
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 3

TD-learning in continuous space: function approximation

1. Modeling the input space

Part 1: Modeling the Input Space

Sutton and Barto, Reinforcement Learning (MIT Press, 2nd ed. 2018),

Chapters 9.3

Background Reading:

Mnih et al. 2015, Nature, Vol 5018, doi:10.1038/nature14236

Tesauro 1995, https://www.csd.uwo.ca/~xling/cs346a/extra/tdgammon.pdf

Strosslin et al, 2005, Neural Networks 18: 1125–1140

Sheynikhovich et al, 2009, Psychological Review, 116:540

(previous slide)

Continuous input spaces have a second problem: there are many Q-values are V-

values that you need to compute.

Chess Artificial neural network

(AlphaZero) discovers different

strategies by playing against itself.

In Go, it beats Lee Sedol

Go

Review: Deep reinforcement learning

Review: Deep reinforcement learning

Network for choosing action

input

output

action:
Advance king Today

first steps toward learning

action choices in a small network:

- How can we set-up such a network?

- What is the error function?

- How can we optimize weights?

 Temporal Difference Learning

 Variations of SARSA

Continuous/Large State space

Problem of TD algorithms: representation of input

All algorithms so far are ‘tabular’:

Q-learning or SARSA:

 build a table Q(s,a) with entries

for all states s and actions a

TD-learning of V-values:

 build a table V(s) for all states s
discrete states and

actions

many entries,

 ‘independent’ (apart from self-consistency of Bellman)

(previous slide)

Two observations:

First, in a table all entries are independent – the only relation between Q-values or

V-values arises from the self-consistency condition of the Bellman equation.

Second, there are many (!) entries.

Problem of TD algorithms: representation of input

- for control problems, input space is naturally continuous

- for discrete games, the input space often too big

Chess

Moon lander

Aim: land between poles

Go Backgammon

(previous slide)

Even in cases where the natural input space is descrete, such as in games, there

might simply be too many states to keep fill tables with meaningful values.

Solution: Neural Network to represent input configuration

Schematically (theory will follow):

input

output

action:
Advance king

learning:

- change connections

aim:

- Choose next action to win

- Optimize return

= probability to win

action output units represent Q-values

(previous slide)

The basic idea that we will explore this week, next week, and also in the series on

Deep Reinforcement Learning is that the mapping from the input states to actions;

or from the input states to value functions can be represented by a model with

parameters, typically a neural network with adjustable weights.

Solution: Continuous input representation

action: a1 = right
a2 = left

x

y

x

y

for action a1 for action a2

Example: Mountain Car

(previous slide)

In the mountain car task, the input space is two dimensionals: the position x and

the speed.

Suppose both dimensions are discretized into 3 values. The Q-values therefore

have 9 entries for action a1 (force to the left) and 9 further entries for action a2

(force to the right).

Solution: Continuous input representation

x

y

x

y

for action a1 for action a2

Q(s,a2)Q(s,a1)

Blackboard 3:

Radial Basis

functions
action: a1 = right

a2 = left

Example: Mountain Car

(previous slide)

Instead of considering 9 separate table entries of Q-values Q(s,a1) for action a1,

we can also think of a smooth function on the two-dimensional input space that

represents Q(s,a1) as a function of s.

Similarly, Q(s,a2) is a smooth function of s, but for action a2.

A first advantage is, that the question of discretization of the input space has now

disappeared, since we can model the Q-values as a function of the continuous

state variable s=(x,y).

The question arises how to model such Q-value functions.

One possibility is to use a combination of basis functions f

so as to describe the Q-value

where the weights between basis function j and action a are denoted by waj

)(),(jajj
sswasQ  

Blackboard 3:

Radial Basis

functions

x

y

Q(s,a2)

Summary:

If input space is continuous (or discrete but large),

we model for each action a’ the Q-values as a function

of the input state s

Q 𝑠, 𝑎′|𝒘

This function has parameters 𝒘.

Good Q-values implies a good choice of the parameters 𝒘.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 3

Continuous input space: function approximation

1. Modeling the input space

2. Loss Function and Semi-Gradient for SARSA

Part 2: Loss Function and Semi-Gradient

Previous slide:

Now we have a function that maps the state-space to Q-values.

This function depends on parameters.

How can we learn these parameters? Via minimization of a Loss Function.

Q(s,a) = rt + g Q(s’,a’)

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ g

Q(s’,a’)

rt

On-line consistency condition
(should hold on average)

Consistency condition of Bellman Eq.

yields online Error function (loss)

target

From Bellman equation to Error function.

(previous slide)

During the discussion of the Bellman equation and SARSA, we stated repeatedly

that, if we neglect the discount factor, the difference between Q-values in

neighboring time steps must be explained by the reward.

If we include the discount factor, the above statement reduces to

Where the equality sign has to be interpreted as ‘should ideally on average be

close to’ and the right hand side is the ‘target of learning’

Therefore we can construct an error function E that measures how close we are to

such an ideal case. The squared error function that implements this ideal is noted

at the bottom of the slide.

Since the ‘target of learning’ should be considered as momentarily fixed, we

optimize the error function by taking the derivative of E with respect to w but

ignore that the target also depends on w. We will explore this further in the next

week and in the applications of Deep RL.

Q(s,a) = r + g Q(s’,a’)

Blackboard 4:

Error

function

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

rt

Q(s’,a’)
Q(s,a)  r + g Q(s’,a’)

target

your notes

Error function: full gradient and semi-gradient

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradient w.r.t. this 𝒘target

Discrete time steps: s,a  s’,a’

Blackboard 4:

Gradient

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

rt

Q(s’,a’)
Q(s,a)  r + g Q(s’,a’)

target

Q(s,a) = rt + g Q(s’,a’)

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

  













'

''),(),(),(
s a

a

ss

a

ss asQasRPasQ g

Q(s’,a’)

rt

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradient w.r.t 𝒘ignore

target

On-line consistency condition
(should hold on average)

Consistency condition of Bellman Eq.

yields online Error function (loss)

‘semi-gradient’

target

From Bellman equation to Error function.

Error function: full gradient and semi-gradient

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑆

′, 𝑎′|𝒘 - Q 𝑆, 𝑎|𝒘]2

take gradient w.r.t. this 𝒘

target

Discrete time steps: s,a  s’,a’

Full gradient: you take the correct derivative with respect to 𝒘

Semi-gradient: you take the derivative with respect to 𝒘

in Q 𝑆, 𝑎|𝒘 but you ignore the 𝒘-dependence of the target.

(This is a heuristic trick to stabilize learning)

Calculate semi-gradient

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradient w.r.t. this 𝒘

target

Discrete time steps: s,a  s’,a’

𝑑

𝑑𝒘
𝐸 𝒘 = [𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]
𝑑

𝑑𝒘
𝑄 𝑠, 𝑎|𝒘

TD error

TD-error controls the ‘amount’ of update

Implement semi-gradient with SG operator

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradient w.r.t. this 𝒘target

Discrete time steps: s,a  s’,a’

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝐒𝐆{𝑄 𝑠

′, 𝑎′|𝒘 }- Q 𝑠, 𝑎|𝒘]2

SG = ‘StopGradient’ Operator

Take standard derivative (normal definition), but on a

loss function that contains the StopGradient Opeartor

(previous slide)

In the exercise, the difference between full gradient and semi-gradient becomes

visible if a=a’.

However, the problem that the target needs to be considered as ‘fixed’ to make

learning converge is a fundamental one that needs to kept in mind for all

applications of deep reinforcement learning or reinforcement learning in

continuous space.

Summary: Function approximation

Continuous state space

 use a function with parameters w to model Q-values and

generalize to unseen parts of state space

 Learn parameters with Loss Function/Semi Gradient

 Loss function implements consistency condition of Bellman eq.

 Loss function can also be used to train a deep neural network

with Q-values as output variables

(previous slide)

In implementations of standard optimization packages, we have to tell that some

parts of the loss should be ignored when calculating the derivative.

This is sometimes written with a StopGradient operator SG{ . }

(previous slide)

Discretization of continuous spaces poses several problems.

The first problem is that a rescaling becomes necessary after a change of

discretization scheme. This problem is solved by eligibility traces as well as by the

n-step TD methods

The second problem is that a tabular scheme brakes down for fine discretizations.

It is solved by a neural network where we learn the weights. Such a neural

network enables generalization by forcing a ‘smooth’ V-value or Q-value.

Teaching monitoring – monitoring of understanding

[] today, up to here, at least 60% of material was new to me.

[] up to here, I have the feeling that I have been able to follow

(at least) 80% of the lecture.

Theorem: Semi-Gradient versus Full Gradient (Exercise)

Continuous state space represented by localized basis

functions:

)(),(jajj
sswasQ  𝜙 𝑠 − 𝑠𝑗

Claim: (1) If basis functions become sharper and

non-overlapping, function approximation turns into

tabular TD-learning.

(2) In this limit, Semi-Gradient yields SARSA whereas

Full Gradient does not!

𝜙 𝑠 − 𝑠𝑗

(previous slide)

This is shown in the Exercise session.

Hence, semi-gradient is not just heuristics, but systematic in the sense that it

relates to algorithms for which we know that they are consistent with the Bellman

equation.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandReinforcement Learning Lecture 3

Continuous input space: function approximation

1. Modeling the input space

2. Loss Function and Semi-Gradient for SARSA

3. Application to Artificial Neural Networks

Part 3: Application to Artificial Neural Networks

Chess

Go

First steps toward Deep reinforcement learning

Backgammon

since 1992 …

started 2015 (?)

Backprop for deep Q-learning

action and Q-values:
Advance king

input

output
Outputs are Q-values

 actions are easy to choose

For example:

Softmax strategy: take action a’

with prob exp[(')]
(')

exp[()]
a

Q a
P a

Q a








(previous slide)

Last week we have seen that we can model Q-values in continuous state space

as a function of the state s, and parameterized with weights w.

But in fact, a model of Q-values also works when the input space is discrete, such

as it is in chess. Suppose that each output corresponds to one action (e.g. one

type of move in chess).

We can use a neural network where the output are the Q-values of the different

actions while the input represents the current state s.

Thus, an output unit n represents Q(an,s).

action and Q-values:

Neural network parameterizes Q-values

as a function of continuous state s.

One output for each action a.

Learn weights by playing against itself.

Backprop for deep Q-learning

E = 0.5 [r + g Q(s’,a’)- Q(s,a)]2
Error function for SARSA

(Backprop = gradient descent rule in multilayer networks)

input

output

E = 0.5 [r + g 𝑚𝑎𝑥𝑎′{Q(s’,a’)}- Q(s,a)]2
Error function for Q-learning

(previous slide)

Suppose that each output corresponds to one action (e.g. one type of move in

chess). Parameters are now the weights of the artificial neural network.

Actions are chosen, for example, by softmax on the Q-values in the output.

Weights are learned by playing against itself – doing gradient descent on an error

function E.

We already discussed the error function:

This error function will depend on the weights w (since Q(s,a) depends on w).

We can change the weights by (semi-)gradient descent on the error function. This

leads to the Backpropagation algorithm of ‘Deep learning’).

E = 0.5 [r + g Q(s’,a’)- Q(s,a)]2

𝑠

𝑠′

a1 a2 a3

𝑠"

a1 a2 a3

𝑃𝑠′→𝑠"
𝑎3

a1 a2 a3

𝑄(𝑠, 𝑎1)

Review Q-values and V-Values

expected total discounted reward

starting in s with action 𝑎1

𝑄(𝑠′, 𝑎3)

𝑄(𝑠, 𝑎1)

expected total discounted reward

starting in s

V(𝑠)

V(𝑠)

V(𝑠′)

= 𝑘 𝜋(𝑠, 𝑎𝑘) 𝑄(𝑠, 𝑎𝑘)

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑉 𝑠

′|𝒘 - V 𝑠|𝒘]2

take gradientignoretarget

optimize by semigradient on Loss function

(previous slide)

As an alternative to Q-values, the output of the Artificial Neural Network can also

represent V-Values. The error function is constructed analogously.

Deep Neural Network for Value function

output: V-values:

input

TD-Gammon

Tesauro, 1992,1994, 1995, 2002

- Neural network parameterizes V-values

as a function of state s.

- One single output.

- Learn weights by playing against itself.

- Minimize TD-error of V-function

- use eligibility traces

Action: move piece by greedy so as

to increase V-value

in each step (max across allowed moves)

(previous slide)

The very same ideas can also be applied to learning the V-values, instead of Q-

values. The advantage is that we have one single output. The disadvantage is that

we need to look ahead (next possible states) to choose the action. But for games

with a small number of ‘possible next states’ this is not a problem.

The analogous Bellman equation for the V-values leads to a consistency condition

characterized by an error function

Eligibility traces enable to connect the reward at the end to states several steps

before.

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑉 𝑠′|𝒘 - V 𝑠|𝒘]2

Deep Neural Network for Value function
output: V-values:

input

TD-Gammon

Tesauro, 1995,

24 locations. For each location

8 inputs (4 for white/4 for black).

1 2 3 4 5 6 19

4 or more

white pieces

(graded code)

1 white

(binary code)

(previous slide)

Even though Backgammon is a discrete stochastic game with Markov properties

(i.e., the perfect example of a Markov Decision Problem), Garry Tesauro decided to

use an ANN to encode the input position.

This incoding makes maximal use of known properties of the game:

- A single piece on a position is not protected, and therefore very different from

- Two pieces on a position that are protected against attack.

- 4 or more pieces on a position give the freedom to move with two of the pieces

and leave the remaining ones in the protected state.

He used an encoding that had separate inputs meaning for each of which and black

(at least one), (at least two), (at least three), (at least four) where the last one had an

additional linear intensity with value (n-3)/2.

A single hidden layer with 40 units was used.

Neural networks to model input space

- for control problems, input space is naturally continuous

generalize to neighboring states

- for discrete games, the input space often too big

 generalize via hidden states in neural networks

Chess

Example: moon lander

Aim: land between poles

Go Backgammon

(previous slide)

Why is it useful to use a continuous (as apposed to tabular) description of input

space even in cases where the input is naturally discrete such as in games?

The reason is that describing Q-values as a SMOOTH function of the input

enables generalization. Hidden layers of neural networks are able to extract

compressed representations of the input space that introduce heuristic but useful

notion of what it means that two states are ‘similar’ or ‘neighbors.

Related ideas have been used in many other applications, beyond chess

backgrammon or Go. We will study some of these later in this class.

TD learning where Q-values are V-values are described by a smooth function, is

also called ‘function approximation in TD learning’. The family of functions can be

defined by the parameters of a Neural Network or by the parameters of a linear

superposition of basis functions.

Summary: Deep Neural Network for TD learning

In all TD learning methods

(includes n-step SARSA, Q-learning, TD(l))

- V-values OR Q-values are the central quantities

- actions are taken with softmax, greedy, or

epsilon-greedy policy derived from Q-values/V-values

- Q-values can be represented as the output of an ANN

(previous slide)

In the previous two weeks, we have seen many different versions of TD learning.

This includes SARSA and Q-learning, TD learning, with eligibility traces (decay

factor lambda<1) or without, or n-step V-learning.

In all of these algorithms the V-values or Q-values are the central quantities. We

first learn the V-values (or Q-values) and then the policy is based on these values.

Exercise 1-3 now : Q-values (continuous)

Next Lecture at 14h15

(space for notes)

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Part 4: Deep Q-learning

Reinforcement Learning Lecture 3

Continuous input space: function approximation

(previous slide)

Deep Reinforcement Learning (DeepRL) is reinforcement learning in a deep

network. Suppose that each output unit of the networkcorresponds to one action

(e.g. one type of move in chess). Parameters are the weights of the artificial

neural network.

Actions are chosen, for example, by softmax on the Q-values in the output.

Weights are learned by playing against itself – doing gradient descent on an error

function E.

The consistency condition of TD learning, can be formulated by an error function:

This error function will depend on the weights w (since Q(s,a) depends on w).

We can change the weights by gradient descent on the error function. This leads

to the Backpropagation algorithm of ‘Deep learning’

E = 0.5 [r + g Q(s’,a’)- Q(s,a)]2

output=Q-values

input

output
Neural network parameterizes Q-values

as a function of continuous state s.

One output for one action a.

Reward = score increase

Deep Q-learning with maxQ: DeepQ/Atari games

E = 0.5 [r + g maxa’Q(s’,a’)- Q(s,a)]2
Error function for Q-learning

Outputs are Q-values

 actions are easy to choose

(e.g., softmax)

Input - states

Example: Atari-video games (Mnih et al. 2015)
input = video screen; network = ConvNet; reward = score increase

Action = every 4th input. Additional tricks: Two networks, store and replay (s,a,r,s’)

(previous slide)

Deep Q-Learning uses the a deep network which transforms the state (encoded in

the input units) into Q-values in the output.

Actions are chosen, for example, by softmax or epsilon-greedy on the Q-values in

the output.

Weights are learned by taking the semi-gradient on the error function,

Recall that SARSA and Q-learning are TD algorithms. Recall also that the idea of

the semi-gradient is to stabilize the target r + g maxa’Q(s’,a’)

When Mnih et al. applied DeepQ to video games they used a few additional tricks:

to stabilize the target even further, they kept target Q-values and current Q-values

in two separate networks; and they stored past transitions s,a,r s’, so that they

could be replayed at any time (without actual action taking), so as to update Q-

values. We will come back to DeepQ-learning in a later lsecture.

E = 0.5 [r + g maxa’Q(s’,a’)- Q(s,a)]2

Semi-gradient: from online to expectation

𝐸 𝒘 =
1

2
[𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]2

take gradient w.r.t. this 𝒘

target

Discrete time steps: s,a  s’,a’

𝑑

𝑑𝒘
𝐸 𝒘 = [𝑟𝑡 + 𝛾𝑄 𝑠

′, 𝑎′|𝒘 - Q 𝑠, 𝑎|𝒘]
𝑑

𝑑𝒘
𝑄 𝑠, 𝑎|𝒘

𝑠

𝑠′

a

𝑠"

a‘

𝑃𝑠′→𝑠"
𝑎3

Q(s,a)

rt

Q(s’,a’)

a’’

a‘

𝑬{… } =
𝟏

𝑵

{𝒂𝒍𝒍 𝒕𝒓𝒂𝒏𝒔𝒊𝒕𝒔}

𝑵

{… . }

𝑬{

𝑬{ }

}

(previous slide)

Semi-gradient implies that we only take the gradient of Q(s,a|w), but not that of Q(s’,a’).

We remark that the loss function that is usually written down refers to a SINGLE transition

[i.e., (s,a,r, s’,a’) for the case of SARSA and (s,a,r, s’) for the case of Q-learning].

Hence this is the error function for ONLINE updates, one transition at the time.

However we may also consider BATCH updates (as approximations to expected updates).

How would you implement this???

input

old/frozen

Q-values

Deep Q-learning with maxQ: use two networks for semi-gradient

E = 0.5 [r + g maxa’Q(s’,a’|𝜃𝑜𝑙𝑑)- Q(s,a|𝑤𝑖𝑗)]
2

Error function for Q-learning

input

Update

𝑤𝑖𝑗 ← 𝑤𝑖𝑗 +∆𝑤𝑖𝑗
new Q-values

𝜃𝑜𝑙𝑑 𝑤𝑖𝑗

1) Replay thousands of transitions (s,a,r,s’) with parameters 𝜃𝑜𝑙𝑑

2) Update parameters of ‘fast network’ 𝑤𝑖𝑗 ← 𝑤𝑖𝑗 +∆𝑤𝑖𝑗
3) Update: 𝜃𝑜𝑙𝑑 ← 𝑤𝑖𝑗

‘batch

update’

‘slow target network’ ‘fast update network’

(previous slide)

Semi-gradient implies that we only take the gradient of Q(s,a|w), but not that of Q(s’,a’).

The semi-gradient becomes natural if we consider that the two

estimations come from different networks

The first network (green) now implements a stable target. The second one (blues) does

rapid online updates over many samples.

Overall the resulting philosophy is that of a batch update:

1)While playing the task according to, say epsilon-greedy resulting from the stable

target network with parameters 𝜃𝑜𝑙𝑑, we store thousands of transitions (s,a,r,s’) .
2)We then use the stored transitions in random order to calculate

intermediate updates by changing the weights 𝑤𝑖𝑗 in the ‘fast update network’.

3) Only after several thousand of these replay segments we write the new parameters

𝑤𝑖𝑗 onto the ‘stable’ network which then gives an ‘updated stable network’.

Hence, gradient of the weight 𝑤𝑖𝑗 with a stable target network with fixed parameters

𝜃𝑜𝑙𝑑, is similar to semi-gradient. And also similar to batch updates of 𝜃𝑜𝑙𝑑.

E = 0.5 [r + g maxa’Q(s’,a’ |𝜃𝑜𝑙𝑑)- Q(s,a|w)]2

Detour/Repetition: Batch, ‘Online’, Expectation

∆𝜃 = −𝛼
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘]𝜃=𝜃𝑜𝑙𝑑

Online:

Update after each data point

𝐸[∆𝜃] = −𝛼𝐸[
𝑑

𝑑𝜃
𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘]𝜃=𝜃𝑜𝑙𝑑

Expected Online Update (𝜃 = 𝜃𝑜𝑙𝑑 frozen):

Expected update of the online

rule is identical

to batch update with infinite

data

Conclusion:
- With batch update we have

less jitter.

- Semi-gradient with 2 networks

= batch update with 1 network

∆𝜃 = −𝛼
𝟏

𝑵

𝒌

𝑵
𝑑

𝑑𝜃
[𝑙 f 𝑥𝑘|𝜃 , 𝑦𝑘]𝜃=𝜃𝑜𝑙𝑑]

Batch Update from 𝜃 = 𝜃𝑜𝑙𝑑:

(previous slide)

This is a repetition from an earlier lecture.

Conclusion semi-gradient with the two networks can be interpreted as a batch

update in a single network, i.e., in the slow network with parameters 𝜃 = 𝜃𝑜𝑙𝑑.

input

old/frozen

Q-values

DQN: Batch semi-gradient is implemented by the slow network

input

Update
𝑤𝑖𝑗 ← 𝑤𝑖𝑗 +∆𝑤𝑖𝑗
new Q-values

𝜃𝑜𝑙𝑑 𝑤𝑖𝑗

‘slow target network’ ‘fast update network’

DQN: Mnih et al. 2015

𝜃𝑜𝑙𝑑 ← 𝜃𝑛𝑒𝑤 = {𝑤𝑖𝑗}
Batch updates:

Make slow target network consistent with Bellman equation

(previous slide)

Hence, the semi-gradient with the two networks can be interpreted as a batch

update in a single network, i.e., batch update of the slow network with

parameters 𝜃 = 𝜃𝑜𝑙𝑑.

Summary: Deep Q-learning

E = 0.5 [r + g Q(s’,a’)- Q(s,a)]2

- Q-learning with continuous (or high-dim.) state space

- Q-values represented by output of deep ANN

- Action choice (=policy) depends on Q-values

- For training use semi-gradient with error function

either SARSA (online, on-policy)

or Q-learning (off-policy)

- Further tricks (off-line updates, target stabilization)

E = 0.5 [r + g maxa’Q(s’,a’)- Q(s,a)]2

- store transitions (s,a,r,s’) and replay offline

(previous slide)

Deep Q-Learning is SARSA (or Q-learning) in a deep ANN.

For SARSA Weights are learned by taking the semi-gradient on the error function,

Recall that SARSA and Q-learning are TD algorithms.

In the next Lecture, we will go to Policy Gradient Methods; and in the third part we

combine policy gradient methods with TD-learning!

But before that we explore function approximation further in view of its inherent

inductive bias.

E = 0.5 [r + g Q(s’,a’)- Q(s,a)]2

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Part 5: No Free Lunch Theorem

Reinforcement Learning Lecture 3

Continuous input space: function approximation

Previous slide.

No Free Lunch theorems (there are several variants) are foundational and

philosophically important to answer the question: why do deep neural networks work so

well?

The video for this part can be found on

https://lcnwww.epfl.ch/gerstner/VideoLecturesANN-Gerstner.html

Under

‘Deep Learning Lecture 3, part 6 (No free lunch theorems)

No Free Lunch Theorem

Which data set looks more noisy?

Which data set is easier to fit?

A B

Commitment:

Thumbs up
Commitment:

Thumbs down

Previous slide.

Let us start with two data sets.

line
wave package

No Free Lunch Theorem

Previous slide.

And here a possible explanation (hidden behind the blue boxes).

easy to fit

line
wave package

No Free Lunch Theorem

easy to fit

Your notes

No Free Lunch Theorem

The NO FREE LUNCH THEOREM states

“ that any two optimization algorithms are

equivalent when their performance is

averaged across all possible problems"

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

See Wikipedia/wiki/No_free_lunch_theorem

https://en.wikipedia.org/wiki/Optimization_(mathematics)
http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

Previous slide.

The conclusion is: there is no reason to believe that an algorithm that works well on one

data set will also work well on an arbitrarily chosen other data set.

“NFL theorems because they demonstrate that if an

algorithm performs well on a certain class of problems

then it necessarily pays for that with degraded

performance on the set of all remaining problems”

The mathematical statements are called

No Free Lunch (NFL) Theorems

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

See Wikipedia/wiki/No_free_lunch_theorem

http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

Previous slide.

Even worse, if the algo works well on some problem, there must exist another problem

on which the algorithm works badly.

Quiz: No Free Lunch (NFL) Theorems

[] Deep learning performs better than most other algorithms

on real world problems.

[] Deep learning can approximate to arbitrary degree any non-

ambiguous (noise-free) data set (universal approximator theor)

[] Deep learning performs better than other algorithms on

all problems.

Take a neural networks with many layers, and many neurons, optimized

by Backprop (with momentum/ADAM) as an example of deep learning

[x]

[x]

[]

Your notes.

No Free Lunch (NFL) Theorems

- Choosing a deep network and optimizing it with

gradient descent is an algorithm

- Deep learning works well on many real-world problems

- Somehow the prior structure of the deep network

matches the structure of the real-world problems

we are interested in.

Previous slide.

The reason that deep networks work well must be linked to the type of data on which

we test them.

No Free Lunch (NFL) Theorems
Geometry of the information flow in neural networks

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx x

x

x

xx
x

xx x

x
xx

x

Previous slide/next slide.

One possible explanation of why neural networks work well is the notion of

hyperplanes. Even though the data is local, you make a cut through the whole space.

This predefines additional ‘compartments’ that can be reused later for other data.

This argument might be applicable in the last few layers before the output.

Suppose we look at layer 47 in a network of 50 layers. The previous layers have

extracted high-level features (such as leg-detectors, fur-detectors etc). The last 3

layers before the output can then recombine these features in various ways to classify

all sorts of animals.

Reuse of features in Deep Networks (schematic)

xx x

x

x

xx
x

xx x

x
xx

x

animals

birds

4 legs

wings

snout

fur
eyes

tail

Summary: No Free Lunch (NFL) Theorems and Deep Networks

Somehow the prior structure of the deep network

matches the structure of the real-world problems

we are interested in.

The above example is applicable to layers close to the output,

- relevant features have been extracted in earlier layers

- the network can recombine these in various ways

A good representation (in layers close to the output) ensures

- similar = neighbor in high-dimensional feature space

This is the reason why transfer learning works:

- train a deep network on one data base (e.g. imageNet)

- retrain only a few layers close to output for new task

Ciresan et al.

Krishevsky et al.

deep convnets

trained on GPU

An image recognition task

Motivation: Convolutional networks (convnet) work well!

Fukushima (1982): Neocognitron

McClelland et al. (1996): Parallel Distributed Processing

Example: Why do convolutional networks work so well?

Convolutional networks provide an excellent inductive bias for image recognition:

object invariance to (local) translation

Inductive bias via network architecture (rather than data augmentation)

Convolutional networks (convnet) work well on images

- why do work well?

 answer: induce a good inductive bias

- what is this inductive bias?

 local translation invariance of objects

-

Quiz: Convolutional networks and No free lunch

theorem
Why are convolutional networks better than other networks on image
tasks?
[] They work better on images because they implement an explicit

inductive bias that reflects known properties of images!
[] Classification of images needs nonlinear processing and this is the
relevant inductive bias that distinguishes ConvNets from DeepReLu
networks.
[] Classification of images needs to reflect local translation invariance
of object classification.

[x]

[]

[x]

Summary: No Free Lunch (NFL) Theorems and Deep Networks

More generally the prior structure of a deep network

should match the structure of the real-world problems

we are interested in.

Always use prior knowledge if you have some!

Example: - images, translation invariance (ConvNets)

- music, tone translation invariance, motif repetition

- known symmetries of tasks

- physics, energy conservation (Noether Networks)

- topological/hierarchical relations (Graph Neural Networks)

Use prior knowledge as ‘inductive bias’ in your algorithm!

Previous slide.

Prior knowledge is important. We can use prior knowledge when we design the network

architecture.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Part 6: Inductive Bias (Example)

Reinforcement Learning Lecture 3

Continuous input space: function approximation

Previous slide.

We now turn to a small, but didactic example with only two data points.

review: No Free-lunch Theorem and Regularization

Regression task:

5 parameters for 2 data points?

No, we need more information!

More ‘data’, or ‘prior knowledge’

‘weak’ inductive bias: data explained by this formula:

Previous slide.

The notion of Inductive Bias has a strong link to the problem of regularization.

Let us suppose we have two data points in our training set. It is a regression task with

input x and real-valued target y; if it were a classification task, y would be discrete.

There are infinitely many possibilities to fit these two data points, but let us assume that

our initial inductive bias is that x and y can be linked through the displayed formula.

The fitting problem still is under-constraint, since we have more parameters than data

points; we still have have infinitely many possibilities to fit these two data points with the

displayed formula.

In other words our ‘inductive bias’ is ‘weak’, since the formula offers too much freedom.

review: No Free-lunch Theorem (strong inductive bias 1)

Previous slide.

But let us assume we had reasons to consider a stronger inductive biases.

As a first example, exponential decay with w
3

= w
4

= w
5

= 0.

review: No Free-lunch Theorem (strong inductive bias 2)

Previous slide.

Second option for strong inductive bias: we want to fit by a straight line, so that w
1

= w
2

=

w
3

= 0.

review: No Free-lunch Theorem (strong inductive bias 3)

Previous slide.

And third choice of a strong inductive bias, we assume that the data can be fit by a

parabola through the origin with w
1

= w
2

= w
5

= 0.

Any other way of fixing at least three (of the five) parameters would be an valid alternative.

How should we choose between these inductive biases?

Inductive Bias: Use prior knowledge to constrain solutions

Question: What is a good inductive bias?

 Use your prior knowledge!

Previous slide.

We always should choose our prior knowledge regarding the nature of the problem!

No Free-lunch Theorem: use inductive bias

How can we transfer our knowledge about the task to the problem at hand?
1.Data scientist approach: fit many similar problems

transfer knowledge by identifying good regularization schemes

 force w3 and w4 and w5 to be (close to) zero

2. Explicit knowledge from physics: known law of nature

 w3 = w4 = w5 = 0

3. Data augmentation

Regularization with

L1 norm on
w3

w4

w5

Previous slide.

If we have more information about the data, e.g. it comes from measurements of

radioactive decay, we can transfer our knowledge about this type of problem, select a

strong inductive bias and fit the other parameters.

This transfer can happen in different ways.

1. (The data scientist approach) We have already several times fitted all parameters w
1

to w
5

to similar data and we have always observed that w
3

to w
5

were close to 0.

Hence we decide to choose L1-regularization on w
3

to w
5

but leave w
1

and w
2

unconstrained.

2. (The physicist approach) There is some law that dictates a certain form of the function.

3. (Regularization by data augmentation) next slide.

review: No Free-lunch Theorem (data augmentation)

Prior knowledge

- Continuity

- Decreasing

Previous slide.

We may not know much about the data or find it difficult to define an explicit inductive bias

but we have the intuition that

(i) the outcome should not change much if we transform the input in a certain way, e.g.

we assume that if we would move the data points in the training set a bit to the left or

to the right the outcome y should not be very different

(ii) The output should monotonically decrease as a function of x, as indicated with the

orange data points.

With this augmented data set we can fit all 5 parameters!

review: No Free-lunch Theorem (data augmentation)

Previous slide.

Caveat: It may be difficult to find transformations that really leave the outcome invariant;

getting more actual training data is typicall better than data augmentation.

Thanks to data augmentation (WITH SMART TRANSFORMATION!), or transfer from

related problems we may be able to find a fit to only two data points that generalizes well if

the data actually came from a measurement of radioactive decay.

review: No Free-lunch Theorem (the wrong inductive bias)

Previous slide.

Even though the training error is zero for all three strong inductive biases considered here

and we have the same degrees of freedom in each case (namely two parameters to be

fitted) the performance on the test set can be terrible, if we pick the wrong inductive bias

for the data at hand. If the data came from the measurement of the trajectory of a flying

bullet the fit with the exponential decay or the straight line would not generalize well.

In other words, we don’t get good generalization for free; there is no free lunch here. Only

if we choose the inductive bias that matches the data we get good generalization.

Inductive bias

Induction = finding a rule (function) from specific examples

Inductive bias = prior preference for specific rules (functions)

1) Explicit inductive bias (transfer reasoning)

“For radioactive decay I know that w
3

= w
4

= w
5

= 0”

2) Inductive bias through transfer learning
“I first train different models on data from other radioactive elements

and choose the best model class for my current case”

3) Inductive bias through data augmentation
“For radioactive decay neighboring points have similar values and

values can only go down”

Quiz: Inductive bias

[] With a strong (and correct) inductive bias, I can reach

a low test error with very little training data.

[] With a strong inductive bias the test error will always be low.

[] Data augmentation is a heuristic method to get more training data.

[] In data augmentation there is an inductive bias in the form of our assumptions

about reasonable transformations to be applied to the data

[] Choosing a specific neural network architecture is equivalent to

choosing an explicit inductive bias.

[x]

[]

[x]

[x]

[x]

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Part 7: Inductive Bias in Reinforcement Learning (Examples)

Reinforcement Learning Lecture 3

Continuous input space: function approximation

Previous slide.

Using a specific example we want to illustrate why function approximation yields an

inductive bias for generalization.

Inductive bias in Reinforcement Learning

Before you code an RL problem, try to answer the following questions:

1) Is the problem such that in similar (neighboring) input states

the best action is (likely to be) the same?

2) Is the problem such that if I find the reward with action a*
from state s, then a* is probably good in other states as well?

3) Do I expect rewards in many states or rather only in a few

‘goal states’?

4) Moreover, are rewards given for states or state-action

transitions?
5) Is there a topology/neighborhood relation that would

enable us to talk about two actions being ‘similar’?

Previous slide.

If you know the answer to one of the questions you can use this knowledge to choose your

coding scheme for inputs and for the action space.

Inductive bias in Reinforcement Learning (Example 1)

-16 discrete states + goal

- up to 6 actions per state 𝑄 𝑎, 𝑋 =

𝑗

𝑤𝑗𝑥𝑗

𝑋 = (𝑥1, 𝑥2 … , 𝑥18)

𝑥17 = 0.5 𝑧 + 1
𝑥18 = 0.1

𝑥17 = 𝛼 𝑧 − 𝛽
More generally

Claim: this scheme encodes an inductive

bias related to some of the questions

1-hot coded

Previous slide.

We consider a specific example of how function approximation yields an inductive bias for

generalization.

We have 18 parameters. The first 16 parameters are multiplied with one-hot encoded

representations of the 16 states.

The other two parameters scale specific functions: an affine function and a bias.

In the exercises you will explore how this choice implements an inductive bias.

Inductive bias in Reinforcement Learning (Example 2):

Self-localization and Navigation to Goal
- 2-dimensional arena 80cmx60cm

- single goal location

- 120 actions (=directions of movement)

Agent:

Khepera Robot

Camera:

view

>240 000 pixel

Preprocessing:
Gabor filter bank

2400

Previous slide.

The camera of the Khepera robot makes snaptshots in 4 directions that are combined into

a single view covering a viewing field of 240 degree (total would be 360 degree).

Inductive bias in Reinforcement Learning (Example 2)

- Preprocessing Gabor filter bank:

Filters of several spatial frequency and orientation

at 45 different locations.

- Snap-shot of environment =

store the vector 𝐹𝑗
of filter responses

- ‘Basis-function’

similarity of current view 𝐹(𝑡) with stored view vector 𝐹𝑗
after rotation to optimal matching angle

-

𝜙 𝐹(𝑡) − 𝐹𝑗

sample

basis function

Previous slide.

The sample image shows the orientation of the most strongly responding filter with the

lowest spatial frequency at the 45 sampling locations.

The Gabor filters come as pairs of sine and cosine filters (or complex filters) and only the

total amplitude, but not the phase of the response of the filter pair is recorded.

The set of filter responses at time t of all 9000 filters is denoted by 𝐹(𝑡)

Details of the processing steps are explained in the next few slides

125

Real robot: view field 4X60

Simulated robot: view field 280

o

o

Self-localization and Navigation to Goal:

Details of visual processing and Extraction of Basis Function

Previous slide.

The robot takes a sample image.

With a real robot: we let the robot rotate around its own axis to take views in 4 directions,

each view over 60 degree angle; the four views are considered as a single image of view

angle 240 degrees.

In simulated robots one case use directly 280 or 300 or even 360 degree as a viewing

angle.

Model: stores views of visited places

}F{),(kpL


Local view : activation of set

of 9000 Gabor wavelets
Visual input at each

time step

Single View Cell stores a

local view
Environment exploration

All local views are

stored in an

incrementally growing

view cell population

Population of view cells

Robot in an environment

Fk

Previous slide.

During exploration the robot takes a new sample image whenever it does not recognize

the view. Recognition is defined that 10 or more cells strongly respond to the new image.

The sample image is memorized by storing the set of responses of the 9000 Gabor filters.

Model: extracting gaze orientation

View

cell i

Population of view cells

New

local

view



Stored local view i
New local view

D

iC

Alignment of views  current gaze direction

position at new

local view

iVC



i

Previous slide.

The filter responses at time t are compared to the stored filter responses.

To find the best match the new image is rotated.

The angle of rotation (necessary to yield the best match) tells us about the direction of

gaze compared to the gaze direction at the moment when the original image was stored.

Model: extracting position via basis functions

Stored local view i New local view

population of view cells

responding at red position










 D


2

2

2

)(
exp

vc

VC

i

L
r



)(tFFL i DDifference:

Similarity

measure:

Vector of filter responses

Small difference between

local views – spatially

close positions

𝜙 𝐹(𝑡) − 𝐹𝑖 = 𝑟𝑖
𝑉𝐶Basis

Function

Previous slide.

After the rotation to best-match position. the filter responses at time t are compared to the

stored filter responses. This yields the basis function.

The image on the right shows which basis functions respond when the robot is at a

specific location. Red indicates strong response.

Note that basis functions do not know where they are located in space (i.e. they have no

spatial position label, but just their response profile and an index for each basis function).

For this image we have plotted a dot at a place that corresponds to the location of the

maximal response of a given basis function. But this is for visualization purpose only.

𝑄 𝑠, 𝑎′ 𝒘 =

𝑗

𝑤𝑗 𝑎
′ 𝜙 𝐹(𝑡) − 𝐹𝑗

𝜙 𝐹(𝑡) − 𝐹𝑗

s(t)state

𝑤𝑗 𝑎
′

𝑎′

𝑓𝑗
preprocesing: Gabor filters

+ rotation/alignment

Summary: From Pixel input to Basis function to Q-values

Previous slide.

Action neurons represent the Q-values. In total there are 120 neurons. We may consider

them to lie on a circle with a position on the circlue corresponding to the direction of

movement triggered by the action.

The center fj of each basis function j corresponds to the (stored) response of thousands of

Gabor filters recorded at some time tj during exploration. The output of the basis function j

measures the similarity with the current view, represent by the current response of the

Gaborfilters, The vector of all Gabor filter responses at time t is f(t).

The figure on the left shows rather schematically the net result of the processing steps.

The functions f are visualized as local basis functions in the environment. Weights

connect to actions that code for the different movement directions. The activiation of each

action unit indicates its Q-value.

Inductive bias in Reinforcement Learning (Example 2):

Self-localization and Navigation to Goal:

- While exploring: take new snapshot whenever less than

10 basis functions are active  creates new basis function

- Reinforcement Learning by Q-learning

- Final action directions after 20 trials (goal-findings)

goal

goal

Previous slide.

The left image shows the time it takes to find the goal, as a function of successful trials

(episodes).

The right image shows needles that indicate the learned direction of movement after 20

trials.

Navigation Results: Office environment

- Learning = relate present view (location) to movement direction

- Needs alignment of the views to know orientation

Sheynikhovich et al.

Psychological Review,

2009

- Map after 10 trials

Previous slides.

- Coding of input space: we sample vectors of feature responses in the high-dimensional

space, but we know that in the end they encode only two dimensions, so that sampling

is indeed possible.

- The space is further reduced from 3 to 2 dimensions by algorithmic rotation of images

(= shift of feature vectors) to get rid of difference due to orientation.

- We can work with relatively long eligibility traces, since there is a single goal state.

- We generalize across actions: we imagine actions forming a ring of possible directions.

Neighboring actions should learn (in most states) similar behavior, hence if action a* is

chosen with SARSA and learns (at rate eta), then all its neighbors learn as well (but

with slightly reduced rate).

Inductive bias in Reinforcement Learning (Example 2)

- input: 240 000 pixels (or values of 9 000 Gabor filters)

 high-dimensional!

- output: 120 actions

 high-dimensional!

Why does it work?
What is the ‘real’ input dimension? (states)

What is the ‘real’ output-dimension? (actions)

2+1 = surface of movement + gaze-orientation

2 = left motor + right motor =

orientation of movement + speed

Inductive bias in Reinforcement Learning

Before you code an RL problem, try to answer the following questions:

1) Is the problem such that in similar (neighboring) input states

the best action is (likely to be) the same?

2) Is the problem such that if I find the reward with action a*
from state s, then a* is probably good in all states?

Yes  broad overlapping representation of states is possible.

low intrinsic dimensionality of state space  sampling possible

No, not in presence of obstacles or objects in the middle

 global representation of states is not useful.

Inductive bias in Reinforcement Learning

3) Do I expect rewards in many states or rather only in a few

‘goal states’?

4) Moreover, are rewards given for states or state-action

transitions?

5) Is there a topology/neighborhood relation that would

enable us to talk about two actions being ‘similar’?

Single goal state  long eligibility traces possible.

Rewards only in states  exploration easier: stop exploration

if each state well represented

Inductive bias in Reinforcement Learning

5) Is there a topology/neighborhood relation that would

enable us to talk about two actions being ‘similar’?

Yes  Generalization across actions space possible.

Enforce activity profile

= spread Q-value activity

from ‘winning action’

to neighbors

= learn neighbors at the same

time

= learn as if all similar actions

had been taken as well

Inductive bias in Reinforcement Learning

The EFFECTIVE number of parameters is much lower

than the number of weights, since neighboring state neurons

and neighboring action neurons learn similar things.

Additional inductive bias is also used in this example:

- Odometry (wheel turns) allows to give a noisy prediction of

current location.

- This prediction can be combined with the filter response to

give more localized filters

- The odometry in turn can be calibrated by the recognized filter

responses.

- No stable compass, GPS, or knowledge of ‘where’ necessary

Previous slides.

- Coding of input space: we sample vectors of feature responses in the high-dimensional

space, but we know that in the end they encode only two dimensions, so that sampling

is indeed possible.

- The space is further reduced from 3 to 2 dimensions by algorithmic rotation of images

(= shift of feature vectors) to get rid of difference due to orientation.

- We can work with relatively long eligibility traces, since there is a single goal state.

- We generalize across actions: we imagine actions forming a ring of possible directions.

Neighboring actions should learn (in most states) similar behavior, hence if action a* is

chosen with SARSA and learns (at rate eta), then all its neighbors learn as well (but

with slightly reduced rate).

Inductive bias in Reinforcement Learning

Use all prior knowledge you have, before you start coding:

- No Free Lunch

- a generic neural network is rarely the best

- choose encoding and preprocessing so that generalization

across ‘similar things’ becomes possible.

Reinforcement Learning can be extremely fast!!!

