
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: RL2

Variants of TD-learning methods and continuous space

Objectives for today:

- TD learning refers to a whole class of algorithms
- There are many Variations of SARSA

- All designed to iteratively solve the Bellman equation

- Eligibility traces and n-step Q-learning to extend over time

- Continuous space and ANN models

- Models of actions and models of value

Part 1: Review and Introduction of BackUp Diagrams

Sutton and Barto, Reinforcement Learning (MIT Press, 2nd ed. 2018),

Chapters 5.1-5.4 and 6.1-6.3 and 6.5-6.6, and 7.1-7.2 and 9.3

Reading for this week:

Sutton and Barto, Reinforcement Learning

(MIT Press, 2nd edition 2018, also online)

Background reading:

Temporal Difference Learning and TD-Gammon

by Gerald Tesauro (1995) pdf online

Chapter: 5.1-5.4 and 6.1-6.3 and 6.5-6.6, and 7.1-7.2 and 9.3

Chess Artificial neural network

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats Lee Sedol

Go

Review: Deep reinforcement learning

Review: Deep reinforcement learning

Network for choosing action

input

output

action:
Advance king Today

first steps toward learning

action choices in a small network:

- How can we set-up such a network?

- What is the error function?

- How can we optimize weights?

 Temporal Difference Learning

 Variations of SARSA

Continuous/Large State space

(previous slide)

The basic idea of Reinforcement Learning (RL) was introduced in a previous

lecture. Today we make a first step to link RL to artificial neural networks.

Training in networks is via an error-function – so what is the error function for RL?

And how can we optimize the weights?

And finally how can we deal with a large state space, potentially even continuous?

Review: Branching probabilities and policy
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

Q(s,a3)𝜋 𝑠, 𝑎Policy

Examples of policy:

-epsilon-greedy

-softmax

𝑃𝑠→𝑠′
𝑎1

probability to choose

action a in state s

Stochasticity

probability to end in state s’
taking action a in state s

𝜋 𝑠, 𝑎1

1= 𝑎′𝜋 𝑠, 𝑎′

𝑃𝑠→𝑠′
𝑎1

Review Total expected (discounted) reward
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝜋 𝑠, 𝑎1

Q(s,a) =

Starting in state s with action a

 𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3 +⋯

Discount factor: 𝛾 <1
-important if graph of states is recurrent !

-avoids blow-up of summation

-gives less weight to reward in far future

(previous slides)

We know from previous lectures that RL works with states and actions that allow

probabilistic transitions between the states.

An important quantity is the Q-value which represents the expectation of the

accumulated reward (discounted with a factor gamma smaller than one).

Review: Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ 
Q(s,a)

Q(s’,a’)

Bellman equation =

value consistency of

neighboring states

(previous slide)

The Q-value Q(s,a) further up in the graph is the expected total discounted reward

– summed over all possible future actions and states.

It can be decomposed in an average over the immediate rewards, actions, and

states, and the Q-values Q(s’,a’) of all possible next states.

The Bellman equation can therefore be interpreted as summarizing the

consistency between the Q-values in state s, and the Q-values in neighboring

states s’.

The difference between Q(s,a) and Q(s’,a’) must be explained by the immediate

reward.

We will exploit and extend the notion of consistency several times in the lecture

today.

Review: SARSA algorithm
𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]

1) being in state s

choose action a

[according to policy]

2) Observe reward r

and next state s’

3) Choose action a’ in state s’

[according to policy]

4) Update with SARSA update rule

5) set: s  s’; a  a’

6) Goto 2)

Initialise Q values

Start from initial state s

𝑟𝑡

Stop if all Q-values have converged (some criterion)

𝜋 𝑠, 𝑎

𝜋 𝑠′, 𝑎′

1)

2)

3)

4)
Q(s,a1) DQ+

h

(previous slide)

The SARSA update in step 4 implements the idea that the immediate reward must

account for the difference in Q-values between neighboring states.

Blackboard 1:

Backup diagram

∆𝑄 𝑠, 𝑎 = [𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′ − 𝑄 𝑠, 𝑎]h

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

a1 a2 a3

Q(s,a1)

Q(s’,a’)

𝑟𝑡

1)

2)

3)

4)
Q(s,a1) DQ+

SARSA update step

(previous slide)

The backup diagram describes how many states and actions the algorithm has to

keep in memory so as to enable the next update step.

In SARSA, when you are in (s’,a’) you need to go back to the branch (s,a) so that

you can do the SARSA update.

Summary: SARSA algorithm and Backup Diagram

Sutton and Barto, Ch. 6.4

action

action

state

pick next action a’ before you update

𝑟𝑡In algo: is called R

(previous slide)

In SARSA, we can update Q(s,a), once we have seen the next state s’ and the

next action a’. In other words, the current action is a’ and we had to keep the most

recent state s’ and the earlier ‘branch’ characterized by action a in memory.

Note: I would argue that we also need to keep the earlier state s in memory

because you update Q(s,a) and not Q(a); therefore you need to know the full state

action pair (s,a)! -- But Sutton and Barto use a slightly different convention and

that is the one we follow here.

The backup diagrams play a role in the following for the analysis of other

algorithms.

Notation in pseudo-algo (difference of the book of Sutton and Barto to lecture)

1.I simply write for the actual reward at time t, and s, s’ and a, a,’ for the states

and actions, respectively. In their book Sutton and Barto introduce in the

Pseudocode dummy variables R,S,A, that take the role of place holders for the

observed rewards, states, and actions.

2. I often call the learning rate h; Sutton and Barto call it a.

𝑟𝑡

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture RL2

Variants of TD-learning methods and continuous space

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

Part 2: Variations of SARSA

(previous slide)

SARSA is one example of a whole family of algorithms that all look very similar.

Expected SARSA

Sutton and Barto, Ch. 6.6

action

action

state

Expected SARSA

+𝛼{𝑅 + 𝛾[𝑎 𝜋 𝑆′, 𝑎 𝑄 𝑆′, 𝑎] − 𝑄(𝑆, 𝐴)}

(previous slide)

The first variant is ‘Expected SARSA’.

In standard SARSA, we pick the next action a’ and actually take it, before the

updata of Q(s,a) is done.

In expected SARSA we do not yet take the next action but average over all

possible next action with a weight given by the policy .

Bellman equation
𝑠

𝑠′

a1 a2 a3

𝑃𝑠→𝑠′
𝑎1

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ 
Q(s,a1)

Q(s’,a’)

Bellman equation =

value consistency of

neighboring states

Remark:

Sometimes Bellman equation is written

for greedy policy: 𝜋 𝑠, 𝑎 = δ𝑎,𝑎∗

𝑎∗ = max
𝑎′

𝑄(𝑠, 𝑎′)with action

(previous slide)

The next variant is Q-learning.

Q-learning uses not an average with the current policy, but performs the averaging

with the best policy, i.e., the greedy policy.

The idea is that you run a policy that includes exploration. However, since you

know that after learning you will use the greedy policy so as to maximize your

returns, you already update the Q-values according the greedy policy.

Q-Learning algorithm

Sutton and Barto, Ch. 6.5

action

action

state max operation

(previous slide)

Q-learning is called ‘off-policy’ because you update as if you used a greedy policy

whereas during learning you are really running a different policy (such as epsilon-

greedy): it is as if you turn-off the current policy during the update.

In Q-learning the update step is such that the current reward should explain the

difference between Q(s,a) and the maximum Q(s’,a’) running over all possible

actions a’. It is a TD algorithm (Temporal Difference), because neighboring states

are visited one after the other. Hence neighbors are one time step away.

It does not play a role which action a’ you actually choose (according the your

current policy). The max-operation is indicated in the back-up diagram by the little

arc.

Summary: SARSA and related algorithms

action

action

state
SARSA: you actual perform next action,

according to the policy,

and then you update Q(s,a)

action

state

actions

Exp. SARSA: you look ahead and average

over potential next actions

and then you update Q(s,a)

statestate

action

best

action

Q-learning: you look ahead and imagine

greedy next action to update Q(s,a)

(but you then perform the actual next action

based on your current policy)

(previous slide)

Summary of the three variations of SARSA and their back-up diagrams.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture RL2

Variants of TD-learning methods and continuous space

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

3. TD Learning (Temporal Difference)

Part 3: Temporal Difference Learning

(previous slide)

We now explore other Temporal Difference algorithms

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ 

Bellman equation = value consistency of

neighboring states

Neighboring states  neighboring time steps

TD-learning as bootstrap estimation 𝑠

𝑠′

a

Q(s,a)

a’

Q(s’,a’)

Temporal Difference

‘bootstrap’: summary

of previous information

(previous slide)

1) If the agent runs through the state-action graph, neighboring states are one

time step away from each other. This explains the term ‘Temporal Difference (TD)’

2) As mentioned before:

The Q-value Q(s,a) further up in the graph is the expected total discounted reward

– summed over all possible future actions and states.

It can be decomposed in an average over the immediate rewards, actions, and

states, and the Q-values Q(s’,a’) of all possible next states. Since calculation of

Q(s,a) relies on (earlier) calculation of Q(s’,a’), Sutton and Barto call this a

‘bootstrap’ algorithm.

State-values V

Value V(s) of a state s
= total (discounted) expected reward the agent

gets starting from state s

𝑉 𝑠 =

𝑎

𝜋 𝑠, 𝑎 𝑄 𝑠, 𝑎

Bellman equation for V(s)

𝑉 𝑠 =

𝑎

𝜋 𝑠, 𝑎

𝑠′

𝑃𝑠→𝑠′
𝑎

𝑅𝑠→𝑠′
𝑎

+𝛾𝑉(𝑠′)

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

Q(s,a1)

V(s)

V(s’)

𝑃𝑠→𝑠′
𝑎2

𝜋 𝑠, 𝑎3

(previous slide)

Instead of working with Q-values, we can work with V-values that describe the

value of a state (as opposed to the value of a state-action pair).

While each Q-value is associated with a state-action pair, V-values are the value

of a state: V-values are defined as the expected total discounted reward that the

agent will collect under policy  starting at that state.

The value of a state V(s) is the average over the Q-values Q(s,a) averaged over

all possible actions that start from that state. The correct weighting factor for

averaging is given by the policy (s,a).

The resulting Bellman equation for V-values looks similar to that of Q-values,

except that the location of the summation signs has been shifted.

𝑉 𝑠 =

𝑎

𝜋 𝑠, 𝑎 𝑄 𝑠, 𝑎

Standard TD-learning

action

state

state

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑟𝑡

V(s)

V(s’)

∆𝑉 𝑠 = [𝑟𝑡 + 𝛾𝑉 𝑠′ − 𝑉 𝑠]h

𝑟𝑡 is called R

(previous slide)

The iterative update for V-values is analogous to that of Q-values, but the back-up

diagram looks different. Once the agent is in the next state s’, you can update the

value V(s).

The resulting update rule is called TD learning (in the narrow sense). In the

broader sense, a large class of algorithms that exploits the Bellman equation for

approximate iterative update rules is called Temporal Difference Learning (TD) or

simply TD-methods:

Whenever an algorithm compares Q-values or V-values of neighboring

states, it is a TD-method.

The zero in the argument of TD(0) becomes clear later.

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ 

Bellman equation = value consistency of

neighboring states

Neighboring states  neighboring time steps

Temporal Difference Methods (TD methods)

- explore graph over time

- compare values (Q-values or V-values)

at neighboring time steps

- ‘bootstrap’ estimation of values

- update after next time step, based on ‘temporal difference’

Summary: TD-learning as bootstrap estimation

(previous slide)

Summary – add your own comments. All terms should be clear by now.

Quiz: TD methods in Reinforcement Learning

[] SARSA is a TD method

[] expected SARSA is a TD method

[] Q-learning is a TD method

[] TD learning is an on-policy TD method

[] Q-learning is an on-policy TD method

[] SARSA is an on-policy TD method

[x]

[x]

[x]

[x]

[]

[x]

(previous slide)

This quiz applies a few definitions to a few algorithms.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture RL2

Variants of TD-learning methods and continuous space

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

3. TD Learning (Temporal Difference)

4. Monte-Carlo Methods

Part 4: Monte-Carlo Methods

(previous slide)

Instead of using TD methods, the same state-action graph can also be explored

with Monte-Carlo methods

action

state

state

action

action

end of trial

Monte-Carlo Estimation

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑟𝑡

a1 a2 a3

V(s)
play a trial (episode) until the end;

𝑟𝑡+1

𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3

then update, using

the total accumulated

reward (=‘Return’) =

same episode is also

used to estimate V(s’)

(previous slide)

1) Suppose you want to estimate the value V(s) of state s.

V(s) is the EXPECTED total discounted reward.

To estimate V(s) you start in state s, run until the end and evaluate for this single

episode the return

This is a single episode. If you start several times in s, you get a Monte-Carlo

estimate of V(s).

2) You can be smart and you the SAME episode also to estimate the value V(s’) of

other states s’. Thus while you move along the graph, you open an estimation

variable for each of the states that you visit.

Combining points 1) and 2) gives rise to the following algorithm.

𝑅𝑒𝑡𝑢𝑟𝑛 𝑠 = 𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3

action

state

state

action

action

end of trial

Monte-Carlo Estimation of V-values
𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3Return(s)=

single episode starting in state s0 also allows to

update V(s) of children states

(previous slide)

In this (version of the) algorithm you first open V-estimators for all states.

For each state s that you encounter, you observe the (discounted) rewards that

you accumulate until the end of the episode. The total accumulated discounted

reward starting from s is the ‘Return(s)’

After many episode you estimate the V-values V(s) as the average over the

Returns(s).

Note that the above estimations are done in parallel for all states s that you

encounter on your path.

Also note that the Backup diagram is much deeper than that of Q-learning, since

you always continue until the end of the trial before you can update Q-values of

state-action pairs that have been encountered many steps before.

state

state

action

action

end of trial

action

Monte-Carlo Estimation of Q-values (batch)

Return(s,a) = 𝑟𝑡 + 𝛾 𝑟𝑡+1+ 𝛾𝟐𝑟𝑡+2+ 𝛾𝟑 𝑟𝑡+3+…

Start at a random state-action pair (s,a) (exploring starts)

Q(s,a) = average[Return(s,a)]

Note: single episode also allows to update Q(s’a’) of children

(previous slide)

In this (version of the) algorithm you first open Q-estimators for all state-action

pairs.

For each state s that you encounter, you observe the (discounted) rewards that

you accumulate until the end of the episode. The total accumulated discounted

reward starting from (s,a) is the ‘Return(s,a)’

After many episode you estimate the Q-values Q(s,a) as the average over the

Returns(s).

Note that

- stochasticity in the initial states assures that all pairs (s,a) are tested, even if the

policy is not stochastic.

- In theory, this estimation method is hence compatible with a greedy policy.

- In practice, I always recommend epsilon greedy (and we can reduce epsilon as

we have learned more and more).

Batch-expected SARSA: solving Bellman step by step

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ 

Bellman:

Conditions:

- directed graph,

- fixed policy

- N episodes played

𝑠

𝑠′

a1 a2 a3

𝑠"

𝑟𝑡

𝑟𝑡+1

𝑠𝑓

𝑟𝑡+1

use all the available information after N episodes

known

(previous slide)

Alternatively, if you have a directed graph, the Bellman equation can also be used

as in dynamic programming: starting from the bottom leaves of the graph (end of

episodes, terminal state=set of final states sf) you walk upward and find Q-values

step by step. You know your policy, so it is similar to expected SARSA, except that

you work in ‘batch’ mode. I call this batch-expected SARSA.

It is still an empirical estimation, since the rewards and the transitions need to be

estimated from the episodes that have been played.

The first brackets: empirical estimate over immediate rewards.

The second brackets: empirical estimate over next states s’.

And now we ask: is this a good algorithm?? Else which of the previous ones is

better?

𝑄 𝑠, 𝑎 = { 𝑟𝑡 + 𝛾

𝑎′

𝜋 𝑠′, 𝑎′ 𝑄 𝑠′, 𝑎′ }

Question:
Three ways to estimate Q-values with policy :

1) SARSA/expected SARSA (online, TD, bootstrap)

2) Monte-Carlo (batch over many episodes)

3) Batch-expected-SARSA learning (batch over many episodes)

‘work with empirical Bellman equation, bootstrap’

We have played N trials.

How do the three algorithms rank?

Which one is best?  commitment:

write down 1 or 2 or 3

“Oh, so many, many variants …”

(previous slide)

There are many variants of algorithms – but which one is the best?

In both batch algorithms you have to play several episodes before you do the

update. The Bellman equation approach (Batch-Expected-SARSA) uses the idea

of ‘bootstrapping’ whereas Monte-Carlo does not.

Q-learning or SARSA both use ‘bootstrapping’ since they update Q-values based

on other Q-values. Q-learning has the max-operation, whereas SARSA is ‘on-

policy’. Both Q-learning and SARSA are Online (as opposed to batch).

To find out which one is best, consider the following example.

𝑠

𝑠′

a2 a1

𝑠"

a4 a3

𝑟𝑡=1𝑟𝑡=0.5 𝑟𝑡=0

𝑟𝑡=0

Monte-Carlo versus TD methods (Exercise 1, preparation)

Batch update of Q(s,a) after all 10 trials:
(i) Monte-Carlo: average over total accumulated reward for given (a,s)

(ii) Batch-expected-SARSA

𝑟𝑡=0.2

Not discounted. 10 example episodes:

1: s,a2 r=0.2,s’,a4 r=0

2: s’,a3 r=1

3: s’,a4 r=0

4: s’,a3 r=1

5: s,a1  r=0

6: s’,a4 r=0

7: s’,a4 r=0.5

8: s’,a3 r=1

9. s,a2 r=0.2,s’,a4 r=0.5

10. s,a1  r=0

(previous slide)

Batch mode means that we update after having played all 10 trials

(as opposed to normal SARSA where you update while you run through each

trial).

Tip: For batch SARSA start from the bottom of the graph.

Notes: set the discount factor  to one; if appropriate, initialize Q-values with zero.

If you want to do online SARSA: use a learning rate that is inversely proportional

to the number of time you have encountered a transition (as in 1-step horizon

example last week).

Exercise 1a and 1b. Pause videoExercise 1 a and b (c and d at home!)

Monte-Carlo batch mode:

update once after 10 trials

Batch-Expected-SARSA:

update once after 10 trials,

use Bellman equation

1c: also compare with online

version of expected SARSA

1

TASK: estimate Q-values with 2 methods:

- Monte-Carlo batch mode

- Batch-expected-SARSA

𝜋 𝑠′, 𝑎′ =0.5

𝑄 𝑠, 𝑎2 =

{ 𝑟𝑡 + 𝛾 𝜋 𝑠′, 𝑎′ 𝑄 𝑠′, 𝑎′ }

Note that the Bellman equation given on the slide has already been simplified by

the fact that in the starting state s and action a2 there is not stochastic branching.

Space for your calculations.

Exercise 1 a and b (c and d at home!)

Monte-Carlo batch mode:

update once after 10 trials

Batch-Expected-SARSA:

update once after 10 trials

TASK: estimate Q-values with 2 methods

Blackboard 2 solution:

Q, Monte Carlo Q, exp. SARSA

𝜋 𝑠′, 𝑎′ =0.5

in trial

1

𝑄 𝑠, 𝑎2 =

{ 𝑟𝑡 + 𝛾 𝜋 𝑠′, 𝑎′ 𝑄 𝑠′, 𝑎′ }

Space for your calculations.

Monte-Carlo

Monte-Carlo versus batch-TD methods/Bellman equation:

Comparison in batch mode: We have observed N episodes,

and update (once) after these N episodes.

Example: 1d random walk

Conclusion:

TD is better than

Monte Carlo

r=1

error with respect to exact V-value

(previous slide) All episodes start in the center state, C, then proceed either left or

right by one state on each step, with equal probability (random walk). Episodes

terminate either on the extreme left (reward zero) or the extreme right, (reward 1);

all other rewards are zero.

Because we do not discount future rewards, the true value of each state V(s) can

be calculated as, from A through E, 1/6; 2/6; 3/6; 4/6; 5/6.

The root-mean-square error (RMS) compares the estimated value with the above

‘true’ values V(s).

We see that TD performs better than MC in this case.

Sutton and Barto, 2018

Summary: Monte-Carlo versus TD methods

Exploiting Bellman: TD is better than Monte Carlo

The averaging step in TD methods (‘bootstrap’) is

more efficient (compared to Monte Carlo methods)

to propagate information back into the graph,

since information from different starting states is

combined and compressed in a Q-value or V-value.

(previous slide)

If we go back to the example: in Monte-Carlo methods you only exploit information

of trials that go through the state-action pair (s,a) to evaluate Q(s,a); in TD

methods (or with the Bellman equation) you compare Q(s,a) with Q(s’,a’) and all

trials that pass through (s’,a’) contribute to estimate Q(s’,a’) even those that have

started somewhere else and have never passed through (s,a). Hence in the latter

case you exploit more information.

Note that in the explicit example above we compared a batch-expected-SARSA

with Monte-Carlo. However, true online TD learning (such as SARSA or Q-

learning) is also slow to converge, but for a different reason, as explained in the

next section.

Monte-Carlo Estimation of Q-values (on-policy)

state

state

action

action

end of trial

action

Combine epsilon-greedy policy with Monte-Carlo Q-estimates

(e.g., epsilon-greedy)

Q(s,a) = average[Return(s,a)]

Note: single episode also allows to update Q(s’a’) of children

(previous slide)

This algorithm combines Monte-Carlo estimates with an epsilon-greedy policy.

Note for Monte-Carlo estimates, the agent waits until the end of the episode (end

of trial), before it can update the Q-values.

Similar to the earlier Monte-Carlo algorithms, the Q-values of all those state-action

pairs that have been visited in that trial are updated (as opposed to an algorithm

where you would only update Q(s0,a0) of the initial state and action.)

Note that this is an on-policy algorithm because the epsilon-greedy policy is

reflected in the final Q-values.

Quiz: Monte Carlo methods

We have a network with 1000 states and 4 action choices

in each state. There is a single terminal state.

We do Monte-Carlo estimates of total return to estimate

Q-values Q(s,a).

Our episode starts with (s,a) that is 400 steps away from

the terminal state. How many return R(s,a) variables do I

have to open in this episode?

[] one, i.e. the one for the starting configuration (s,a)

[] about 100 to 400

[] about 400 to 4000

[] potentially even more than 4000

[]

[]

[x]

[]

(previous slide) your notes

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture RL2

Variants of TD-learning methods and continuous space

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

3. TD Learning (Temporal Difference)

4. Monte-Carlo Methods

5. Eligibility traces

Part 5: Eligibility traces

(previous slide)

So far we have worked with discrete states.

Exercise from last week: one-dimensional track

2m

top view

goal

Discretize state

goal

Q(s4,a1)

r=1

Q(s3,a1)

a1
a2

s4

a1
a2

s3

r=0

r=0

s1

a1

a1
a2

s2

goal

(previous slide)

However, if you think of an animal that walks along a corridor towards a piece of

cheese (reward), then the natural space is continuous and any discretization is

arbitrary. Why should we choose 10 states and not 20?

Once we are in the discrete space, the situation is similar to the random walk

example considered earlier, except that here we are interested in an agent that

adapts its policy so that it walks as quickly as possible to the reward.

Update of Q values with SARSA

Policy for action choice:
),(maxarg* asQa a

a
t 

Exercise from last week: one-dimensional track

Pick most often action

Q(s1,a1)

Q(s3,a1)

goal

Linear sequence of states.

Reward only at goal.

Actions are up or down.

DQ(s,a)=h [r + Q(s’,a’) - Q(s,a)]

[] After 2 trials the Q-value

Q(s1,a1)>0

[] After 2 trials the Q-value

Q(s3,a1)>0

Q(s4,a1)

r=1

a1
a2

s4

a1
a2

s3

r=0

r=0

s1

a1

a1
a2

s2

goal

[x]

[]

Initialise Q values at 0. Start trials at top (s4).

Q(s2,a1)

To break ties: take action a1

(previous slide)

Your comments. See also the solution of exercise from last week.

Exercise from last week: one-dimensional track

(previous slide)

Your comments. See also the solution of exercise from last week.

Problem:

-‘Flow of information’ back from target is slow

- information flows 1 step per complete trial (‘episode’)

- 20 trials needed to get information 20 steps away from target

BUT:

- the discretization of states has been an arbitrary choice!!!

 Something is wrong with the discrete-state SARSA algo

Problem of online TD algorithms

(previous slide)

In the SARSA algorithm and all other TD learning algorithms that we have seen so

far, information about a reward at the target needs several trials before it shows up

in the Q-values (or V-values) that are not close to the target.

In fact, if all Q-values are initialized at zero, it takes 10 trials before the Q-value of

a state that is 10 steps away from the target is updated the first time.

So if we decide to discretize 1m of corridor into 20 states (instead of 10 states),

then it will take 20 trials for the information to arrive at the start.

This is strange, because the performance of the agent (an animal!) should not

depend on the discretization scheme that we have chosen.

Solution 1: Eligibility Traces, SARSA(l)

Idea:

- keep memory of previous state-action pairs

- memory decays over time

- update eligibility trace for all state-action pairs

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎 + 1 if action a chosen in state s

𝑒 𝑠, 𝑎 ← 𝑒 𝑠, 𝑎l decay of all traces

- update all Q-values at all time steps t:

DQ(s,a) = h [rt +  Q(st+1,at+1) - Q(st,at)] e(s,a)

Note: l=0 gives standard SARSA

TD error dt

(previous slide)

Eligibility traces are a first solution to the above problem:

For each state-action pair we introduce a variable e(s,a), called eligibility trace.

The eligibility trace is increased by one, if the corresponding state-action pair

occurs. In each time step, all eligibility traces decrease by a factor l <1.

(In fact, l should be smaller than the discount factor gamma for reasons that

become clear only later).

In each time step t, all Q-values Q(s,a) are update proportional to the TD error for

the time step t.

The update is proportional to the corresponding eligibility trace e(s,a).

Note: in the original SARSA algorithm we have for each state-action pair a

variable Q(s,a). In the new algorithm, we have for each state-action pair two

variables: Q(s,a) and e(s,a). I will sometimes call e(s,a) the ‘shadow’ variables:

each eligibility trace is the shadow of the corresponding Q-value.

From: Reinforcement Learning,

Sutton and Barto 1998

First edition

Solution 1: Eligibility Traces

and set e(s,a)=0 for all actions a and states s

(previous slide)

Note: in some published versions of the algorithm the decay of the eligibility traces

is the product of  and l, and not just l.

The advantage is that you just have to impose l <1 whereas on the preceding

slide I should choose a decay rate l<  (<1).

Quiz: Eligibility Traces
[] Eligibility traces keep information of past state-action pairs.

[] For each Q-value Q(s,a), the algorithm keeps

one eligibility trace e(s,a), i.e., if we have 200 Q-values

we need 200 eligibility traces

[] Eligibility traces enable information to travel rapidly

backwards into the graph

[] The update of Q(s,a) is proportional to

[] In each time step all Q-values are updated

[rt +  Q(st+1,at+1) - Q(st,at)]

[x]

[x]

[x]

[x]

[x]

Quiz: Eligibility Traces
[] Eligibility traces keep information of past state-action pairs.

[] For each Q-value Q(s,a), the algorithm keeps

one eligibility trace e(s,a), i.e., if we have 200 Q-values

we need 200 eligibility traces

[] Eligibility traces enable information to travel rapidly

backwards into the graph

[] The update of Q(s,a) is proportional to

[] In each time step all Q-values are updated

[rt +  Q(st+1,at+1) - Q(st,at)]

[x]

[x]

[x]

[x]

[x]

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture RL2

Variants of TD-learning methods and continuous space

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

3. TD Learning (Temporal Difference)

4. Monte-Carlo Methods

5. Eligibility traces

6. n-step TD methods

Part 6: n-step TD methods

(previous slide)

Let us now focus on n-step TD methods such n-step SARSA.

Problem:

-‘Flow of information’ back from goal is slow

- information flows 1 step per complete trial

- 20 trials needed to get information 20 steps away from target

Problem of TD algorithms

 First solution: eligibility traces.

 second solution: n-step TD methods.

goal goal

(previous slide)

Eligibility traces make the flow of information from the target back into the graph

more rapid. The speed of flow is now controlled by the decay constant l of the

eligibility trace – therefore we can keep the flow constant even if the discretization

changes by readjusting l.

However, there is also a second solution, called n-step SARSA.

Solution 2: n=step SARSA

goal goal

DQ(s,a)=h [r +  Q(s’,a’) - Q(s,a)]

Standard SARSA 2-step SARSA

DQ(st,at)=h [rt+  rt+1+   Q(st+2,at+2) - Q(st,at)]

Q(s,a)

Q(s’,a’)

Q(st,at)
Q(st+2,at+2)

DQ(st,at)=h [rt +  Q(st+1,at+1) - Q(st,at)]

Temporal Difference (TD) 2-step TD

rt rt
rt+1

(previous slide)

Reminder:

SARSA and other standard TD methods compare the reward with neighboring Q-

values.

In two step SARSA, we compare the two-step reward with the difference in Q-

values of next-nearest neighbors.

In other words, the sum of the two rewards between st and st+2 must be explained

by the difference between the Q-values Q(st,at) and (discounted) Q(st+2,at+2).

The greek symbol  denotes the discount factor, as before.

n-step SARSA and n-step expected SARSA

state

state

action

action

action

state

action

action

action

next actions

weighted with policy

state at time t+n

(previous slide)

The idea of 2-step SARSA can be extended to an arbitrary n-step SARSA.

Interestingly, if the number n of steps equals the total number of steps to the end

of the trial, we are back to standard Monto-Carlo estimation.

Hence, n-step SARSA is in the middle between normal SARSA and Monte-Carlo

estimation.

Sutton and Barto, Ch. 7.2

n-step SARSA algorithm

Take action, observe

next state and reward,

choose next action

update of Q(s,a)

with actions and

state at time t+1-n

3-step

(1)

(2)

(3)

𝑟𝑡In algo: is called Rt+1

NOR

another stochastic policy

(previous slide)

The backup graph for three-step SARSA now contains 3 state-action pairs, because

we need to keep more information in memory.

Note that we can update Q(st, at) once we have chosen action at+3 in state St+3

Lines marked (1), (2), (3).

(1) G is the reward summed over n steps (with discounts for steps >1)

(2) To this G the Q-value of the nth state is added (unless the episode terminates

before)

(3) The update then happens with this new G as a target and learning rate alpha.

For some reason Sutton and Barto suggest epsilon-greedy in the pseudo-algo, but I

changed this to arbitrary stochastic policies. Stochastic is important to make sure that

all branches are explored; apart from this: SARSA is an on-policy algorithm and

whatever you choose as a policy should work and yield a self-consistent solution.

Example: 10-step SARSA

(previous slide).

The graphic suggests that the results of 10-step SARSA are very similar to an

eligibility trace – which is indeed the case. therefore the two solutions (eligibility

trace and n-step TD learning) are in fact closely related.

We will come back to this issue in lectures 11 and 12 on reinforcement learning.

Summary: Scaling Problem of TD algorithms

TD algorithms do not scale correctly if

the discretization is changed

 Introduce eligibility traces (temporal smoothing)

 Switch from 1-step TD to n-step TD

(temporal coarse graining)

either

or

Remark: the two methods are mathematically closely related.

rtearlier (s,a) pairs

eligibility

rt

update of

Q(s,a)

earlier (s,a) pairs

(previous slide)

One-step TD algorithms have problems as approximations to continuous states.

There are two closely related solutions, eligibility traces and n-step TD algorithms.

Eligibility traces can be interpreted as a temporal smoothing of state-action pairs

with an exponential filter. On the horizontal axis, denotes the moment of a reward.

‘n-step algorithms’ can be interpreted as temporal coarse graining.

- After the agent has passed a reward on its path and has continued for n-1 steps,

the n Q-values corresponding to n state-action pairs before the reward have been

updated. Thus you group Q-values as if you were using a larger discretization.

(The specific picture with rectangular filter is valid for 1)

- Once you have reached the goal (a terminal state) you should formally continue

the algorithm for n-1 steps with fictitious zero-reward. This avoids discretization

effects and amounts to using the same rectangular filter as on the path. For

example, with 4-step SARSA, you need to update the Q-values not only 4 steps

before the goal, but also 3 steps, 2 steps and 1 steps. [Otherwise the Q-values 1

step before the goal would not be updated after the first episode!]

rt

Detour: n=step TD methods for V-values

state

state

action

state

state

action

action

action

Sutton and Barto, Ch. 7.1

(previous slide)

Remarks regarding n-step V-value TD methods are completely analogous to those

for Q-values.

Detour: n=step TD methods for V-values

Sutton and Barto, Ch. 7.1

𝑟𝑡In algo: is called Rt+1

(previous slide)

The essential step of the algorithm is the update in the blue ellipse where G are

the discounted accumulated rewards over n step.

The algorithm looks a bit more complicated because there is a clever way of

dealing with the summation over the intermediate rewards while the agent moves

along the graph.

Quiz: eligibility traces versus n-step SARSA algorithm

start terminal

𝑠

𝑠′

a1 a2 a3

𝑠′

a1 a2 a3

All Q-values have been initialized at zero. The first

episode starts in ‘start’ and ends after 13 steps in the

terminal state. In step 5, the reward is . All other

rewards are zero. The discount factor is =0.95.

Is the following true after the end of the first episode:

[] With 3 step SARSA, only one Q-value has increased,

viz. the one 3 steps before the reward.

[] With 3 step SARSA, three Q-values have increased,

viz. those 3 steps, 2 steps and 1 step before the reward.

[] None of the above

[] Increase is biggest for Q(s4,a4).

𝑟5=1

𝑟5=1

s0 s5

[]

[x]

[]

[x]

a1

Quiz: eligibility traces versus n-step SARSA algorithm

start terminal

𝑠

𝑠′

a1 a2 a3

𝑠′

a1 a2 a3

All Q-values have been initialized at zero. The first

episode starts in ‘start’ and ends after 13 steps in the

terminal state. In step 5, the reward is . All other

rewards are zero. The decay factor is l=0.95.

Is the following true after the end of the first episode:

[] Using SARSA with eligibility traces, only one Q-value

has increased.

[] Using SARSA with eligibility traces, five Q-values

have increased,

[] Using SARSA with eligibility traces, all Q-values have

increased.

𝑟5=1

𝑟5=1

s0 s5

[]

[x]

[]

sed.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture RL2

Variants of TD-learning methods and continuous space

1. Review and introduction of BackUp diagrams

2. Variations of SARSA

3. TD Learning (Temporal Difference)

4. Monte-Carlo Methods

5. Eligibility traces

6. n-step TD methods

7. Modeling the input space

Part 7: Modeling the Input Space

(previous slide)

Continuous input spaces have a second problem: there are many Q-values are V-

values that you need to compute.

Problem of TD algorithms: representation of input

All algorithms so far are ‘tabular’:

Q-learning or SARSA:

 build a table Q(s,a) with entries

for all states s and actions a

TD-learning of V-values:

 build a table V(s) for all states s
discrete states and

actions

many entries,

 ‘independent’ (apart from self-consistency of Bellman)

(previous slide)

Two observations:

First, in a table all entries are independent – the only relation between Q-values or

V-values arises from the self-consistency condition of the Bellman equation.

Second, there are many (!) entries.

Problem of TD algorithms: representation of input

- for control problems, input space is naturally continuous

- for discrete games, the input space often too big

Chess

Moon lander

Aim: land between poles

Go Backgammon

(previous slide)

Even in cases where the natural input space is descrete, such as in games, there

might simply be too many states to keep fill tables with meaningful values.

Solution: Neural Network to represent input configuration

Schematically (theory will follow):

2e output for V-value

for current situation:

input

output

action:
Advance king

learning:

- change connections

aim:

- Predict value of position

- Choose next action to win

Note: alternatively,

action outputs could present

Q-values

(previous slide)

The basic idea that we will explore this week, next week, and also in the series on

Deep Reinforcement Learning is that the mapping from the input states to actions;

or from the input states to value functions can be represented by a model with

parameters, typically a neural network with adjustable weights.

Solution: Continuous input representation

action: a1 = right
a2 = left

x

y

x

y

for action a1 for action a2

Example: Mountain Car

(previous slide)

In the mountain car task, the input space is two dimensionals: the position x and

the speed.

Suppose both dimensions are discretized into 3 values. The Q-values therefore

have 9 entries for action a1 (force to the left) and 9 further entries for action a2

(force to the right).

Solution: Continuous input representation

x

y

x

y

for action a1 for action a2

Q(s,a2)Q(s,a1)

Blackboard 3:

Radial Basis

functions
action: a1 = right

a2 = left

Example: Mountain Car

(previous slide)

Instead of considering 9 separate table entries of Q-values Q(s,a1) for action a1,

we can also think of a smooth function on the two-dimensional input space that

represents Q(s,a1) as a function of s.

Similarly, Q(s,a2) is a smooth function of s, but for action a2.

A first advantage is, that the question of discretization of the input space has now

disappeared, since we can model the Q-values as a function of the continuous

state variable s=(x,y).

The question arises how to model such Q-value functions.

One possibility is to use a combination of basis functions f

so as to describe the Q-value

where the weights between basis function j and action a are denoted by waj

)(),(jajj
sswasQ  

Blackboard 3:

Radial Basis

functions

x

y

Q(s,a2)

Q(s,a) = rt +  Q(s’,a’)

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ 

Q(s’,a’)

rt

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradient w.r.t 𝒘ignore

target

On-line consistency condition
(should hold on average)

Consistency condition of Bellman Eq.

yields online Error function (loss)

‘semi-gradient’

target

From Bellman equation to Error function.

(previous slide)

During the discussion of the Bellman equation and SARSA, we stated repeatedly

that, if we neglect the discount factor, the difference between Q-values in

neighboring time steps must be explained by the reward.

If we include the discount factor, the above statement reduces to

Where the equality sign has to be interpreted as ‘should ideally on average be

close to’ and the right hand side is the ‘target of learning’

Therefore we can construct an error function E that measures how close we are to

such an ideal case. The squared error function that implements this ideal is noted

at the bottom of the slide.

Since the ‘target of learning’ should be considered as momentarily fixed, we

optimize the error function by taking the derivative of E with respect to w but

ignore that the target also depends on w. We will explore this further in the next

week and in the applications of Deep RL.

Q(s,a) = r +  Q(s’,a’)

Blackboard 4:

Error

function

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

rt

Q(s’,a’)
Q(s,a) = r +  Q(s’,a’)

target

In Class Exercise 5 now: 10 minutes

(your calculations)

Error function: full gradient and semi-gradient

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑆′, 𝑎′|𝒘 - Q 𝑆, 𝑎|𝒘]2

take gradient w.r.t. this 𝒘

target

Discrete time steps: s,a  s’,a’

Full gradient: you take the correct derivative with respect to 𝒘

Semi-gradient: you take the derivative with respect to 𝒘

in Q 𝑆, 𝑎|𝒘 but you ignore the 𝒘-dependence of the target.

(This is a heuristic trick to stabilize learning)

(previous slide)

In the exercise, the difference between full gradient and semi-gradient becomes

visible if a=a’.

However, the problem that the target needs to be considered as ‘fixed’ to make

learning converge is a fundamental one that needs to kept in mind for all

applications of deep reinforcement learning or reinforcement learning in

continuous space.

Summary: Many Variations of a few ideas in TD learning

Learning outcomes and Conclusions

- TD – learning (Temporal Difference)

 TD algo: works with V-values, rather than Q-values

- Variations of SARSA

- off-policy Q-learning (greedy update)

- Monte-Carlo

- n-step Bellman equation/n-step SARSA

- Eligibility traces

- allows rescaling of states, smooths over time

- similar to n-step SARSA

- Continuous space

 use a neural network to model Q-values and generalize

Basis of all:

iterative solution of

Bellman equation

(previous slide)

Today we have seen a large variety of TD algorithms. All of these can be

understood as iterative solutions of the Bellman equation.

The Bellman equation can be formulated with V-values or with Q-values. Bellman

equations normally formulate a self-consistency condition over one step (nearest

neighbors), but can be extended to n steps.

Monte Carlo methods do not exploit the ‘bootstrapping’ aspect of the Bellman

equation since they do not rely on a self-consistency condition.

An n-step SARSA is somewhere intermediate between normal SARSA and Monte-

Carlo.

Discretization of continuous spaces poses several problems.

The first problem is that a rescaling becomes necessary after a change of

discretization scheme. This problem is solved by eligibility traces as well as by the

n-step TD methods

The second problem is that a tabular scheme brakes down for fine discretizations.

It is solved by a neural network where we learn the weights. Such a neural

network enables generalization by forcing a ‘smooth’ V-value or Q-value.
The END

