s,a) is (an estimate of) the mean expected reward that you will get 

if you take action a starting from state s.



One-step horizon games Blackboard1:

Q-values



Your notes. 



One-step horizon games: Q-value

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:



Previous slide. 

is the probability that you end up in a specific state s’ if you take action 

a1 in state s. 

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a)   is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in 

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1



Optimal policy (greedy)

take action a* with

Q(s,a*)  ≥ Q(s,aj)

other actions

𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)

a*= argmaxa [Q(s,a)]

optimal action:

Suppose all Q-values are known: 

Optimal policy is also called ‘greedy policy’

=6 =2 =5



Previous slide. 

And once you have the Q-values it is easy to choose the optimal action:

Just take the one with maximal Q-value.



One-step horizon games

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

BUT: we normally do not know the Q-values

 estimate by trial and error

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Q(s,a3)



Previous slide. 

The only remaining problem is that we do not know the Q-values, because the 

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times 

– the casino will love this!).



Exercise 1 (from earlier session today)

𝑠

𝑠′

a1 a2 a3
𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑃𝑠→𝑠′
𝑎1

Expected reward 𝑄 𝑠, 𝑎1

Show that empirical averaging over k trials gives an update rule

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

𝑟𝑡

h



Next Lecture at 12h15

Exercise 1 (in class)



Blackboard2:

Exercise 1



Your notes. 



Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) has converged in expectation given (s,a), then 
 𝑄 𝑠, 𝑎 has an expectation value,

(2) 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

(ii) If the learning rate h decreases, 

fluctuations around the empirical

mean   𝑸 𝒔, 𝒂 decrease and the   

empirical mean approaches 𝑸(𝒔, 𝒂)

Proof of (i) will 

come:

Blackboard3

𝐸  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              



Previous slide. 

When evaluating the expectation value given (s,a), the learning rate  drops out since we 

set the left-hand-side to zero. The exact value of h is not relevant, as discussed in the 

theorem. Part (i) of the theorem states that the expectation value of  𝑄 𝑠, 𝑎 is the correct Q-

value. For a quick proof of part (i) see the video. On the blackboard a stronger statement 

was shown.

Convergence in expectation is equivalent to imagining that you start millions of trials with 

the same value  𝑄 𝑠, 𝑎 without any intermediate update. So in that sense it is like a super-

big ‘batch’ of examples.

In practice, we do not have expectations but online updates with fluctuations. It is 

important is that h is small at the end of learning so as to limit the amount of fluctuations. 

Part (ii) states that online mean for small learning rate also goes to  the correct Q-value. 

Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the 

calculation of part (i) apply analogously to the long-term empirical temporal average 

(denoted by angular brackets)

∆  𝑄 𝑠, 𝑎 = h 𝑟𝑡 −  𝑄 𝑠, 𝑎

This equivalence based on linearity is not true for the multi-step horizon that we discuss 

later in this lecture. 



Proof: Convergence in Expectation

After taking action a in state s, we update with

(i) If (1) has converged in expectation, then 
 𝑄 𝑠, 𝑎 has an expectation value,

(2) 

𝑠

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

𝐸  𝑄 𝑠, 𝑎 =  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              

Blackboard3:

Proof of (i)



Your notes. 



Blackboard3

converged in expectation  𝐸(∆  𝑄 𝑠, 𝑎 |s,a)=0

expectation of all

possible futures with 

correct statistical 

weight

we always start in 

(s,a) while the 

system is frozen

Perspective similar to a batch mode: 

update only after (infinitely) many trials that 

all start in (s,a) with the same value  𝑄 𝑠, 𝑎
=

update the expectation over all possibilities 

that may occur in the next time step.

Part (i) of Theorem



Previous slide:
 𝑄 𝑠, 𝑎 denotes the current estimate of the Q-value. Claim: If Q no longer 

changes (in expectation) then it must be the correct Q-value.

There are different views on how to interpret the ‘expectation;:

- Formally from a mathematical point of view: average over all possible outcomes 

of the next time step given (s,a).

- In a simulation this would correspond to the following sampling procedure:

You freeze the value of  𝑄 𝑠, 𝑎 and run MANY times (N to infinity) a test with the 

state-action pair (s,a) as a starting condition. Then you evaluate the resulting 

‘batch update’ averaged across all these examples. If the batch update with 

Millions of Examples is zero, that implies that you have converged to the correct 

value.



Blackboard3
Part (ii) of Theorem:

We work with the online update ∆  𝑄 𝑠, 𝑎 . With finite learning 

rate, the value of   𝑄𝑡 𝑠, 𝑎 fluctuates around a 

mean  𝑄𝑡 𝑠, 𝑎 .

 𝑄𝑡 𝑠, 𝑎

 𝑄𝑡 𝑠, 𝑎 .

Under the hypothesis of the theorem, the mean is 

equal to the ‘correct’ Q-value./



Your notes. (Proof in the Blackboard notes) 



One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known: 

 estimate  𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]       (1)h

Let learning rate h decrease over time 

Iterative algorithm (1) converges in expectation



Previous slide. 

Let us distinguish the ESTIMATE  𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate h : 

In exercise 1, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep h constant for a block of time, and then you decrease it for the next block.

Note: in later lectures I will often use the symbol a instead of h

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: RL1 (continued)

Reinforcement Learning and SARSA 

Objectives for Lecture RL1:

- Reinforcement Learning (RL) is learning by rewards

- Agents and actions, states and rewards

- Convergence in expectation 

- Exploration vs Exploitation

- Bellman equation

- SARSA algorithm

Parts 4-6: Examples of Reward-based Learning 

Reading:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018)

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Silver et al. 2017, Archive

Mastering Chess and Shogi by Self-Play with a

General Reinforcement Learning Algorithm

Chapters: 1.1-1.4;  2.1-2.6;  3.1-3.5;  6.4



Recall: Learning by reward

Learning by reward ‘’

BUT:

Reward is rare:

‘sparse feedback’ after

a long action sequence



Previous slide. 

How does a human learn to play table tennis: How does a child learn to play the 

piano? How does a dog learn to perform tricks?

In all these cases there is no supervisor. No master guides the hand of the 

players during the learning phase. Rather the player ‘discovers’ good movements 

by rather coarse feedback. For example, the ball in table tennis does not land on 

the table as it should. That is bad (negative feedback). The ball has a great spin 

so that the opponent does not get. This is good (positive feedback).

Similarly, it is hard to tell a dog what to do. But if you reinforce the dog’s behavior 

by giving a ‘goodie’ at the moment when it spontaneously performs a nice action, 

then it can learn quite amazing things.

In all these cases it is the ‘reward’ that guides the learning. Rewards can be the 

goodie for the dog, or just the feeling ‘now I did well’ for humans.



Recall: Value is important

Network for choosing action

2nd output for value of state:

probability to win = expected reward

input

output

action:
Advance king

Learning by success signal

- change connections

aim:

- choose next action to win

aim for value unit:

- predict value of current 

position



Previous slide. 

At the end of this semester, you will be able to understand the algorithms and 

network structure used to achieve these astonishing performances. Important are 

two types of outputs.

Left: different output neurons represent different actions.

Right: an additional output neuron represents the value of the present state; we 

can loosely define the value as the probability to win, or the ‘average reward’ that 

you can get starting from this state.

The input is a representation of the present state of the game.

Details will become clear toward the end of the semester; at the moment the aim 

is just to give you a flavor of the high-level concepts.



Recall: Elements of Reinforcement Learning:

- discrete states: 

old state

new state 

𝑠

𝑠′

- Mean rewards for transitions:
𝑅𝑠→𝑠′

𝑎

- current state: 𝑠𝑡

- current reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

- discrete actions: 𝑎1, 𝑎2 … 𝑎𝐴

a2

- current action: 𝑎𝑡



Previous slide.

The elementary step is:

The agent starts in state s.

It takes action a

It arrives in a new state s’

Potentially receiving reward r (during the transition or upon arrival at s’).

Since rewards are stochastic we have to distinguish the mean reward at the 

transition (capital R with indices identifying the transition) from the actual reward 

(lower-case r with index t) that is received at time t on a transition.

Note that in many practical situations most transitions or states have zero 

rewards, except a single ‘goal’ state at the end. 



Recall: Elements of Reinforcement Learning

- Mean reward for transition:

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠, 𝑎, 𝑠 ,

- current actual reward: 𝑟𝑡

𝑠 𝑠′

often most transitions have zero reward

𝑎- Environment with discrete states

- Transitions (potentially stochastic)

are driven by actions       

- Aim: choose good actions

to optimize reward

 Markov Decision Model



Previous slide. 

Conclusion: In all practical situations, there is an enormous number of states.

In many situations we can think of the actions as discrete. 

For the moment we also think of the states as discrete (but next week we will go 

to continuous state space).

Transitions between actions are influenced by action choices.

Transitions can be stochastic.

Actions should be chosen so as to maximize the reward. This setting is also 

known as Markov Decision Problem (MDP).



Recall: Q-value for one-step horizon games/bandit problem

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠→𝑠"
𝑎3

𝑠"

𝑅𝑠→𝑠′
𝑎 = 𝐸 𝑟 𝑠′, 𝑎, 𝑠

Q-value

Expected reward for

action a starting from s

Q(s,a)

Q(s,a3)Q(s,a1) Q(s,a2)

Reminder:

Now we know the Q-values: which action should you choose?

𝑄 𝑠, 𝑎 = 𝐸 𝑟 𝑠, 𝑎

Similarly:



Previous slide. 

is the probability that you end up in a specific state s’ if you take action 

a1 in state s. 

We refer to this sometimes as the ‘branching ratio’ below the ‘actions’.

Q(s,a)   is attached to the branches linking the state s with the actions.

actions are indicated by green boxes; states are indicated by black circles.

The mean reward 𝑅𝑠→𝑠′
𝑎 is defined as the expected reward given that you start in 

state s with action a and end up in state s’ (see Blackboard 1).

Given the branching ratio and the mean rewards, it is easy to calculate the Q-

values (Blackboard 1).

𝑃𝑠→𝑠′
𝑎1



Recall: One-step horizon games (bandit problem)
Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

BUT: we normally do not know the Q-values

 estimate by online update
𝑠

𝑠′

a1 a2 a3

Q(s,a3)Q(s,a1) Q(s,a2)
=6 =2 =5

∆𝑄 𝑠, 𝑎 = h[𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

∆𝑄 𝑠, 𝑎 = 𝛼 [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]

Learning rate: often h , often 𝛼



Previous slide. 

The only remaining problem is that we do not know the Q-values, because the 

casino gives you neither the branching ratio nor the reward scheme.

Hence the only way to find out is by trial and error (that is, by playing many times 

– the casino will love this!).



Recall: Update rule in Expectation (Theorem)

After taking action a in state s, we update with

(i) If the expectation of the update rule (1) given (s,a) 

vanishes, then    𝑄 𝑠, 𝑎 has an expectation

(2) 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

(ii) If the learning rate h decreases, 

fluctuations around the empirical

mean   𝑸 𝒔, 𝒂 decrease and the   

empirical mean approaches 𝑸(𝒔, 𝒂)

𝐸  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              

claim: ‘I can even drop the expectation sign in (2)



Previous slide. 

When evaluating the expectation value given (s,a), the learning rate  drops out since we 

set the left-hand-side to zero. The exact value of h is not relevant, as discussed in the 

theorem. Part (i) of the theorem states that the expectation value of  𝑄 𝑠, 𝑎 is the correct Q-

value. For a quick proof of part (i) see the video. On the blackboard a stronger statement 

was shown. Today we make the statements more precise Convergence in expectation is 

equivalent to imagining that you start millions of trials with the same value  𝑄 𝑠, 𝑎 without 

any intermediate update. So in that sense it is like a super-big ‘batch’ of examples.

In practice, we do not have expectations but online updates with fluctuations. It is 

important is that h is small at the end of learning so as to limit the amount of fluctuations. 

Part (ii) states that online mean for small learning rate also goes to  the correct Q-value. 

Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the 

calculation of part (i) apply analogously to the long-term empirical temporal average 

(denoted by angular brackets)

∆  𝑄 𝑠, 𝑎 = h 𝑟𝑡 −  𝑄 𝑠, 𝑎

This equivalence based on linearity is not true for the multi-step horizon that we discuss 

later in this lecture. 



Part (ii) of Theorem: 

We work with the online update ∆ 𝑸 𝒔, 𝒂 . With finite 

learning rate, the value of   𝑄𝑡 𝑠, 𝑎 fluctuates around

a mean  𝑄𝑡 𝑠, 𝑎 .

 𝑄𝑡 𝑠, 𝑎

 𝑄𝑡 𝑠, 𝑎 .

Claim: Under the hypothesis ∆  𝑄 𝑠, 𝑎 = 0 , the 

mean  𝑸𝒕 𝒔, 𝒂 is equal to the ‘correct’ Q-value.



Your notes. (Proof in the Blackboard notes) 



One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known: 

 estimate  𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]       (1)h

Let learning rate h decrease over time 

Iterative algorithm (1) fluctuates, but ‘makes sense’



Previous slide. 

Let us distinguish the ESTIMATE  𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate h : 

In exercise 1, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep h constant for a block of time, and then you decrease it for the next block.

Note: in later lectures I will often use the symbol a instead of h

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.



Wulfram Gerstner
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Part 3b: Expectation, Batch, and ONLINE rules

- Examples of Reward-based Learning
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- Expectation, batch, and online rules



Previous slide.

Last week we did a first calculation with expectations and I argued that this is 

‘batch-like’. Since the type of calculation is important, but since this comparison 

caused many questions after class, I add a detour. 

All the material in this part is in principle standard material in Machine Learning 

classes, even though I put the accent on aspects that are important for 

Reinforcement Learning.



Detour Machine Learning ReCap:  Online, Batch, Expectation

parameter

Loss

initial 

value

final 

value 𝜃

𝐿 𝜃



Your notes. (Review of gradient Descent)

The set of parameters (also called parameter vector) is generically denoted by 𝜃.

The loss function (error function) is denoted by capital L.

.



Detour Machine Learning ReCap:  Online, Batch, Expectation

b

Loss

b=0
final 

value

x

y f(x)=ax+b

x
x

x
xx

x

Gradient descent in ‘batch mode’



Your notes. (Review of gradient Descent)

The specific parameters of the linear function are a and b. For the drawing of the 

loss function, only one of the two parameters is plotted.

The aim is to fit a set of data points by the linear function. 

Dashed red lines show intermediate update steps.

Note: For the learning rate I will often use the symbol a instead of h



Detour Machine Learning ReCap:  Online, Batch, Expectation

x

y

x
x

x
xx

x

f 𝑥|𝜃 = f 𝑥|𝑎, 𝑏 = 𝑎𝑥 + 𝑏
f(x)=ax+b

∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃

Parameters 𝜃 = 𝑎, 𝑏

∆𝑏 = −𝛼
𝜕

𝜕𝑏
𝐿 𝑎, 𝑏

algo (iterative update) 

𝑏𝑜𝑙𝑑 ← 𝑏

𝑏 = 𝑏𝑜𝑙𝑑 + ∆𝑏

iterate to convergence criteria

analogously for a



Your notes. (Review of gradient Descent)

The set of parameters (also called parameter vector) is generically denoted by 𝜃.
And then the parameters are  specified to be a and b.

Changes of parameters are calculated by gradient descent on the Loss function.



Detour Machine Learning ReCap:  Online, Batch, Expectation

∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃 |𝜃𝑜𝑙𝑑

algo (iterative update) 

𝜃𝑜𝑙𝑑 ← 𝜃

iterate to convergence criteria(1)

CONCLUSION 1,  from rule (1):

if ∆𝜃=0 then

- parameter 𝜽 no longer changes

- (local) minimum at 𝜽𝒐𝒍𝒅

𝜃

𝐿 𝜃

𝜃 = 𝜃𝑜𝑙𝑑 +∆𝜃

Gradient is always evaluated at 𝜃𝑜𝑙𝑑



Your notes. (Review of gradient Descent)

The update rule tells us immediately that the update vanishes at a parameter 

value that has zero gradient. Only minima can be  generically approached by 

gradient descent (not the maxima).



∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃

𝐿 𝜃 𝐿 𝜃 =
𝟏

𝑵
 

𝒌

𝑵

[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼
𝟏

𝑵
 

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

Detour Machine Learning ReCap:  Online, Batch, Expectation

Loss function

loss per data point

Gradient descent (batch)
f 𝑥𝑘|𝜃 = f 𝑥𝑘|𝑎, 𝑏 = 𝑎𝑥𝑘 + 𝑏

Example: 𝑙 =L2 loss, linear model

𝐿 𝜃 =
𝟏

𝑵
 

𝒌

𝑵

𝑎𝑥𝑘 + 𝑏 − 𝑥𝑘
𝟐

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦)]

𝐿 𝜃 = 𝐄[𝑙 f x|𝜃 , y ]



Your notes. (Review of gradient Descent)

The loss function is the expectation across all possible pairs (x,y) with the 

appropriate statistical weight. The loss per data point is denote by a small 

character l .

Often a large batch of N data points is taken instead. These N data points must 

be representative for the statistical distribution p(x,y).

The example shows the linear function that we considered earlier.



∆𝜃 = −𝛼
𝑑

𝑑𝜃
𝐿 𝜃

𝐿 𝜃 = 𝐄[𝑙 f x|𝜃 , y ] 𝐿 𝜃 =
𝟏

𝑵
 

𝒌

𝑵

[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼
𝟏

𝑵
 

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

Detour Machine Learning ReCap:  Online, Batch, Expectation
Loss function

loss per data point

Gradient descent (batch)

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
[𝑙 𝑓(𝑥|𝜃 , 𝑦)]]

𝐿 𝜃 = ∫ 𝑑𝑥𝑑𝑦 𝑝 𝑥, 𝑦 𝑙 f x|𝜃 , y

∆𝜃 = −𝛼∫ 𝒅𝒙𝒅𝒚 𝒑 𝒙, 𝒚 [
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]



Your notes. (Review of gradient Descent)

On the left:

The loss function is the expectation across all possible pairs (x,y) with the 

appropriate statistical weight. The gradient operation is linear and can be 

exchanged with the expectation (which is also a linear operation).

On the right: 

The same calculation with a large batch of N data points.

The average of N in the gradient is analogous to the expectation (red boxes).



Conclusion: Expectation = Batch size N to infinity

∆𝜃 = −𝛼
𝟏

𝑵
 

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]

x

x
x

x
xx

x

y

∆𝜃 = −𝛼∫ 𝒅𝒙𝒅𝒚 𝒑 𝒙, 𝒚 [
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]

choose N data points using the 

appropriate statistical weight

𝑬 … = lim
𝑁→∞

𝟏

𝑵
 

𝒌

𝑵

[… ]

‘statistical

formulation’

with ‘expectations’



Your notes. (Review of gradient Descent)

We said that the average of N in the gradient is ‘analogous’ to the expectation.

For the limit N to infinity batch and expectation are again identical.

The idea of the density p(x,y) is shown for the same example as before.



Conclusion: Expectation = Batch size N to infinity

∆𝜃 = −𝛼
𝟏

𝑵
 

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

∆𝜃 = −𝛼 𝑬[
𝑑

𝑑𝜃
𝑙 𝑓(𝑥|𝜃 , 𝑦]

𝑬 … = lim
𝑁→∞

𝟏

𝑵
 

𝒌

𝑵

[… ]

CONCLUSION 1 from rule (1):

if ∆𝜃=0 (with N to infinity) then

- 𝜽 doesn’t  change

- (local) minimum at 𝜽𝒐𝒍𝒅

- 𝜽𝒐𝒍𝒅=𝜽𝒐𝒑𝒕𝒊𝒎 in ‘statistical’ sense

𝜃



Your notes. (Review of gradient Descent)

A repetition of what we have seen before:

If the update step in the batch rule (N to infinity) vanishes, then we know that we 

are at a minimum of the loss function. 

And this is equivalent to saying:  

If the update step of the true loss function with the expectation sign vanishes, 

then we know that we are at a minimum of the loss function. 



∆𝜃 = −𝛼
𝟏

𝑵
 

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]

Detour Machine Learning ReCap:  Batch versus ‘Online’

∆𝜃 = −𝛼
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]𝜃=𝜃𝑜𝑙𝑑

algo (iterative update) 

𝜃𝑜𝑙𝑑 ← 𝜃

iterate to convergence criteria

𝜃 = 𝜃𝑜𝑙𝑑 +∆𝜃

Online:

Update after each data point

𝜽𝒐𝒑𝒕𝒊𝒎 𝜃

𝐿 𝜃 jitters forever!



Your notes. (Review of gradient Descent)

An online rule means: drop the statistical averaging.

Here it means: drop the sum over data points.

As a result the parameter vector  𝜃
can change after each data point!

And this is true even if we are already at the exact minimum of the true loss. The 

next data point might for example be an outlier and the parameter vector changes 

again. Therefore the gradient descent solution always jitters.

The size of the jitter depends on the learning rate (here called alpha).



Detour Machine Learning ReCap:  Batch, ‘Online’, Expectation

∆𝜃 = −𝛼
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]𝜃=𝜃𝑜𝑙𝑑

Online:

Update after each data point

𝐸[∆𝜃] = −𝛼𝐸[
𝑑

𝑑𝜃
𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘 ]𝜃=𝜃𝑜𝑙𝑑

Expected Online Update (𝜃 = 𝜃𝑜𝑙𝑑 frozen):

Conclusion: 

Expected update of the online rule is identical 

to batch update  with infinite data 

Conclusion: 
- Online update has jitter

BUT

- Expected update has no jitter



Your notes. (Review of gradient Descent)

We can ask:

What would be the EXPECTATION of the update step.

Suppose we  momentarily have the parameter 𝜃 = 𝜃𝑜𝑙𝑑.

Then we ask what is the EXPECTED change at this location.

Comparison with the batch rule shows that the expected update of the online rule 

is identical to batch update  with infinite data evaluated at 𝜃 = 𝜃𝑜𝑙𝑑.

THIS IMPLIES:

If by chance 𝜽 = 𝜽𝒐𝒍𝒅 is the exact minimum, the expected update is zero; 

but the ACTUAL update can be nonzero!

This is also summarized in the next slide and the quiz.



CONCLUSION 1 from rule (1):

if ∆𝜃=0 (with N to infinity) then

- 𝜽 doesn’t  change

- (local) minimum at 𝜽𝒐𝒍𝒅

- 𝜽𝒐𝒍𝒅=𝜽𝒐𝒑𝒕𝒊𝒎

𝜃

Batch rule with N to infinity Online Rule

jitters forever!

𝜃

CONCLUSION 2:
- 𝜽 jitters forever. BUT:

- if by chance 𝜽𝒐𝒍𝒅 such that  

𝑬(∆𝜃)=0 then

(local) minimum at 𝜽𝒐𝒍𝒅 = 𝜽𝒐𝒑𝒕𝒊𝒎

temporal mean is

SOMETIEMS optimal

𝜽𝒐𝒑𝒕𝒊𝒎



Previous slide/next slide. Summary slides:

If the expected update is zero [i.e., 𝑬(∆𝜃)=0 ] for a given set of parameter 𝜃 = 𝜽𝒐𝒍𝒅, then 

𝜃 is a locally optimal parameter, even for the online rule:

𝜃 = 𝜽𝒐𝒍𝒅= 𝜽𝒐𝒑𝒕𝒊𝒎

There is no statement how we would find this parameter 𝜃 = 𝜽𝒐𝒑𝒕𝒊𝒎

A completely different statement concerns the mean of the jittering parameter 𝜽 .

If the update steps are symmetric, then the mean of the parameter 𝜃 is the optimal one: 
𝜃 = 𝜽𝒐𝒑𝒕𝒊𝒎

However, if the update steps are asymmetric, then the mean 𝜃 of the parameter 𝜃 is 

shifted compared to the optimal one (next slide). 

For gradient descent on a loss function we recognize the asymmetry in loss curve. 

However (even in cases where we do not have a loss function) what really counts is 

whether the update steps are symmetric or not:

Suppose the current parameter is 𝜃= 𝜽𝒐𝒑𝒕𝒊𝒎+𝜖 where  is small, i.e. close to the optimum

Symmetry is guaranteed if update steps are linear Δ𝜃= 𝛼𝜖 with small constant 𝛼.



𝜃

Batch rule with N to infinity Online Rule

𝜃

Asymetric updates: 

temporal mean is not optimal

CONCLUSION 1 from rule (1):

if ∆𝜃=0 (with N to infinity) then

- 𝜽 doesn’t  change

- (local) minimum at 𝜽𝒐𝒍𝒅

- 𝜽𝒐𝒍𝒅=𝜽𝒐𝒑𝒕𝒊𝒎

CONCLUSION 2:
- 𝜽 jitters forever. BUT:

- if by chance 𝜽𝒐𝒍𝒅 such that  

𝑬(∆𝜃)=0 then

(local) minimum at 𝜽𝒐𝒍𝒅 = 𝜽𝒐𝒑𝒕𝒊𝒎



Quiz: Expectation, Batch, Online (Recap of ML)

[ ] With a batch rule and small learning rate, I sometimes reach

a local minimum without remaining parameter jitter. 

[ ] With a batch rule at a local minimum I never have any remaining 

parameter jitter

[ ] With an online rule at a local minimum I never have any remaining

parameter jitter

[ ] With an online rule at a local minimum the expectation of the 

online update step vanishes.

[ ] The expectation of the online update step is equivalent to 

a very large batch (N to infinity)

[ ] With an online rule jittering round the minimum, the temporal mean is

guaranteed  to be at the location of the minimum

[x]

[x]

[  ]

[x]

[x]

[ ]
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End of Detour:

Apply to Q-values in  the Bandit problem. 

ML: parameters are called 𝜃

Function fitting: parameters are a and b

Bandit problem: parameters are Q(s,a)



Recall: Update rule in Expectation (weak version)

After taking action a in state s, we update with

(i) If the expectation (over s’, r) of the update rule (1) 

given (s,a)  vanishes, then  𝑄 𝑠, 𝑎 has an expectation 

value,

(2) 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

(ii) If the learning rate h decreases, 

fluctuations around the empirical

mean   𝑸 𝒔, 𝒂 decrease and the   

empirical mean approaches 𝑸(𝒔, 𝒂)

𝐸  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              



Previous slide. 

When evaluating the expectation value given (s,a), the learning rate  drops out since we 

set the left-hand-side to zero. The exact value of h is not relevant, as discussed in the 

theorem. Part (i) of the theorem states that the expectation value of  𝑄 𝑠, 𝑎 is the correct Q-

value. For a quick proof of part (i) see the video. On the blackboard a stronger statement 

was shown.

Convergence in expectation is equivalent to imagining that you start millions of trials with 

the same value  𝑄 𝑠, 𝑎 without any intermediate update. So in that sense it is like a super-

big ‘batch’ of examples.

In practice, we do not have expectations but online updates with fluctuations. It is 

important  that the learning rate h is small at the end of learning so as to limit the amount 

of fluctuations. Part (ii) states that online mean for small learning rate also goes to  the 

correct Q-value. 

Indeed, since the equations are linear (for the bandit problem = 1-step horizon), the 

calculation of part (i) apply analogously to the long-term empirical temporal average 

(denoted by angular brackets) ∆  𝑄 𝑠, 𝑎 = h 𝑟𝑡 −  𝑄 𝑠, 𝑎

This equivalence based on linearity is not true for the multi-step horizon that we discuss 

later in this lecture. 



Recall: Proof for strong version (blackboard last week)

After taking action a in state s, we update with

(i) If the expectation of the update rule (1) given (s,a) 

vanishes, then    𝑄 𝑠, 𝑎 has an expectation

(2) 

𝑠

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

h

𝐸  𝑄 𝑠, 𝑎 =  𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 𝑅𝑠→𝑠′

𝑎 = 𝑄(𝑠, 𝑎)

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]              (1)              

‘I can even drop the expectation sign in the results’

If updates  

then  𝑄 𝑠, 𝑎 is the correctt solution.

𝐸(∆  𝑄 𝑠, 𝑎 |s,a)=0
′  𝑄 𝑠, 𝑎 takes

role of 𝜽𝒐𝒍𝒅 ′



Your notes. 

When I loosely say: ‘converged in expectation’ then I simply mean that the 

expectation of the update rule vanishes.

So the interpretation is:

if by chance we found a parameter  𝑄 𝑠, 𝑎
that fulfills

then we  know that  𝑄 𝑠, 𝑎 is correct.

The theorem does not say how we would find it: we do not know whether it is 

stable under the online update algorithm. 

𝐸(∆  𝑄 𝑠, 𝑎 |s,a)=0



Expectation of online rule=0  𝐸(∆  𝑄 𝑠, 𝑎 |s,a)=0

expectation of all

possible futures with 

correct statistical weight

we always start in (s,a) 

while the system is 

frozen; 

  𝑄 𝑠, 𝑎 = 𝑄𝑜𝑙𝑑 frozen

Update using expectation over all possibilities 

that may occur in the next time step.

= Perspective similar to a batch mode: 
update only after (infinitely) many samples = trials 

that all start in (s,a) with the same frozen value 𝑄𝑜𝑙𝑑

Part (i) of Theorem (strong version)

𝐸(∆  𝑄 𝑠, 𝑎 |s,a)= h[𝐸 𝑟𝑡 − 𝑄𝑜𝑙𝑑] = lim
𝑁

1

𝑁
 𝑘=1

𝑁 h[𝑟𝑡 − 𝑄𝑜𝑙𝑑]



Previous slide:
 𝑄 𝑠, 𝑎 denotes the current estimate of the Q-value. Claim: If Q no longer 

changes (in expectation) then it must be the correct Q-value.

There are different views on how to interpret the ‘expectation;:

- Formally from a mathematical point of view: average over all possible outcomes 

of the next time step given (s,a).

- In a simulation this would correspond to the following sampling procedure:

You freeze the value of  𝑄 𝑠, 𝑎 and run MANY times (N to infinity) a test with the 

state-action pair (s,a) as a starting condition. Then you evaluate the resulting 

‘batch update’ averaged across all these examples. If the batch update with 

Millions of Examples is zero, that implies that you have converged to the correct 

value.



Blackboard3
Part (ii) of Theorem: 

We work with the online update ∆ 𝑸 𝒔, 𝒂 . With finite 

learning rate, the value of   𝑄𝑡 𝑠, 𝑎 fluctuates around

a mean  𝑄𝑡 𝑠, 𝑎 .

 𝑄𝑡 𝑠, 𝑎

 𝑄𝑡 𝑠, 𝑎 .

Claim: Under the hypothesis ∆  𝑄 𝑠, 𝑎 = 0 , the 

mean  𝑸𝒕 𝒔, 𝒂 is equal to the ‘correct’ Q-value.



Your notes. (Proof in the Blackboard notes) 



Part (ii) of Theorem:

Claim: Under the hypothesis ∆  𝑄 𝑠, 𝑎 = 0 , the 

temporal mean  𝑸𝒕 𝒔, 𝒂 with online updating is 

equal to the ‘correct’ Q-value Q(s,a).

∆  𝑄 𝑠, 𝑎 = h[𝑟𝑡 −  𝑄𝑡 𝑠, 𝑎 ]             (1)              

Proof:

∆  𝑄 𝑠, 𝑎 = h 𝑟𝑡 −  𝑄𝑡 𝑠, 𝑎

0 = 𝑟𝑡 −  𝑄𝑡 𝑠, 𝑎

= 0

𝑟𝑡 =Q(s,a)  by definition of Q-values



Your notes. (Proof in the Blackboard notes) 



One-step horizon: summary

Q-value = expected reward for state-action pair

If Q-value is known, choice of action is simple

 take action with highest Q-value

If Q-value not known: 

 estimate  𝑄 by trial and error

 update with rule

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]       (1)h

Let learning rate h decrease over time 

- Iterative algorithm (1) always fluctuates for finite h

- The expectation of the update step is ‘good’



Previous slide. 

Let us distinguish the ESTIMATE  𝑄 𝑠, 𝑎 from the real Q-value 𝑄(𝑠, 𝑎)

The update rule can be interpreted as follows: 

if the actual reward is larger than (my estimate of) the expected reward, then I 

should increase (a little bit) my expectations. 

The learning rate h : 

In exercise 1, we found a rather specific scheme for how to reduce the learning 

rate over time. But many other schemes also work in practice. For example you 

keep h constant for a block of time, and then you decrease it for the next block.

Note: I will often use the symbol a instead of h

Both symbols indicate what is called the ‘learning rate’ in Deep Learning.
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Previous slide.

To estimate the Q-values you have to play all the different actions several times. 

However, if you know the Q-values you should only play the best action. 



Problem:  correct Q values not known

(since reward probabilities and

branching probabilities unknown)

Exploration versus exploitation                            

Take action which looks 

optimal, so as to 

maximize reward

Explore so as to

estimate reward 

probababities

Exploration – Exploitation dilemma 𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

Ideal: take action with maximal 𝑄 𝑠, 𝑎

 𝑄 𝑠, 𝑎1



Previous slide.

Since Q-values are not known, you are always in the situation of an exploration-

exploitation dilemma. 

Note: All estimates of Q will be empirical estimates. Here in this and the next slide 

I still write Q-hat for the empirical average. However, later, I simplify the notation 

and write for the empirical estimate Q(s,a) without the hat whenever the meaning  

is implicitly clear.



greedy makes you stuck:

Example

a1 a2

s s=state

a2 action

s’=new state

Q(s,a1)

rt=5.5

Assume that you initialize all Q values with zero; set      =0.2 (constant)

update

Trial 1: you choose action a1, you get rt=5.5  𝑄 𝑠, 𝑎1 =1.1

Trial 2: you choose action a2, you get rt=4.0

Trial 3 – 4: continue ‘greedy’:  you continue with action 1

rt=4rt=0

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h
h

𝑃𝑠→𝑠′
𝑎1 = 1

2
𝑃𝑠→𝑠3

𝑎2 = 3
4

rt=1    actual reward
𝑠2

 𝑄 𝑠, 𝑎2 =0.8

BUT: the expected reward is larger for action 2.Q(s,a)= 

'

''

s

a
ss

a
ss RP

𝑠1 𝑠3

^

^^

^

^



Given the outcomes of the first two trials, action a1 looks better.

You can check that whatever the outcome in trial 3 (even for reward=0!), the 

estimated Q-value of action a1 is still higher than that of action a2!



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

greedy strategy:

- take action a* which looks best

Q(s,a*) ≥ Q(s,aj)   for all j

Problem: correct Q values not known

Exploration and Exploitation

ATTENTION:

with ‘greedy’ you may get

stuck with a sub-optimal strategy

(see Exercise!)



Previous slide.

If you know the correct Q-values, the best choice would be to choose the action 

with maximal Q-value (called ‘greedy’ action).  But since you don’t know the Q-

values it is risky to choose the greedy action because you may get stuck with a 

suboptimal  choice.

In (almost all) applications of reinforcement learning we work with estimated Q-

values.

Previously we used a hat to distinguish the ESTIMATED  𝑄 𝑠, 𝑎 from the real Q-

value 𝑄(𝑠, 𝑎). However, in the following I will write the estimated Q-values without 

the hat. Nearly always Q means estimated Q.



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

greedy strategy:

- take action a* which looks best

Q(s,a*) ≥ Q(s,aj) for all j

Problem: correct Q values not known

-greedy strategy:

- take action a* which looks best

with prob



1P

Optimistic greedy:

initialize with Q values that are too big

Softmax strategy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a








Exploration and Exploitation: practical approach

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

hats have been dropped!



Previous slide.

Softer versions of greedy allow you to choose occasionally an action which looks 

suboptimal, but which allows you to further explore the Q-values of other options.

Epsilon-greedy and softmax are examples following this idea. 

Note that ‘softmax’ is a function that one also  encounters in multiclass tasks with 

1-hot coding (see course of ‘machine learning’; also later lecture on deep 

learning)

A radically different approach is optimistic greedy. If you initialize all Q-values at 

the same value, but clearly too high (compared to maximal reward that you can 

get in the scheme), then the Q-value of action a1 decreases initially each time 

you play a1, which in turn favors other actions that you have not yet played.



a1 a10

s

s’

R1 R10

Exploration and Exploitation: practical approach

Example: 10-armed bandit

with fluctuating reward

in each action, actual rewards

fluctuate around a mean

Rk= 𝑅
𝑠→𝑠′
𝑎𝑘

Epsilon-greedy: simulation

Optimal action

=0.1
=0.01
=0

average reward

book: Sutton and Barto

=0.1

=0



Previous slide. 

Computer simulation of a situation where actual rewards r fluctuate around the 

mean reward R. There are 10 different actions a1, …, a10 each with a different 

mean reward R1, …, R10.

There exist two different ways to evaluate the performance.

Top: what is the average reward that you get by playing epsilon-greedy?

Bottom: what is the  fraction of times that you play the optimal action, by playing 

epsilon-greedy.

Three different values of epsilon are used. 



Sutton and Barto, ch. 2

Exploration and Exploitation: practical approach

Epsilon-greedy, combined with iterative update of Q-values

learning rate 

Sutton and Barto call R what I call rt



Previous slide.

This is the style of pseudo-code that we will see a lot over the next few weeks. It is taken from 

the book of Sutton and Barto (MIT Press, 2018); Sutton and Barto made a pdf online available.

Q(a) is the Q-value for action a. Since we have always the same starting state in which we have 

to make our choice of action, we can suppress the index of the state s. Q(a) = Q(s_{start},a).

N(a) is a counter of how many times the agent has taken action a.

In this specific example the learning rate eta is the inverse of the count N(a) (see earlier 

exercise); but in the more general setting we would remove the counter and just use some 

heuristic reduction scheme for eta.

Note that in class we define (1-epsilon) as the probability of taking the ‘best’ action 

corresponding to argmax Q and epsilon is then distributed over the OTHER actions. Sutton and 

Barto distribute epsilon over ALL actions, including the ‘best’.

Thus for a total choice of 3 actions, Sutton and Barto have a probability of epsilon/3 for the 

other actions (and with the definition in class it would be epsilon/2).



Quiz: Exploration – Exploitation dilemma 

[ ] With a greedy policy the agent uses the best possible action

[ ] Using an epsilon-greedy method with epsilon = 0.1 

means that, even after convergence of Q-values,

in about 10 percent of cases a suboptimal action is chosen.

[ ] If the rewards in the system are between 0 and 1 and Q-values

are initialized with Q=2, then each action is played at least 

5 times before exploitation starts.

(exploitation starts when you no longer choose the wrong action)

We use an iterative method and update  Q-values with eta=0.1

[ ]

[x]

[x]



Previous slide.

Here we define as in class  (1-epsilon) as the probability of taking the ‘best’ action 

corresponding to argmax Q and epsilon is then distributed over the OTHER 

actions. 



Quiz: Exploration – Exploitation with Softmax policy

[ ] Suppose we have 3 possible actions 𝑎1, 𝑎2 , 𝑎3 and use the 

softmax policy. Is the following claim true?

For 𝑄(𝑎1) = 4, 𝑄(𝑎2) = 1, 𝑄(𝑎3) = 0 the preference 

for action 𝑎1 is more pronounced 

than for 𝑄(𝑎1) = 34, 𝑄(𝑎2) = 31, 𝑄(𝑎3) = 30.

Softmax policy: take action a’ with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a








[no], 

𝑃(𝑎1) =
exp[𝛽𝑄 𝑎1 ]

 𝑘 exp[𝛽𝑄 𝑎𝑘 ]
=

1

1 +  𝑘>1 exp[𝛽(𝑄 𝑎𝑘 − 𝑄 𝑎1) ]

[ ]

 only differences of Q-values matter



Quiz: Exploration – Exploitation with Softmax policy

1. [ ] if we use softmax with beta = 10,  then, after 100 steps,

action 2 is chosen almost always 

2. [ ] if we use softmax with beta = 0.1, then, after 100 steps 

action 2 is taken about twice as often as action 1.

All Q values are initialized with the same value Q=0.1

Rewards in the system are     r =0.5 for action 1 (always)

and r=1.0 for action 2  (always)

Softmax policy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a







[no], with beta=0.1, exp(beta*Q)=1+…

both action chosen with about the same prob.

We use an iterative method and update Q-values with eta=0.1

[yes], since beta[Q(a2)-Q(a1)]=5



Your notes (Quiz not given in class). 

Softmax policy: take action a’ 

with prob exp[ ( ')]
( ')

exp[ ( )]
a

Q a
P a

Q a







[no], with beta=0.1, exp(beta*Q)=1+…

both action chosen with about the same prob.

[yes], since beta[Q(a2)-Q(a1)]=5

Use that exp(5) is a big number!



Exploration and Exploitation: Summary

- If we know the Q-values we can exploit our knowledge

- Exploitation = action which is best = argmax Q(a)

- But we never know the Q-values for sure

- We need to estimate the Q-values by playing the game

- Explore possibilities, transitions, outcomes, reward

For complex problems, there is no perfect trade-off between

exploration and exploitation 

148

Now Exercise 1*  - next lecture at 14h15
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Previous slide.

So far our Q-values were limited to situations with a 1-step horizon. Now we will 

get more general. 



Multistep horizon
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

𝜋 𝑠, 𝑎Policy

Examples of policy:

-epsilon-greedy

-softmax

𝑃𝑠→𝑠′
𝑎

probability to choose 

action a in state s

Stochasticity 

probability to end in state s’
taking action a in state s

𝜋 𝑠, 𝑎1

1= 𝑎′ 𝜋 𝑠, 𝑎′

𝜋 𝑠′, 𝑎3

𝑃𝑠→𝑠′
𝑎1

𝑃𝑠′→𝑠"
𝑎3

Q(s,a3)



Previous slide.

After a first action that leads to state s’ starting from state s , the agent can now 

take a second action starting from s’.

Note that there are two different types of branching ratio:

describes the probability that the agent uses action a1 when it is in 

state s – based on the agent’s policy (such as epsilon-greedy)

describes as before the probability that the agent arrives in state s’ 

given that it chooses action a1 in state s.

As before we are interested in the expected reward. The Q value Q(s,a) describes 

the total accumulated reward the agent can get starting in state s with action a.

Next slide: rewards that are n steps away are discounted with a factor 𝛾𝒏

𝑃𝑠→𝑠′
𝑎1

𝜋 𝑠, 𝑎1



Total expected (discounted) reward
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝑄 𝑠, 𝑎1

Q(s,a)  =

Starting in state s with action a

=  𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3  + ⋯

Discount factor: 𝛾 <1
-important for recurrent state transition graphs!

-avoids blow-up of summation

-gives less weight to reward in far future

= 𝐸[𝑟𝑡 + 𝛾 𝑟𝑡+1+  𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3 + … |𝑠, 𝑎)]



Previous slide.

Angular brackets denote expectation (or averages over many trials, always with 

the same policy p(s,a) and all starting in (s,a).

Red-font lower-case r indicates the reward collected over multiple time steps in 

one single episode, starting in state s with action a.

Expectation means that we have to take the average over all possible future 

paths giving each path its correct probabilistic weight.

The probabilistic weight includes the fixed policy  p(s,a) 

as well as  the branching ratio P(s,a)



Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Blackboard4:

Bellman eq.



Space for calculations. 



Bellman equation with policy p
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)

Bellman equation =

value consistency of 

neighboring states

Remark:

Sometimes Bellman equation is written

for greedy policy: 𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 



Previous slide. 

The Bellman equation relates the Q-value for state s and action a with the Q-

values of the neighboring states. 

Neighboring means reachable in a single step.

Note that  the two different types of branching ratio both enter the equation.

Bottom: in the case of a greedy policy, the Bellman equation simplifies



Bellman equation (for optimal actions)
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a1)

Q(s’,a’)

for greedy policy: 

𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = argmax
𝑎′

𝑄(𝑠, 𝑎′)with action 

𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 [ 𝑅𝑠→𝑠′

𝑎 +𝛾𝑚𝑎𝑥𝑎′𝑄(𝑠′𝑎′)]



Previous slide.

For a greedy policy, the sum over actions disappears from the Bellman equation 

and is replaced by the max-sign. 



Quiz: Bellman equation with policy p
𝑠

𝑠′

a a2 a3

𝑃𝑠→𝑠′
𝑎

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p
Q(s,a)

Q(s’,a’)
[ ] The Bellman equation is linear

in the variables Q(s’a’)

[ ] The set of variables Q(s’,a’) that solve

the Bellman equation is unique and 

does not depend on the policy 

[ ]

[ ]



Your comments. 
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Previous slide.

We not turn to the first practical algorithm, called SARSA. This is an algorithm that 

is widely used in the field of reinforcement learning. 



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

Review: Iterative update of Q-values

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 − 𝑄 𝑠, 𝑎 ]h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑟𝑡



Previous slide.

Reminder: for the 1-step horizon scenario we found that we could calculate the Q-

values iteratively. 

We increase the Q-value by a small amount (with learning rate 0<eta<<1) if the 

reward observed at time t is larger than our current estimate of Q.

And we decrease the Q-value by a small amount if the reward observed at time t 

is smaller than our current estimate of Q.

Iterative updates with one data point at a time are also called ‘online algorithms’. 

Thus our update rule is an online algorithm for the estimation of Q-values.



a1 a2

s

s’

Q(s,a1)

a
ssR '<r> =

Q(s,a2)

Iterative update of Q-values for multistep environments

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 −  𝑄 𝑠, 𝑎 ]   h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  Q-values not given 

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

?∆  𝑄 𝑠, 𝑎 =

𝑟𝑡



Previous slide.

The question  now is: can we have a similar iterative update scheme also for the 

multi-step horizon?



Blackboard5:

SARSA update

𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)



Your notes. 



Iterative update of Q-values for multistep environments

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾  𝑄 𝑠′, 𝑎′ −  𝑄 𝑠, 𝑎 ]h

Solution:  iterative update 

while playing with policy 𝜋 𝑠, 𝑎

Problem:  

- Q-values not given

- branching probabilities not given

- reward probabilities not given 

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

Q(s,a1)

Q(s’,a’)

Bellman equation:

  













'

'' ),(),(),(
s a

a

ss

a

ss asQasRPasQ p

a1 a2 a3



Previous slide. 

Even for the case of the multi-step horizon, we can estimate the Q-values by an 

interative update: 

The Q-values Q(s,a) is increased by a small amount if the sum of  (reward 

observed at time t  plus discounted Q-value in the next step)  is larger than our 

current estimate of Q(s,a).

This iterative update gives rise to an online algorithm.

NOTE: in the following we always work with empirical estimates, and drop the 

‘hat’ of the variable Q. 



SARSA vs. Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3
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Q(s,a1)

Q(s’,a’)

Bellman equation 

= consistency of Q-values 

across neighboring states

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾  𝑄 𝑠′, 𝑎′ −  𝑄 𝑠, 𝑎 ]h

SARSA update rule 

= make Q-values of neighboring states

more consistent



Previous slide.

The Bellman equation summarizes the consistency condition: 

The (average) rewards must explain the difference between Q(s,a) and  Q(s’,a’) 

averaged over all s’ and a’.

Or equivalently:

Q(s,a) must be explained by the (average) reward in the next step and the 

discounted Q-value in the next state.

The iterative update formula implies that Q(s,a) needs to be adapted so  the 

current reward explains the difference between Q(s,a) and Q(s’,a’).

An equivalent form of writing the update is:

This form highlights the similarity to the case of the update rule in the cae of the 

one-step horizon. 

DQ(s,a)=h  [r-(Q(s,a) -  Q(s’,a’))]



SARSA algorithm
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]

1) being in state s

and having chosen action  a

[according to policy              ]

2) Observe reward r 

and next state   s’

3) Choose action   a’ in state s’

[according to policy ]

4) Update with SARSA update rule

5) set: s  s’;   a  a’

6)  Goto 1)

Initialise Q values

Start from initial state s

𝑟𝑡

Stop when all Q-values have converged

𝜋 𝑠, 𝑎

𝜋 𝑠, 𝑎



Previous slide.

The update rule gives immediately rise to an online algorithm. You play the game. 

While you run through one of the episodes you observe the state s, choose action 

a, observe reward r, observe next state s’ and choose next action a’. At this point 

in time (and not earlier) you have all the information to update the Q-value Q(s,a).

The name SARSA comes from this sequence state-action-reward-state-action. 



SARSA algorithm.

[ ] in SARSA, updates are applied after each move.

[ ] in SARSA, the agent updates the Q-value Q(s(t),a(t))

related to the current state s(t)

[ ] in SARSA, the agent updates the Q-value Q(s(t-1),a(t-1))

related to the previous state, once it has chosen a(t)

[ ] in SARSA, the agent moves in the environment 

using the policy

[ ] SARSA is an online algorithm

We have initialized SARSA and played for n>2 steps. 

Is the following true for the next steps?  

𝜋 𝑠, 𝑎

[x]

[  ]

[x]

[x]

[x]

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h



Previous slide.



Variant A: SARSA is consistent w. Bellman equation

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑃𝑠→𝑠′
𝑎

We proof the following: 
Suppose that we have found a set of Q-values.

We keep them frozen while evaluating expectation: 

IFF 𝐸[∆𝑄 𝑠, 𝑎 ] = 0, then the Q-values solve the 

Bellman equation. 

Notes:

- Expectation is taken for fixed Q-values

and hence for fixed policy (consider Q-values as 𝜽𝒐𝒍𝒅)

- Expectation E[∆𝑄 𝑠, 𝑎 ] is taken over all possible 

paths starting in (s,a). I call this ‘batch-like’.

- The length of the path is given by the needs

of the update equation: Here from (s,a) to (r,s’,a’)

- Look at state-action-diagram to keep track of terms

Blackboard 6A:

SARSA



Your comments. 



Variant A: SARSA is consistent w. Bellman equation

Look at graph to take expectations: 

- if algo is on a branch (s,a), all remaining expectations are “given s and a”

𝑠

𝑠′

a

𝑠"

a’

Q(s,a)

Q(s’,a’)

𝑟𝑡

𝑃𝑠→𝑠′
𝑎

p(s’,a’)

𝐸[∆𝑄 𝑠, 𝑎 ] = 𝐸[𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]=0h

Blackboard 6A:

SARSA
We have proven the following: 
Suppose that we have found a set of Q-values.

We keep them frozen while evaluating expectation.  

IFF 𝐸[∆𝑄 𝑠, 𝑎 ] = 0, then the Q-values solve the 

Bellman equation. 

 

𝑠′

𝑃𝑠→𝑠′
𝑎 + 𝛾  

𝑠′

𝑃𝑠→𝑠′
𝑎  

𝑎′

𝜋(𝑠′, 𝑎′) 𝑄(𝑠′, 𝑎′) = 𝑄 𝑠, 𝑎𝑅𝑠→𝑠′
𝑎



Previous slide.

This is version A of the theorem. In the proof, we exploit the condition:

In order to take the expectations, we look at graph: 

- if in the evaluation we are in state s’, all remaining expectations are “given s’”

- if we are on a branch (s,a), all remaining exp. are “given s and a”.

We exploit that all Q-values and the policy are fixed while we evaluate the expectation. 

Hence E[Q(s,a)] = Q(s,a).  

Note that the proof works in both direction. If the Q-values are those of the Bellman 

equation, the expected SARSA update step vanishes. And if the expected SARSA 

update step is zero, then the Q-values correspond to the Bellman equation. Both 

direction work under the assumption of a fixed policy.

The stronger theorem (with fluctuations, version B) is sketched in the appendix (and 

video).

𝐸[∆𝑄 𝑠, 𝑎 |𝑠, 𝑎] = 0



Additional Notes: This  weaker  theorem (variant A that corresponds to the one on the  

previous slide)  takes expectations for FIXED Q-values. We can interpret these 

expectations as the following ‘batch’ computation

We assume a fixed policy (i.e., under the assumption of a fixed set of  Q-values) and a 

‘batch version’ of SARSA. Batch-SARSA means that in order to evaluate 

we use a large number of  starts from the same value (s,a) each time running one step  

up to (s’,a’) [note that this gives different (s’,a’). Once the number of starts is large 

enough to get a full sample of the statistics we update Q(s,a).  If the updates with the 

batch-SARSA do not lead to a change of Q values (for all state-action pairs), then this 

means that batch-SARSA has converged to the Bellman equation for this fixed policy. 

(That was the theorem in the main text).

Batch-SARSA is a computational implementation of the way many statistical 

convergence proofs work: you assume that you average over a full statistical sample of 

all possibilities given your current state or the current state-action pair. Expectation 

signs  in the update step imply updating over a ‘full batch of data’. In this approach  Q-

values no longer fluctuate, and hence do not need expectation signs; the policy no 

longer fluctuates and also does not need expectations signs. 

𝐸[∆𝑄 𝑠, 𝑎 |𝑠, 𝑎]



Your comments. 



Variant B: Bellman equation and SARSA: theorem for small 

𝑠

𝑠′

a

𝑠"

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑡
IF (i) averaged over many update steps

(ii) learning rate    is small  (h0)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎 ]h

Setting: ‘temporal averaging’

The SARSA algo has been applied

for a very long time, using updates
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𝑃𝑠→𝑠′
𝑎

p(s’,a’)∆𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 0

h

h

THEN: fluctuations of Q are negligible and  the

set of expected Q-values solves the Bellman eq.

with the current policy p(s’,a’)



Previous slide. There are two different versions of the theorem. This version B is proven 

in the annex, in a fashion similar to the case of the 1-step horizon. 

In class (earlier slides) we have shown for the multi-step horizon a weaker statement: 

Expections over SARSA updates are consistent with the Bellman equation if the 

expected update vanishes: In version A, we assume that Q-values are fixed (frozen) 

when we take the expectation. 

Note that taking the expectation in version A is different from averaging over update steps 

in version B. In version A, taking the expectation means that we average over all possible 

outcomes in the current situation, with momentarily fixed Q-values and fixed policy (i.e., 

the one induced by the set of  Q-values at time t). This distinction is important, because for 

a fixed policy averaging is relatively easy.

However, when averaging over time steps as in variant B, the Q-values and policy are 

different in each time step, and the proof therefore requires a limit h 0, so that changes 

can be neglected. 

Hence there are therefore two versions of the theorem and two proof-sketches:

Blackboard 6A. On the earlier slides, we assume Q-values are fixed and do not fluctuate. 

Blackboard 6B. In the Annex, we assume that Q-values may fluctuate slightly round their 

stable values. This approach gives additional insights into the situation of the online 

SARSA, once it has converged in expectation.



Teaching monitoring – monitoring of understanding 

[ ] today, up to here, at least 60% of material was new to me.

[ ] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture. 



- Reinforcement Learning is learning by rewards

 world is full of rewards (but not full of labels)

- Agents and actions

 agent learns by interacting with the environment

 state s, action a, reward r
- Exploration vs Exploitation

 optimal actions are easy if we know reward probabilities

 since we don’t know the probabilities we need to explore

- Bellman equation

 self-consistency condition for Q-values

- SARSA algorithm: state-action-reward-state-action 

 update while exploring environment with current policy 

Summary: Reinforcement Learning and SARSA

Learning outcome and conclusions:

Now:
Exercise session



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 1

Reinforcement Learning and SARSA 

Part 6B: SARSA is consistent with Bellman equation

- Examples of Reward-based Learning

- Elements of Reinforcement Learning

- One-step Horizon (Bandit Problems)

- Exploration vs. Exploitation

- Bellman Equation

- SARSA Algorithm is consistent with Bellman equation



Exercise 4: SARSA for Linear Track. Exercise 4 (at 15h15)



Annex: Variant B - SARSA and Bellman equation  (proof  for small       ) 

𝑠

𝑠′

a

𝑠"

a’

a1 a2 a3

Q(s,a)

Q(s’,a’)

𝑟𝑡
IF (i) learning rate    is small;  AND IF

(ii) for all Q-values

∆  𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾  𝑄 𝑠′, 𝑎′ −  𝑄 𝑠, 𝑎 ]h

Setting: ‘Temporal Averaging’
The SARSA algo with stochastic policy p 

has been applied for a long time with updates
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𝑃𝑠→𝑠′
𝑎

p(s’,a’)

h

THEN the expectation values (temporal average)

of the set of  𝑄-values solves the Bellman eq.

with the current policy p(s’,a’)

h

∆𝑄 𝑠, 𝑎 |𝑠, 𝑎 = 0



Notes: A few points should be stressed:

1. This is not a convergence theorem. We just show consistency as follows:

if SARSA has converged then it has converged to a solution of the Bellman equation.

2. In fact, for any finite  h the SARSA Q-values (Q-hat) fluctuate a little bit. It 

is only the EXPECTATION value of the Q-hat which converges.

3. We should keep in mind that SARSA is an on-policy online algorithm for arbitrary

state-transition graphs. Hence the value Q-hat at (s,a) and  (s’a’) will both fluctuate! 

4. The policy depends on these Q-hat-values and hence fluctuates as well. 

To keep fluctuations of the policy small, we need small h . 

We imagine that all Q-hat values fluctuate around their expectation value   

with small standard deviation. As a result, p also fluctuates around a ‘standard’ policy. 

5. The fluctuations of the policy can be smaller than that of the Q-values: for 

example in epsilon-greedy, you first order actions by the value of Q(s,a), 

and then  only the rank of Q(s,a)  matters, not their exact values. In the proof we assume 

that the fluctuations of the policy become negligible ( shift policy outside expectation).

6.  We show that the Q-values in the sense of Bellman are the expectation values of  

the Q-hat in the sense of SARSA.

7. Expectations are over many trials of the ONLINE SARSA.

The statement and proof is different  to slide 127 and to the book of Sutton and Barto. 



 𝑄 𝑠, 𝑎 =  

𝑠′

𝑃𝑠→𝑠′
𝑎 [ 𝑅𝑠→𝑠′

𝑎 +𝛾  

𝑎′

𝜋 𝑠′, 𝑎  𝑄 𝑠′, 𝑎′ ]

Variant B – temporal averaging: SARSA is consistent with Bellman   

Claim for Online SARSA:   𝑄 𝑠, 𝑎 jitters, but its mean  𝑄 𝑠, 𝑎 solves Bellman
(proof  for small   h ) 

Look at graph to take expectations 

over update steps 

- if algo is in state s, expectations  “given s”

- if algo is on a branch (s,a), all remaining 

expectations are “given s and a”

solves Bellman!



Notes: This is a proof sketch of the consistency of online SARSA (Variant B). We  allow 

all Q-values to fluctuate around their expectation (visualized as ‘temporal averaging’) , 

but we still have to keep fluctuations of the policy negligibly small.  

If we allow for small fluctuations of the policy, then we have to realize that these 

fluctuations are correlated with the fluctuations of Q-values. Thus the evaluation of the 

product E(p Q) is not trivial. Moreover, correlations can lead to a shift of the value and 

make the result inconsistent with the Bellman equation.

This variant B  therefore only works in the limit of vanishing learning rate.

The other  theorem  (Variant A that corresponds to the one on the slides in the main 

part of this lecture) takes expectations for FIXED Q-values. We can interpret these 

expectations as corresponding to a  ‘batch’ computation.

Batch-SARSA is a computational implementation of the way many statistical 

convergence proofs work: you assume that you average over a full statistical sample of 

all possibilities given your current state or the current state-action pair. Expectation 

signs  in the update step imply updating over a ‘full batch of data’. In this approach  Q-

values no longer fluctuate, and hence do not need expectation signs; the policy no 

longer fluctuates and also does not need expectations signs. 


