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Deep Nets2: Tricks of the Trade in Deep Learning

Objectives for today:

- Bagging

- Dropout

- What are good units for hidden layers? 

- Rectified linear unit (RELU)

- Shifted exponential linear (ELU and SELU)

- BackProp: Initialization 

- Linearity problem, vanishing gradient problem, bias problem

- Batch normalization

Part 1: Questions and Aims of this Lecture



Previous slide.

This first part formulates the aims and big questions for this week.



Review: Artificial Neural Networks for classification

input

output

car dog

Aim of learning:

Adjust connections such

that output is correct

(for each input image,

even new ones)



Previous slide.

We use an artificial neural network, with multiple layers. 

We adjust the weights of the network so that it works well for new data.

This week we will address three important questions.
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Previous slide.

In each layer, neurons perform a nonlinear transform g(a).



𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑥𝑗
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output layer

use sigmoidal unit (for single-class)

Deep Neural Networks: choice of neuron model

hidden layer

use rectified linear unit in N+1 dim.
f(x)=x for x>0

f(x)=0 for x<0 or x=0

Why?

Better choices?

 𝑦𝑘 =
𝒆𝒙𝒑(𝑎𝑘)

 𝒋 𝒆𝒙𝒑(𝑎𝑗)

 𝑦1 = 𝑔 𝑎 =
1

1 + 𝑒−𝑎

or softmax (for exclusive multi-class) …



Previous slide.

In the output layer of a neural network trained on a classification task, we should always 

use a sigmoidal unit (for yes-no single-class tasks) or the softmax function for 

classification into multiple classes.

The softmax function will be discussed in the context of statistical classification in the 

next lecture. In case you want to preview it. Output k is given by 

where the sum in the denominator runs over all output units (all classes)

Why we should use in the hidden layer a rectified linear function is less obvious.

 𝑦𝑘 =
𝒆𝒙𝒑(𝑎𝑘)

 𝒋 𝒆𝒙𝒑(𝑎𝑗)



𝒙 ∈ 𝑅𝑁+1
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Rectified Linear (RELU) vs. Sigmoidal 

in hidden layer
f(a)=a for a>0

a
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Previous slide.

Indeed, there are other choices. We could also use a sigmoidal unit in the hidden layer.



𝒙 ∈ 𝑅𝑁+1
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Exponential Linear (ELU) vs RELU

Shifted ReLU (SReLU)

Leaky ReLu (LReLU)

Clevert et al.

ICML 2016

Exponential Linear (ELU) 

𝑥𝑖
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Previous slide.

… or a shifted exponential-linear function which is bounded from below by -1 and 

continues linearly for x>0: Exponential Linear Unit (ELU).

To complete the picture, we can also consider a Shifted Rectified Linear Unit (SReLU)

Or the

piecewise linear with positive slope for x<0, the Leaky Rectified Linear Unit (LReLU).

f(a)=a for a>0

f(a)=exp(a)-1 for a<0



What are good models for hidden neurons?

… and why?

Question 1 for this week:



Previous slide.

The question will be addressed in part 5, today,  starting with slides 91.

To answer this question, we will look at the BackProp algorithm and focus on values

x = ±𝜀
where epsilon is a small number. But also at values

x = ±𝛼
with alpha of order one.
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Previous slide.

In week 2, we have studied the BackProp algorithm with forward



𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp Calculate output error 

𝛿

∆𝑤𝑖𝑗
(𝑛)

= −𝛾



Previous slide.

… and backward pass.
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Previous slide.

We emphasized the update of the weights. But so far we did not yet discuss how the 

weights are initialized.  Why does initialization (or normalization) matter in Backprop?



Why does the initatialization or normalization

matter in backprop?

Question 2 for this week:



Previous slide.

This question will also be addressed in part 4, starting with slide 91.
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Review:  Single-Layer networks/simple perceptron 
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Previous slide.

In the context of generalization, we have seen that a simple perceptron can only solve 

linearly separable problems



Review: Classification as a geometric problem
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Previous slide.

Whereas a multilayer perceptron  is flexible enough to solve complex classification 

problems 



Review: The problem of overfitting

Big Multilayer perceptrons are flexible and can be 

trained by BackProp to minimize classification error

… but is flexibility always good?
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Previous slide.

But flexibility can lead to overfitting, unless we use a proper regularization method.



What are good models for regularization

of deep networks?

… and why?

Question 3 for this week:

We start with this question!



Previous slide.

We have already seen two powerful regularization methods, early stopping and L2 

(or L1) norm penalty on the weights, but there are other regularization methods that are 

widely used in applications of neural networks.

The question of additional regularization method will be addressed in part 1 today, 

starting now



Wulfram Gerstner

EPFL, Lausanne, Switzerland

Objectives for this lecture:

- Bagging

- Dropout

- Data augmentation

- What are good units for hidden layers? 

- Rectified linear unit (RELU)

- Shifted exponential linear (SELU)

- BackProp: Weight initialization 

- Linearity problem, vanishing gradient problem, bias problem

- Batch normalization

Part 1: Questions and Aims of this Lecture



Previous slide.

We start with bagging which is an traditional and generic methods of regularization in 

machine learning.

We use this as a preparation for Dropout which is a method that is widely used in 

neural networks and a rather specific trick for deep networks.

We will then turn to questions of why some neuron models might be preferable 

compared to others.

And why you need batch normalization when you work with piecewise linear units.



Wulfram Gerstner
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Tricks of the Trade in  Deep Learning

1. Questions and Aims of this Lecture 

2. Bagging

Part 2: Bagging 



Previous slide.

Bagging is a regularization method, that we will discuss now.
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Bagging Example: simple perceptron 
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Previous slide.

To introduce bagging, we start with the simple perceptron as an example.

The simple perceptron imposes a linear separation of positive and negative examples.
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Bagging  Example: simple perceptron for noisy data 
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Previous slide.

In the following we work with noisy data and use a sigmoidal in the output.
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Previous slide.

We work with K repetitions of the simple perceptron.

More generally, repeating a simple model is the first idea of bagging
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Bagging  Idea: (ii) Each Variant sees different subsets of data
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Previous slide.

… where each variant (i.e. each copy of the simple perceptron) is optimized for a 

different subset of the data; from the first variant
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Bagging  Idea: (ii) Each Variant sees different subsets of data
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Previous slide.

… or the second one
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Bagging  Idea: (ii) Each Variant sees different subsets of data
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Previous slide.

… or the last one.
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For classification tasks:

 𝑦𝑏𝑎𝑔>0.5 =  majority vote step



Previous slide.

Rather than looking for a single copy of the simple perceptron that would be the ‘best’ in 

some sense, we take all K copies in parallel and average their outputs.

For classification task, the value  𝑦𝑏𝑎𝑔 must be compared with a threshold to assign the 

class. If we use a threshold of 0.5, then we can think of bagging as ‘majority’ vote 

across the ensemble outputs.

Note that   𝑦𝑏𝑎𝑔 can implement more than just a separating hyperplane! This is not 

surprising since bagging corresponds to adding an extra layer to the original smaller 

network.



1 Generate K different training sets

for k=1,…,K 

pick 𝑷𝟏 times into your data set with replacement

(your can pick the same data point several times)

2 Initialize K different variants of your model

3 Train model k on data set k up to criterion

4 For a future data point (test set)

for k=1,…,K 

put input x into model k, read out 

5  Report average 

Bagging : Algorithm

Given: Training data set  𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑷𝟏  ;

 𝑦𝑘

 𝑦𝑏𝑎𝑔 =
1
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𝑘=1

𝐾

 𝑦𝑘



Previous slide.

Pseudoalgorithm for bagging.

Steps 1-3 describe training.

Steps 4-5 describe testing (or final application).



Bagging: Theory

 𝑦𝑘 = 0.5[1 + 𝑡𝑎𝑛ℎ  𝑗 𝑤𝑗 𝑥𝑗 − 𝜗 ]
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Previous slide.

Bagging is supported by a theoretical analysis.

Suppose the actual output of copy k of the model is  𝑦𝑘
𝜇

while the target output is 𝑡𝑘
𝜇

(either zero or one)

We introduce the signed difference

which is some function of the distance a of the data point from the separating 

hyperplane. Toward the end of learning d𝑘
𝜇

will be small, but can be positive or negative.

We are interested in the quadratic error in the output of copy k: 

We compare this error with the quadratic error E𝑏𝑎𝑔 of the total ‘bagged’ output

d𝑘
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 𝑦𝑘
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E𝑘 = 
1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
]2



Bagging : Theory

Blackboard: Bagging

Claim: the error of a  bagged output is always smaller 

than that a typical individual model

 Part 2*: Bagging - Theory



Previous slide.

Bagging is supported by theoretical analysis. The short summary is that

using a bagged output is always better than using the output of a single model.

There are different variants of Bagging Theorems. We will discuss a specific one later in 

the Theory Part (Blackboard Part).



Bagging : Result

assumption: the average delta-difference, defined as
1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
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is the same for all K copies of the model.

THEN

- bagged output has smaller quadratic error

than a typical individual model

- if all K individual models are uncorrelated, the gain

in performance scales as 1/K 



Previous slide.

Thus, using a bagged output is always better than using the output of a single model.

NOTE: the assumption is rather natural. If all K models are trained with the same 

learning algorithm, same error function, and same regularization, there is no reason 

that the average delta-difference would be bigger for one model than the other, if the 

average is over many data points (apart from statistical fluctuations).

NOTE: with a suitable error function, the average delta-difference  might even be zero.

NOTE: the assumption is nevertheless a bit special because we say that the average 

delta-distance should be identical for all copies of the model --- as opposed to the 

average squared-delta distance.



Bagging: each of the models can be a deep network

… 
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Previous slide.

Bagging does not only work for simple perceptrons, but also for multi-layer neural 

networks. You simply need to train the networks separately and then average their 

outputs.

Note that averaging over the output is identical to adding an additional linear output 

neuron on top of the existing networks, so that instead of K copies of a smaller network 

we can also view it as a single larger network.



Bagging: each of the models sees a different data set

… 
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Goodfellow et al.

Deep Learning, 2016



Previous slide.

As an illustration of bagging, Goodfellow et al. give the following example.

The task is to build a detector for eights, ‘8’.

One member of the ensemble (i.e., one copy of the network) is exposed of a data set 

which contains many sixes and eights (plus possibly a few nines). It therefore learns to 

build a detector that mainly focuses on the upper half of the input images.

Another copy of the network is exposed to a data based which contains many many

nines as well as a eights (and also possibly a few sixes). It therefore learns to build a 

detector that mainly focuses on the lower half of the input images.

Once you average of the results of  different copies of the network, you get a better 

detector of eights, than any single network alone.



Quiz:

[ ] If you want to win a machine learning competition,

it is better to average the prediction on new data over ten

different models  (assuming that you hesitate between 

these ten because they look roughly equally good), 

rather than just using the model

that is best on your validation data.

[ ] If you want to win a machine learning competition,

it is better to hand in 10 contributions (using different author names)

rather than a single contribution

[x ]

[x]



Your notes. 



Claim: the error of a  bagged output is always smaller 

than that a typical individual model

Artificial Neural Networks

Tricks of the Trade in  Deep Learning

Part 2*: Bagging - Theory



Bagging:  Preparation for Theory
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Bagging: Theory
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Previous slide.

Bagging is supported by a theoretical analysis.

Suppose the actual output of copy k of the model is  𝑦𝑘
𝜇

while the target output is 𝑡𝑘
𝜇

(either zero or one)

We introduce the signed difference

which is some function of the distance a of the data point from the separating 

hyperplane (and it is shifted downward for negative samples). Toward the end of 

learning d𝑘
𝜇

will be small, but can be positive or negative.

We are interested in the quadratic error in the output of copy k: 

We compare this error with the quadratic error E𝑏𝑎𝑔 of the total ‘bagged’ output
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Bagging : Theory

Claim: bagged output has smaller quadratic error

than a typical individual model
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Bagging : Theory

Claim: bagged output has smaller quadratic error

than a typical individual model
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Theoreom



Previous slide.



Proof Sketch (1)
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𝑃
 𝜇=1

𝑃 [ε
𝑘

𝜇
]2 = V

with variance

=1

𝐾
 𝑘 ( 1

𝑃
 𝜇=1

𝑃 [e
𝑘

𝜇
+ 𝑑]2)

= V + d2



Proof Sketch (2)

 

E𝑘 𝑘
= 

1

𝐾
 𝑘 ( 1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
]2)

Typical error of single copy is

= V + d2

Quadratic  error of bagged output  is

E𝑏𝑎𝑔 = 
1

𝑃
 𝜇=1

𝑃 [d
𝑏𝑎𝑔

𝜇
]2

E𝑏𝑎𝑔 = 
1

𝑃
 𝜇=1

𝑃 [e
𝑏𝑎𝑔

𝜇
+ 𝑑]2

ε𝑏𝑎𝑔
𝜇

= d𝑏𝑎𝑔
𝜇

− 𝑑

ε𝑏𝑎𝑔
𝜇

= 1
𝐾
 𝑘 ε𝑘

𝜇

1

𝑃
 
𝜇=1

𝑃

ε𝑏𝑎𝑔
𝜇 = 0

E𝑏𝑎𝑔 =
1

𝐾
V + d2 + 1

𝑃
 𝜇=1

𝑃 1

𝐾
 𝑘 ε𝑘

𝜇 1

𝐾
 𝑚≠𝑘 ε𝑚

𝜇



Proof Sketch (2)

 

E𝑘 𝑘
= 

1

𝐾
 𝑘 ( 1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
]2)

Typical error of single copy is

= V + d2

Quadratic  error of bagged output  is

E𝑏𝑎𝑔 = 
1

𝑃
 𝜇=1

𝑃 [d
𝑏𝑎𝑔

𝜇
]2

E𝑏𝑎𝑔 = 
1

𝑃
 𝜇=1

𝑃 [e
𝑏𝑎𝑔

𝜇
+ 𝑑]2

ε𝑏𝑎𝑔
𝜇

= d𝑏𝑎𝑔
𝜇

− 𝑑

ε𝑏𝑎𝑔
𝜇

= 1
𝐾
 𝑘 ε𝑘

𝜇

1

𝑃
 
𝜇=1

𝑃

ε𝑏𝑎𝑔
𝜇 = 0

E𝑏𝑎𝑔 =
1

𝐾
V + d2 + 1

𝑃
 𝜇=1

𝑃 1

𝐾
 𝑘 ε𝑘

𝜇 1

𝐾
 𝑚≠𝑘 ε𝑚

𝜇



Bagging : Theory Result

Assumption: the average delta-difference, defined as
1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
] = d 

is the same for all K copies of the model.

THEN

- bagged output has smaller quadratic error

than a typical individual model

- if all K individual models are uncorrelated, the gain

in performance scales as 1/K 



Notes on  Theory Result

1. Assumption: the average delta-difference, defined as
1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
] = d 

is the same (the assumption is not for the quadratic error)

2. With a good error function d might even vanish.

3. Uncorrelated data is necessary for effect.

Having more independent data is always better,

but resampling is a good trick to construct 

‘somewhat independent’ data sets from finite data.

4. Our theorem does not include the majority vote at the end
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Part 3: Dropout



Previous slide.

Dropout is a regularization method that has been specifically developed for neural 

networks. It is very loosely related to bagging.



Dropout: suppress 50 percent of hidden units during training 

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)



Previous slide.

Remember that in all cases where we want to use regularization, we start with a 

network that is too flexible (too many neurons and layers) so that we would see 

overfitting without regularization.

We therefore start with a big and flexible network. During training, you randomly 

suppress, for each input pattern, 50 percent of the hidden units.



Dropout: suppress 50 percent of hidden units during training 

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)



Previous slide.

Thus for pattern number   m you randomly pick a subset of hidden units which you 

remove (their outputs are set to zero). 



Dropout: suppress 50 percent of hidden units during training 

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)



Previous slide.

And for pattern number   m+, m+,  you randomly pick each time a different subset of 

hidden units which you remove (their outputs are set to zero). 



Dropout: suppress 50 percent of hidden units during training 

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)



Previous slide.

You train over many epochs.



Dropout: use full network for validation and test

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

For test:

- full network

- but multiply  output weights 

from hidden units

by 1/2

 Total input to each unit is roughly

same as during training



Previous slide.

For testing you use the full network with all hidden units.

However, since there are now twice as many hidden units as during training, you need 

to multiply the output weights by  factor ½, so that the typical input to a unit in the next 

layers is roughly the same as during training.



Dropout: two different interpretations

1. An approximate, but practical

implementation of bagging

2. A tool to enforce representation sharing

in the hidden neurons



Previous slide.

Dropout is an effective regularization method widely used in Deep Artificial Neural 

Networks. There are two different interpretations of why dropout works.

Here is the first one:

Dropout can be seen as approximate bagging



Dropout as approximate bagging

Differences to standard bagging:

- bagging not just for the output layer
- not a fixed data base for each ‘dropout’ configuration

- models are not independent: share weights

- output not a ‘average’ or ‘majority vote’  over model outputs

Dropout can be seen as a practical application 

of the ideas of bagging to deep networks



Previous slide.

The first interpretation sees dropout as a practical implementation of the ideas of 

bagging to deep networks.

Note that dropout implements ideas of bagging not just for the output layer, but also for 

neurons in the hidden layer.

Further differences to standard bagging are:

1.  not a fixed data base for each ‘dropout’ configuration.

In a network with Nh hidden neurons, there are 

(Nh ! )/[ (Nh /2)! (Nh /2)! ] different dropout configuration.

If the same configuration reappears, it will be trained with a different input pattern.

2.  models not independent, because they share weights.

In bagging, models are first trained independently and only combined at the end.

Here, each pair of configurations shares half the neurons.  

3. output not a ‘sum over model outputs’

In dropout, the output can be a sigmoidal unit.



Dropout as forced feature sharing

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx x

x

x

xx
x

Feature sharing:

Take 2 times as many neurons,

But make sure they all solve

similar tasks

‘robust’



Previous slide.

The second interpretation is: Dropout is a tool to enforce representation sharing in the 

hidden neurons.

To understand this statement, let us focus on the red neuron somewhere inside the 

network. It receives inputs from the four blue hidden neurons one layer below. Each of 

the blue neurons represents a hyperplane in input space (or more generally: in the 

space of the previous hidden layer). 

The red neurons takes a weighted average over the output of the blue neurons which 

corresponds to a nonlinear separation in the input space as indicated by the dashed red 

line.

Suppose now that we add another four blue neurons  in the first hidden layer. 

Dropout forces them to learn very similar separating hyperplanes: for example we add 

two neurons, but remove at the same time two of the old ones. The two new ones will 

take over the role of those that they have to replace, but they might implement slightly 

different hyperplanes. Hyperplanes can be interpreted as features.

In the end, the set of eight neurons will share features, by implementing similar 

hyperplanes.



Summary: two different interpretations of Dropout

1. An approximate, but practical

implementation of bagging

2. A tool to enforce representation sharing

in the hidden neurons

 useful regularization method,

 simple to implement



Previous slide.

In summary, there are two different interpretations of Dropout.

The first one sees Dropout as an approximate version of Bagging, suitable for deep 

networks.

The second one highlights that Dropout enforces feature sharing between different 

hidden neurons in the same layer

In practice, dropout is a useful regularization method because it is simple to implement.



Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Tricks of the Trade in  Deep Learning

1. Questions and aims

2. Bagging

3. Dropout

4. Data augmentation

Part 4: Data augmentation                  



Previous slide.

Data augmentation is a very effective regularization method and comes at relatively low 

cost. 



Dataset augmentation: Translations and Rotationas

Deep Learning, Goodfellow et al. 2016



Previous slide.

Dataset augmentation is a simple regularization method. You start with a dataset of P 

data points.

For each data point you apply a few transformations. For the case of images, these are:

1. An image is laterally, vertically, or diagonally shifted (you need to fill in the 

background to do so). The new images are added to the data base (with the same 

label)

2. An image is flipped. The new image is added to the data base (the the same label).



Dataset augmentation: Translations and Rotationas

Deep Learning, Goodfellow et al. 2016



Previous slide.

Dataset augmentation is a simple regularization method. You start with a dataset of P 

data points.

For each data point you apply a few transformations. For the case of images, these are:

1. An image is laterally, vertically, or diagonally shifted (you need to fill in the 

background to do so). The new images are added to the data base (with the same 

label)

2. An image is flipped. The new image is added to the data base (the the same label).

3. You add pixel noise (white or locally correlated). The new images are added to the 

data base (with the same label).

4. You apply one or several elastic deformations. The new images are added to the 

data base (with the same label).

5. You slightly shift the color scheme. The new images are added to the data base 

(with the same label).

Thus, a single image gives rise to twenty or more images. The transformations must 

correspond to the known invariances: a butterfly remains a butterfly if it is shifted, if the 

background illumination changes, if its shape changes slightly, etc.



Dataset augmentation: artistic styles



Previous slide.

But there are other ways to do data augmentation on images. We may exploit that

humans recognize not only objects and scenes from photographs, but also from artistic 

images.

For example, we recognize a boathouse in the country, or a face, or the sky in the night, 

even if these are stylized paintings.



Dataset augmentation: artistic styles

https://deepart.io/ Gatys, Ecker, Bethge "A Neural Algorithm of Artistic Style" (2015).

https://arxiv.org/abs/1508.06576


Previous slide.

Therefore, we can use as training data for object recognition not just original photos, 

but also transformed versions of these photos.

With AI methods, stylized versions of images can be automatically generated.



Dataset augmentation

Robert Geirhos et al., 

ICLR, 2019

Augment images from ImageNet 

with stylized versions, generated automatically

easy original images  difficult stylized images (same label)

thousands of potential styles for each image!



Previous slide.

When trained on stylized versions of images ( automatically generated from the 

originals and a random artistic style), the object recognition of deep networks becomes 

much more stable, and more comparable to humans, compared to the case where only 

original image in ImageNet were used.



Summary: Data augmentation as regularization

- Data set augmentation is a regularization method

- Data augmentation should reflect all known invariances 

of the task

- Labels for augmented images are ‘copied’ from originals

- Not just images, also for other input vectors

- Generated automatically by algorithms



Previous slide.

Data set augmentation is a regularization method, because it avoids overfitting

Data set augmentation is effective, ant not costly in terms of human labor: we just use 

machine time to generate the additional images using some algorithms

And of course, it also is possible outside the domain of images as inputs.
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Part 5: Weight initialization and choice of hidden units



Previous slide.

We now focus on the hidden neurons.



𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

f(x)=x for x>0

𝜀 𝛼

a

-different patterns give different activation

of same neuron (red)

-same input pattern gives different activation

of different neurons (red, blue)

Choice of hidden units



Previous slide.

Let us focus on the red neuron in one of the hidden layers.

If I apply pattern m , the total activation a of the red neuron might be a.

If I apply pattern m+, the total activation a of the red neuron might be -e.

If I apply pattern m+, the total activation a of the red neuron might be +e.

Etc.

Thus different patterns cause different activation values of same neuron (red)

On the other hand,

If I apply pattern m, the total activation a of the red neuron might be a,

and the total activation a of the blue neuron might be -2a.

Etc.

Thus the same patterns causes different activation values for different neuron.

Let us keep this in mind for the following discussions.



Initialization (input layer)

Blackboard

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

Claim: square root of N is important

Normalization of data base (preprocessing):

(1)

(2)

1

𝑃
 𝜇=1

𝑃 𝑥𝑗
𝜇

=0

Random initialization of weights:

(3)

How should we choose the variance?

< 𝑤𝑖𝑗
(𝑛)

> = 0

< (𝑥𝑗 )2>= 1

𝑃
 𝜇=1

𝑃 (𝑥𝑗
𝜇
)(𝑥𝑗

𝜇
) =1

𝑥𝑗 =



Previous slide.

Let us now focus on a single neuron (red), and look at different input patterns.

We suppose that patterns in the data base have been pre-treated in a normalization 

step so as to ensure that for each component (e.g. each pixel) the empirical mean 

across all patterns is zero.

We will initialize the weights by drawing weight values randomly and independently 

from a  Gaussian distribution with mean zero, so that the expectation value is:

We ask the question: how should we choose the variance of the initial weight 

distribution?

< 𝑥𝑗 >= 1

𝑃
 𝜇=1

𝑃 𝑥𝑗
𝜇

=0

< 𝑤𝑖𝑗
(𝑛)

> = 0



𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

Claim: square root of N is important

Assumptions: 

(1)

(2)

𝑥𝑗 = 0 ;

< 𝑤𝑖𝑗
(1)

> = 0

 Distribution of 𝑎𝑖
(1)

in layer 1? 

𝑥𝑖
(1)

= 𝑔( 

𝑗=1

𝑁

𝑤𝑖𝑗
(1)

𝑥𝑗
(0)

− 𝜗) = 𝑔(𝑎𝑖
(1)

− 𝜗)

for all j𝑥𝑗
𝜇

2
= 1



𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

Claim: square root of N is important

Assumptions: 
(1)

(2)

𝑥𝑗 = 0 ;

𝑤𝑖𝑗
(1)

= 0

 Distribution of 𝑎𝑖
(1)

in layer 1? 

𝑥𝑖
(1)

= 𝑔( 

𝑘=1

𝑁

𝑤𝑖𝑗
(1)

𝑥𝑗
(0)

− 𝜗) = 𝑔(𝑎𝑖
(1)

− 𝜗)

for all j

a
𝑎𝑖

(1)
=  

𝑗=1

𝑁

𝑤𝑖𝑗
(1)

𝑥𝑗
(0)

𝑥𝑗
𝜇

2
= 1



𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

Claim: square root of N is important

Assumptions: 
(1)

(2)

𝑥𝑗 = 0 ;

𝑤𝑖𝑗
(1)

= 0

 Distribution of 𝑎𝑖
(1)

in layer 1? 

𝑥𝑖
(1)

= 𝑔( 

𝑘=1

𝑁

𝑤𝑖𝑗
(1)

𝑥𝑗
(0)

− 𝜗) = 𝑔(𝑎𝑖
(1)

− 𝜗)

for all j

a
𝑎𝑖

(1)
=  𝑗=1

𝑁 < 𝑤𝑖𝑗
(1)

>< 𝑥𝑗
(0)

> =0

𝑎𝑖
(1) 2

=  

𝑗=1

𝑁

< 𝑤𝑖𝑗
(1) 2

> < 𝑥𝑗
(0) 2

> = 𝑁 < 𝑤𝑖𝑗
(1) 2

>

𝑥𝑗
𝜇

2
= 1



Your notes. 



Initialization (input layer)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

 Distribution of 𝑥𝑗
(1)

in layer 1 

Normalization of data base:

(1) < 𝑥𝑗 >= 1

𝑃
 𝜇=1

𝑃 𝑥𝑗
𝜇

=0; and 𝑥𝑗
2 = 1

Random initialization of weights:

(2)

And standard deviation propto

< 𝑤𝑖𝑗
(1)

> = 0

1/ 𝑁

 Distribution of 𝑥𝑗
(𝑘)

in layer k



Previous slide.

Appropriate random initialization of the input weights (layer 1), gives an expected 

activation

and a standard deviation

< [𝑎
𝑖

1
]2 > = 2

As a result we will have a suitable distribution of values  𝑥𝑗
(1)

in layer 1.

Random initialization of weights in layer 2, gives a distribution of activation 𝑎𝑗
2

in layer 

2, which in turn are transformed into a distribution of values 𝑥𝑗
(2)

in layer 2; and this 

process continues (see Exercises this week).

< 𝑎𝑖
(1)

>= 1

𝑃
 𝜇=1

𝑃 𝑤𝑖𝑗
(1)

𝑥𝑗
𝜇

=0



𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp
output

activity

input

pattern



Previous slide.

In the forward pass, we need to evaluate

Now we can use the same argument as previously used for the input layer. For neuron j 

in layer n, the value 𝑥𝑗
(𝑛)

will depend on the pattern so that we have a distribution of 

values across different patterns.

𝑥𝑗
(𝑛)

= 𝑔[  

𝑘

𝑤𝑗,𝑘
𝑛

𝑥𝑘
𝑛−1

]



𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp Calculate output error 

𝛿



Previous slide.

In the backward pass, we need to evaluate

𝑔′ 𝑎𝑗
𝑛

= 𝑔′[  

𝑘

𝑤𝑗,𝑘
𝑛

𝑥𝑘
𝑛−1

]



𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp update all weights

∆𝑤𝑖,𝑗
(𝑛)

= 𝛿𝑖
(𝑛)

𝑥𝑗
(𝑛−1)



Previous slide.

Before we finally update the weights.



Why does the initialization of weights

matter in backprop?



Previous slide.

So why is the initialization of the weights  so important?

Analogously, whey is the normalization of the weights so important? 



Forward pass: Linear and nonlinear processing

input

pattern
𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝜀

a

𝛼−𝛼
−𝜀



Previous slide.

As we have seen,

If I apply pattern m , the total activation a of the red neuron might be a.

If I apply pattern m+, the total activation a of the red neuron might be -e.

If I apply pattern m+, the total activation a of the red neuron might be +e.

Etc.

Thus different patterns cause different activation values of same neuron (red)



Forward pass: Linear and nonlinear processing

Observations:

if all patterns in all layers touch the linear

regime of g(a), then the whole network is linear

 different patterns should touch different regions

of g(a).

- this is automatically true for ReLu, 

if the mean (across patterns) is  a=0

- this is automatically true for sigmoidals, if

the variance (across patterns) is > 2

𝜀

a

𝛼−𝛼
−𝜀



Previous slide.

Suppose that we work with the sigmoidal unit (black)

If all the patterns cause activations in the range [-e,e], then all  the patterns fall in the 

linear regime of the gain function g.

Suppose that we work with the ReLu (red).

If all the patterns cause activations in the range [e,a], then all  the patterns fall in the 

linear regime of the gain function g.

In both cases, the result is that this neuron implements a linear transformation (because 

its nonlinearity is not exploited). However, a multi-layer network of linear units can 

be replace by a single layer of linear units. Therefore the additional layers are 

useless.

- For ReLu’s, some of the input patterns case positive a, others negative a.



https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:

for a= 3: g(3) =0.95

for a=-3: g(-3)=0.05

𝑔 𝑎 =
1

1 + 𝑒−𝑎

Review. sigmoidal output = logistic function



Previous slide.

Note that a sigmoidal unit is strongly nonlinear in the regime |a| = 2.



Summary: Exploit nonlinearities in forward pass (‘linearity problem’)

To exploit nonlinearities of all units in the network, we must

1. Make sure that the initialization of weights is well chosen

 expectation (across patterns) of the  activation variable 

0 = < 𝑎𝑗
𝑛

>; 𝑎𝑗
𝑛

=  𝑘 𝑤𝑗𝑘
𝑛

𝑥𝑘
𝑛−1

 standard deviation of the activation variable 

𝑎𝑗
𝑛

of order 1.

2. Make sure  that weight updates do not shift mean

(and standard deviation) of distribution too much



Previous slide.  

A multilayer network in the linear regime acts like a linear network (‘linearity problem’)

To exploit nonlinearities of all neurons in the network, we have to make sure that

- The initial choice of the weights is such that each unit  has a range of activation values    

(across different patterns) that touch the nonlinear regime.

- During training the weights remain in a regime such that each unit  has a range of 

activation values (across different patterns) that touch the nonlinear regime.

Note: 

1) for ReLu’s the only nonlinearity is at zero. Thus, if the mean activation (across all 

patterns) is zero, we can be sure that some patterns cause positive, and others a 

negative a, and the nonlinearity is exploited.

2) For sigmoidals, the nonlinearity is around |a|=2. Thus, if the mean activation (across 

all patterns) is zero AND the variance is around 1 or 2, we can be sure that some 

patterns cause a big positive, and others a big negative a, and the nonlinearity is 

exploited.



Quiz:

Let ni denote the number of input connections onto neuron i; this 

number will be called  the fan-in of neuron i.

[ ] A good initialization of the weights onto neuron i is a Gaussian 

random distribution with mean zero and variance 1/

[ ] A good initialization of the weights onto neuron i is a Gaussian 

random distribution with mean zero and standard deviation  1/

[ ] The fan-in number ni and the above rule for random initialization 

includes the threshold variables.

[ ] A good initialization of the threshold variables is zero 

(or very close to zero)

[ ] The choice of the standard deviation of the random weights during 

initialization is less critical for the ReLu than for the sigmoidal units.

[x]

[x]

[  ]

[x]

[x]

𝑛𝑖

𝑛𝑖



Previous slide.

Your comments.
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Part 6: Vanishing gradient problem



Previous slide.

So far, our arguments have been based on the forward pass. Let us now focus on the 

backward pass. As we will see, similar arguments can also be applied to the backward 

pass.



𝑤𝑗,𝑘
(𝑁−1)

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(𝑁)

𝑥𝑗
(𝑁−1)

BackProp 𝛿 = 0.5

𝑥𝑗
(𝑁−2)



Previous slide.

As discussed earlier, at each step of the backward pass, a factor

appears

𝑔′𝑗
𝑛

: = 𝑔′ 𝑎𝑗
𝑛

= 𝑔′[  

𝑘

𝑤𝑗,𝑘
𝑛

𝑥𝑘
𝑛−1

]



Backward pass: Vanishing gradient problem

𝛿𝑖
(𝑛−1)

=  

𝑗

𝑤𝑗𝑖
(𝑛)

𝑔
′(𝑛−1)

(𝑎𝑖
(𝑛−1)

)𝛿𝑗
(𝑛)

𝛿𝑖
(1)

~𝑔
′(1)

𝑔
′(2)

…𝑔
′(𝑁−1)

𝛿𝑗
(𝑁)

After N layers: each path contributes 

Many  paths need to be summed,

but most paths give tiny terms, if N large

𝜀

a

𝛼−𝛼−𝜀 𝑤𝑗,𝑘
(𝑁−1)

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(𝑁)

𝑥𝑗
(𝑁−1)

𝛿2
(𝑁) = 0.5

𝑥𝑗
(𝑁−2)



Previous slide.

For  calculating the deltas in the first layers, we have to sum over the deltas in the 

second  layer. To find these over those in the third layer etc.

After N-1 layers of backpropagation, starting at the output layer N and finishing in the 

first layer, the deltas will contain terms of the form

𝛿𝑖
(1)

~𝑔
′(1)

𝑔
′(2)

…𝑔
′(𝑁−1)

𝛿𝑗
(𝑁)

There are many of these summation paths, but each path contains a multiplication of 

several g’.  If a single g’ is zero, or if three g’ in a path are very small (say 0.1 each), the 

contribution of this path to the total is negligible.  Thus there is a risk that the calculated

𝛿𝑖
(1)

is very close to zero. This is called the vanishing gradient problem.

The more layers we have in a network, the higher the risk of a vanishing gradient. 



Vanishing gradient problem

Observations:

- g’ is small for sigmoidal at −𝛼 or +𝛼 (|a|=4)

- but nonlinearity in forward path requires |a|>2 for some m

𝜀

a

𝛼−𝛼−𝜀

Backward pass yields for 

each single path many factors g’

- g’ vanishes for ReLu if one inactive unit sits in path

- g’=1 for all ReLu on ‘active paths’ during forward pass

 for ReLu highly active forward paths coincide

with good gradient transmission on backward path



Previous slide. To summarize

For sigmoidal units,  we ideally need for a given pattern  m that for most units

1. for most units on a path |a| < 3  so as to make sure that the g’ in the backward 

pass is not too small. 

2. for some units on a path  |a| > 2  so as to make sure that the forward pass 

exploits nonlinearities. 

For Rectified Linear units (ReLu),  we ideally need for a given pattern m that for some 

paths all units have:

1.  |a| > 0  so as to make sure that the g’ in the backward pass is not zero. 

2.  |a| > 0  so as to make sure that the forward pass goes through;  but the same 

path should have some units with |a| < 0 when a different pattern is applied so as to 

exploit nonlinearities.

Note that the ‘nonlinearity’ argument is by looking at the distribution of activations 

across different patterns.

Conclusion: it is easier to avoid the vanishing gradient problem of BackProp when 

using ReLu’s.



Vanishing gradient problem

Conclusion:

Sucessful forward pass 

 needs to avoid the linearity problem.

(‘exploit nonlinearities’)

Successful backward pass

 needs to avoid the vanishing gradient problem.

A good hidden units must be good for 

forward  and backward pass!  

𝜀

a

𝛼−𝛼−𝜀



Previous slide.

But it is not so easy to have hidden units that are good on the forward pass and the 

backward pass!



Quiz:

[ ] forward propagation with ReLu leaves only a few active paths 

[ ] back propagation with ReLu leaves only a few active paths

[ ] forward propagation with ReLu is always linear on the active paths

[ ] in a ReLu network all patterns are processed with the

same linear filter

[ ] in a sigmoidal network with small weights (and normalized inputs)

all patterns are processed with the same linear filter

[ ] in a sigmoidal network with big weights,  there are active units in the 

forward pass that contribute a vanishing gradient in the backward pass

[x]

[x]

[x]

[  ]

[x]

[x]
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Your comments.
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Part 7: Weight update: mean input and bias problem



Previous slide.

So  far we have focused on forward and backward pass,

but the picture gets even more complicated if we include the weight update step.



Weight update step

update all weights

𝑤𝑗,𝑘
(𝑛−1)

𝑤1,𝑗
(𝑛)

𝑥𝑗
(𝑛−1)

𝑥𝑗
(𝑛−2)

𝛿2
(𝑛−1)

Weights onto the same neuron (red)

are all updated with same delta

 if 𝑥𝑗
(𝑛−2)

are all positive,

all the weights onto red neuron

increase or decrease together

∆𝑤𝑖,𝑗
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥𝑗
(𝑛−2)



Previous slide.

The update formula of the BackProp algorithm

implies that all weights onto the same neuron i (red), share the same 𝛿𝑖
(𝑛−1)

.

This has two implications.

The first one concerns the possible movements of the  weight vector, to be discussed 

now.

∆𝑤𝑖,𝑗
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥𝑗
(𝑛−2)



Weight update step

update all weights

∆𝑤𝑖,𝑗
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥𝑗
(𝑛−2)

Weights onto the same neuron 

are all updated with same delta

 Problem for ReLu and other units with non-negative x

𝜀
a

𝛼−𝛼−𝜀

w

𝑤𝑖,2
(𝑛−1)

𝑤𝑖,5
(𝑛−1)



Previous slide.

Assume that we work with ReLu’s, so that all x are non-negative. 

Then during the update step, two  weights onto the same neuron either move both up 

or down together. For example for weights with index j=2 and j=5

If                                                    ,then also 

Thus changes in direction downward-right, as on the graph

on the right are excluded.

To move downward right, several iterations are necessary, 

as shown on the previous slide.

This problem is absent for units with a gain function that has both positive and negative 

values. For example, the problem is absent if we choose for the gain function of hidden 

units 

∆𝑤𝑖,2
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥2
(𝑛−2)

≥ 0 ∆𝑤𝑖,5
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥5
(𝑛−2)

≥ 0

g(a)= tanh(a)

w

𝑤𝑖,2
(𝑛−1)

𝑤𝑖,5
(𝑛−1)



Weight update step

update all weights

∆𝑤𝑖,𝑗
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥𝑗
(𝑛−2)

Weights onto the same neuron 

are all updated with same delta

 Problem for ReLu and other units with non-negative x

No problem for tanh

a

w

𝑤𝑖,2
(𝑛−1)

𝑤𝑖,5
(𝑛−1)

g(a)= tanh(a)

No problem for shifted exponential linear unit (SELU)



Previous slide.

This problem is absent for units with a gain function that has both positive and negative 

values. For example, the problem is absent if we choose for the gain function of hidden 

units 

g(a)= tanh(a)

w

𝑤𝑖,2
(𝑛−1)

𝑤𝑖,5
(𝑛−1)



𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Shifted Exponential Linear (SELU) vs. tanh
g(a)= b a for a>0

a

+1

-1

g(a)= g [exp(a)-1]   for a<0

g(a)= tanh(a)

Standard ELU:

g=b=



Previous slide.

Instead of tanh(a), we can also work with the shifted exponential linear units (ELU) or a 

scaled version called SELU. SELU has additional parameters g,  b

Similar to the ReLu, the ELU and SELU are linear for positive activation values a.

Similar to the tanh-unit (and in contrast to the ReLu), the ELU and SELU are smooth 

and also generates negative outputs.



Bias problem

update all weights

∆𝑤𝑖,𝑗
(𝑛)

= 𝛿𝑖
(𝑛)

𝑥𝑗
(𝑛−1)

Weights onto the same neuron 

are all updated with same delta

 Problem for ReLu and other units with non-negative x

 The mean changes! (‘bias problem’)

 But controlling the mean was important for correct initialization!

 Return of  vanishing gradient and linearity problem! 

Before update

after update

𝑎𝑖
(𝑛)

=  

𝑗

𝑤𝑖𝑗
(𝑛)𝑥𝑗

(𝑛−1)
− 𝜗

𝑎𝑖
(𝑛)

=  

𝑗

[𝑤𝑖𝑗
(𝑛)

+∆𝑤𝑖,𝑗
(𝑛)

]𝑥𝑗
(𝑛−1)

− 𝜗

same sign for all j

non-negative

( for ReLu etc)



Previous slide.

As we have seen, the update formula of the BackProp algorithm

implies that all weights onto the same neuron i (red), share the same 𝛿𝑖
(𝑛−1)

.

This has two implications.

The first one concerns the possible movements of the  weight vector, discussed above.

The second implication concerns a shift in the mean. If we use a ReLu or a sigmoidal 

(where all the x-values are non-negative), then the mean activation changes in each 

update step, even if the threshold theta does not change!

However, we have seen earlier that controlling the mean activity (where the mean is 

taken over the distribution of patterns) is important to correctly exploit the nonlinearities 

of a ReLu. In fact the mean should be close to zero, so that some patterns cause an 

activation, and others not.



Quiz:

[ ] a non-zero weight update step of ReLu shifts most often the mean

[ ] in a network with SELU,  there are active units in the forward path

which contribute a vanishing gradient in the backward path

[ ] a non-zero weight update step of SELU shifts most often the mean

[x]

[ ]

[ ]



Your notes. 



Shifted Exponential Linear vs. tanh

g(a)= b a                 for a>0

g(a)= g [exp(a)-1]   for a<0
SELU



Previous slide.

The generalized ‘Shifted exponential linear unit’ (SELU) has two parameters, b>, g>:

The orange curve shows that the SELU starts at values below (-1) and, for positive a,  

increases slightly faster than the RELU.

The SELU parameters beta and gamma are chosen such as to minimize the bias 

problem, as well as the linearity and vanishing gradient problem. 

g(a)= b a                 for a>0

g(a)= g [exp(a)-1]   for a<0



Shifted Exponential Linear (SELU)

Klaumbauer et al. (2017)



Previous slide.

A network learns faster with SELU as hidden units. The test error after convergence is 

not affected. The training time is shorter because many of the problems such as

vanishing gradient, unexploited nonlinearities, or shifting mean that plague learning 

during the initial epochs are minimized.



6. Conclusion

- initialization is important in the initial phase of training 

- choice of hidden unit is important in initial phase of training

- ReLu has disadvantages in keeping the mean

 requires batch normalization

- Tanh has problems with vanishing gradient

- Sigmoidal has problems with vanishing gradient and mean

- SELU solves all problems and is currently best choice

Paper: Klaumbauer, …, Hochreiter (2017)

Self-normalizaing neural networks

https://arxiv.org/pdf/1706.02515.pdf

https://arxiv.org/pdf/1706.02515.pdf


Previous slide.

Thus, if you have the choice, take SELU’s.

The shifting mean can also be addressed by batch normalization, which is the topic of 

the next section.
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Part 8: Batch normalization 



Previous slide.

For unbalanced hidden units such as ReLu or Sigmoidals with non-negative outputs, 

the mean will shift during training even if we initialize well.

Batch normalization solves this issue. 



𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

ReLu

𝜀 1

a

- Different patterns give different activation

of same neuron (red)

- Aim: During learning, keep mean at 

approximately zero

Aim of Batch normalization: Keep mean input stable



Previous slide.

As a reminder, different patterns will activate the red neuron to different levels, such as 

+1, epsilon, or -1.

The aim of batch normalization is to keep, DURING LEARNING, the mean of the 

activation always around zero and a standard deviation always around 1.



7. Batch normalization: Idea

Normalize input on each input line

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

 𝑦2
𝜇

 𝑦1
𝜇

𝑤1,𝑗
(3)

−1 Zoom:

𝑥𝑗
(𝑘)

 𝑥𝑗
(𝑘)

𝑉𝑎𝑟[𝑥𝑗
𝑘

]

𝐸[𝑥𝑗
(𝑘)

]𝑥𝑗
(𝑘)

-
 𝑥𝑗
(𝑘)

=



Previous slide.

At the output 𝑥𝑗
(𝑘)

of each neuron, we add a normalization step:

We calculate the mean and the variance of 𝑥𝑗
(𝑘)

( taken overa batch or minibatch).

Then we renormalize to mean zero and unit variance.

This renormalization step is denoted in the following by a small box in the network 

graph.

When you do backprop, the blue box has to be taken into account for both forward and 

backward pass. 



7. Batch normalization

Ioffe&Szegedi, 2015 

Work with minibatch:

Normalize per

minibatch



Previous slide.

The blue box corresponds to a mathematical transformation y=BN(x).  BN stands for 

Batch Normalization.

Since we are not sure that we want to normalize the mean to exactly zero and the 

variance to exactly one, we allow for additional parameters gamma and beta.

These parameters are learned using backprop.



7. Batch normalization Ioffe&Szegedi, 2015 

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)



Previous slide.

Note that it does not make sense to add a normalization step for the thresholds (i.e., the 

inputs fixed at -1 in the graph).



7. Batch normalization Ioffe&Szegedi, 2015 

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)



Previous slide.

The normalization steps lead to additional terms in the backprop algorithm which is 

directly taken care of (again) by an efficient implementation of the chain rule.



7. Batch normalization

Ioffe&Szegedi, 2015;

Goodfellow et al,  2016



Previous slide.

The full algorithm of Batch Normalization.



7. Batch normalization Ioffe&Szegedi, 2015 

- Necessary for ReLu and other unbalanced hidden units

- Normalization step in forward pass is also taken care of 

during backward pass



Objectives for today:

- Bagging: multiple models help always to improve results!

- Dropout: two interpretations

(i) a practical implementation of bagging

(ii) forced feature sharing

- Data augmentation: exploit invariances

- BackProp: Initialization, nonlinearity, and symmetry

- What are good units for hidden layers? 

problems of vanishing gradient and shift of mean

 solved by Shifted exponential linear (SELU)

- Batch normalization  necessary for ReLu



Reading for this lecture:

Goodfellow et al.,2016  Deep Learning, MIT Press

- Ch 7.4, 7.8, 7.11 and 7.12,

- Ch. 8.4 

Papers: 

https://arxiv.org/pdf/1811.12231.pdf

Klaumbauer, …, Hochreiter (2017), Self-normalizaing neural networks

https://arxiv.org/pdf/1706.02515.pdf

Ioffe&Szegedi, 2015, Batch Normalization: accelerating … 

https://arxiv.org/abs/1502.03167

Further Reading for this Lecture:

Robert Geirhos et al., ImageNet trained images are biased … ICLR, 2019

https://arxiv.org/pdf/1706.02515.pdf

