
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Deep Nets 3: Loss landscape and optimization methods

Objectives for today:

- Error function landscape: minima and saddle points

- Momentum

- ADAM

- No Free Lunch Theorem

- Shallow versus Deep Networks

Part 1: Questions and Aims of this Lecture

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning (MIT Press)

- Ch. 8.2, Ch. 8.5

- Ch. 4.3

- Ch. 5.11, 6.4, Ch. 15.4, 15.5

Further Reading for this Lecture:

J. Brea et al. (2019), Weight space symmetry in deep

networks gives rise to …

arXiv https://arxiv.org/pdf/1907.02911.pdf

Review: Classification as a geometric problem

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

Previous slide.

A multilayer perceptron for classification

Review: Deep Neural Networks for classification

input

output

car

Aim of learning:

Adjust connection weights

such that output is correct.

Total number of parameters: N

…

Previous slide.

… will implement a separating surface …

… by stacking neurons over several layers. Each neuron implements a hyperplane in

the space of activites one layer below.

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Review: task of hidden neurons (blue)

xx x

x

x

xx
x

hidden neurons implement

hyperplanes

Previous slide.

… by stacking neurons over several layers. Each neuron implements a hyperplane in

the space of activites one layer below. Hyperplanes are defined by weight vectors.

𝐸 𝒘

error function (loss function)

gradient descent

Review: gradient descent

𝐸

Batch rule:

one update after all patterns

(normal gradient descent)

Online rule:

one update after one pattern
(stochastic gradient descent)

𝑤𝑗,𝑘
(𝑛)

Previous slide.

And the weight vector is updated by gradient descent, using either a batch rule or an

online rule.

We discuss

𝐸

- How does the error landscape (as a function of the weights)

look like? In high dimension?

- How can we quickly find a (good) minimum?

- Why do deep networks work well?

Three Big questions for today

 Count the minima and saddles (lower bound)

Momentum term

ADAM optimizer

No Free Lunch Theorem

Deep Networks versus Shallow Networks

𝑤𝑗,𝑘
(𝑛)

Previous slide.

We address three important questions today.

1. What is the shape of the error function, as a function of the weights?

 Count the minima and saddles (lower bound)

2. How can we quickly find a good minimum?

 Momentum Term, ADAM optimizer

3. Why do deep networks work so well in practice?

 No free lunch theorem; and shallow versus deep networks

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Loss landscape and optimization methods for deep learning

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points

Part 2: Error function: minima and saddle points

Previous slide.

We start with the first question and focus on the error function.

Error function: minima

Image: Goodfellow et al., Deep Learning, 2016

𝑑

𝑑𝑤𝑎
𝐸(𝑤𝑎) = 0

minima

𝑤𝑎

𝐸
𝐸(𝑤𝑎)

Previous slide.

Often we see hand-drawn sketches of one-dimensional plots like the one here, with

several local minima.

Error function: minima

How many minima are there in a deep network?

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) < 0

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) = 0

𝑑

𝑑𝑤𝑎
𝐸(𝑤𝑎) = 0

minima

Image: Goodfellow et al., Deep Learning, 2016

Previous slide.

Both minima and maxima are characterized by a zero derivate:

In one dimension, minima can be distinguished from maxima by their second derivative

(curvature).

For minima the curvature is positive (left):

Transient plateaus where both first and second derivative are zero are the exception

(right)

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑

𝑑𝑤𝑎
𝐸(𝑤𝑎) = 0

Error function: minima and saddle points

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑2

𝑑𝑤𝑏
2 𝐸(𝑤𝑏) < 0

𝑤𝑏𝑤𝑎

𝑤𝑎

𝑤𝑏

minimum

2 minima, separated by

1 saddle point

Image: Goodfellow et al., Deep Learning, 2016

Previous slide.

In two and more dimensions it is possible that in the curvature is positive in one

direction, yet negative in the other direction.

This is called a saddle point.

Lower right: contour lines connect points of the same error (niveau lines). The red

arrows indicate a path toward a minimum. The two minima are separated by a saddle.

Quiz: Strengthen your intuitions in high dimensions

1. A deep neural network with 9 layers of 10 neurons each

[] has typically between 1 and 1000 minima (global or local)

[] has typically more than 1000 minima (global or local)

[] has typically more than 1Mio minima (global or local)

[] has typically more than global minima

2. A deep neural network with 9 layers of 10 neurons each

[] has many minima and in addition a few saddle points

[] has many minima and about as many saddle points

[] has many minima and even many more saddle points

[]

[x]

[x]

[x]

[]

[]

[x]

1020

Your notes.

Minima of loss function

How many minima are there?

Answer:

In a network with m hidden layers

and n neurons per hidden layer,

there are at least

equivalent minima

𝒏!𝒎

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Previous slide.

Because of the permutation symmetry, there are many equivalent minima.

(See Exercises)

.

xx xx

x

xx
x

4 hyperplanes for

4 neurons

x

xx
x

x

many assignments

of hyperplanes to neurons

Error function and weight space symmetry

1

2

3

4

many permutations
e.g. neuron 1 implements

hyperplane 3

 4! permutations

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Previous slide.

For example, with 4 neurons in a given layer, we have 4! different ways to implement

the same 4 hyperplanes.

In total, in a network of m hidden layers with n neurons each there are

equivalent solutions. Therefore there are many permutation symmetries in the weights

space.

𝒏!𝒎

Error function and weight space symmetry

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

x

x

xx

x

x
x

x

6 hyperplanes for

6 hidden neurons

x

x

x x

x

many assignments

of hyperplanes to neurons

even more

permutations

Previous slide.

Suppose all the positive examples lie inside a the blue box.

We need 6 neurons in the first layer to define this box. Each neuron implements one

hyperplane. Therefore there are 6! = 240 different, but completely equivalent solutions.

xx xx

x

xx
x

4 neurons

4 hyperplanes

x

x
x

x

x

𝑥1
(0)

𝑥2
(0)

Minima = good solutions

𝒙𝝁

𝑥𝑗
(1)

𝑊1𝑗
(2)

𝑊𝑗1
(1)

𝑡𝜇

teacher network:

generates labels

𝒙𝝁

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝑦𝜇

student network:

learns outputs

Previous slide.

So far we focused on the ‘best’ minima: in a teacher-student situation where the student

network has exactly the same architecture as the teacher, the best minima are those

where the student has the same weight vectors (apart from permutations).

Many near-equivalent reasonably good solutions

xx x

x

x

xx
x

xx x

x

x

xx
x

2 near-equivalent good solutions with 4 neurons.

If you have 8 neurons many more possibilities to split the task

 many near-equivalent good solutions

Previous slide.

However, real data is not generated from a teacher network of known architecture.

Therefore all solutions are approximate solutions.

Then you will typically find many near-equivalent reasonably good solutions.

For an example, suppose that the data (positive examples) lie in the shaded area.

There are several near-equivalent solutions of modeling the boundaries of this shaded

area with 4 hyperplanes.

If you increase to 8 hyperplanes even more near-equivalent solutions appear.

Summary Quiz: Number of minima in deep networks

A deep neural network with many neurons

[] has typically many equivalent ‘optimal’ solutions

[] has typically many near-optimal solutions

[x]

[x]

Previous slide.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Loss landscape and optimization methods for deep learning

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points

3. Why are there so many saddle points?

Part 3: Why are there so many saddle points?

Previous slide.

We now look at saddles

Loss function: why are saddle points relevant?

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑2

𝑑𝑤𝑏
2 𝐸(𝑤𝑏) < 0

𝑤𝑏𝑤𝑎

𝑤𝑎

𝑤𝑏

minimum

Gradient descent is slow

close to saddle

Image: Goodfellow et al. 2016

Your notes.

We are interested in saddles because these are critical points where gradient descent

Is slow.

Minima and saddle points

(i) Statistical argument

 Hessian Matrix

(ii) Geometric argument

 Permutations

Two arguments

Claim:

There are many more saddle points than minima

Previous slide.

The claim is that there are many more saddle points than minima.

There are two different arguments. We start with the first one.

Minima and saddle points

(i) Statistical argument on second derivative

(Hessian matrix) at gradient zero

There are many more saddle points than minima

𝑤𝑎 𝑤𝑖𝑗

𝐸(𝑤𝑖𝑗
(𝑛)
, …) minimum maximum

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎

∗) > 0 𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎

∗) < 0
𝑤𝑎
∗

Previous slide.

The first argument focuses on the Hessian matrix of second derivatives evaluated at

the location where the first derivative vanishes.

Minima and saddle points

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

In 1dim: at a point with vanishing gradient

Minimum in N dim: study Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏
𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize: minimum if all eigenvalues positive.

But for N dimensions, this is a strong condition!

 minimum

Previous slide.

Since the Hessian matrix is symmetric, it is diagonalizable and has real Eigenvalues.

A point is stable only of ALL eigenvalues are positive.

Minima and saddle points

in N dim: Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏
𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize:

𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑁
l

l

l1 >0

lN-1 >0
lN <0

...

In N-1 dimensions

surface goes up,

In 1 dimension it goes

down

Previous slide.

If N-1 Eigenvalues are positive, but one is negative, we have a first-order saddle.

Minima and saddle points: Second-order saddle

in N dim: Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏
𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize:

𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑁
l

l

l1 >0

lN-2 >0

lN <0

...

In N-2 dimensions

surface goes up,

In 2 dimension it goes

down

lN-1 <0

In N-2 dimensions

surface goes up,

In 2 dimension it goes down
Humans visualize

In three dimensions

Previous slide.

If N-2 Eigenvalues are positive, but two are negative, we have a second-order saddle.

Kant: humans necessarily think in 3 dimensions.

Therefore it is hard to imagine that I have 2 dimensions in which the error goes down

and N-2 orthogonal directions in which the error goes up. The drawing is very

schematic.

General saddle point: kth-order saddle

in N dim: Hessian

H =
𝑑

𝑑𝑤𝑎

𝑑

𝑑𝑤𝑏
𝐸(𝑤𝑎 , 𝑤𝑏)

Diagonalize:

𝐻 =
1 ⋯ 0
⋮ ⋱ ⋮

0 ⋯ 𝑁
l

l

l1 >0

lN-k >0

lN <0

...

In N-k dimensions

surface goes up,

In k dimension it goes

down

lN-k+1 <0

General saddle:

In N-k dimensions surface goes up,

In k dimension it goes down

Previous slide.

Analogously, we define a general saddle.

Minima and saddle points: statistical argument

It is (statistically) rare that all eigenvalues of the Hessian

have same sign

It is fairly rare that only one eigenvalue has a different sign

than the others

Most saddle points have multiple dimensions with surface

up and multiple ones with surface going down

Suppose you create eigenvalues randomly with mean zero.

Previous slide.

The core of the argument is a statistical one. If you were to create Eigenvalues

randomly with zero mean, then it would be very rare that all eigenvalues are positive.

Most likely is a mix of positive and negative Eigenvalues. Therefore we expect to find

more saddles than maxima or minima.

Minima and saddle points: modern statistical view

General saddle points: In N-k dimensions surface goes up,

in k dimension it goes down

E

1st-order saddle points: In N-1 dimensions surface goes up,

in 1 dimension it goes down

several

good minima

many 1st order

saddle

even more

high-order

saddles

maxima

weights

Previous slide.

Specific mathematical and physical models, linked to random matrix theory, Gaussian

processes, and spin glasses, lead to a statistical picture where a few minima are at the

lowest energies,

But most points with vanishing gradient are saddles of various order.

It is, however, not clear whether these models can be linked to deep neural networks

because the specific weight space symmetries of deep network (e.g., permutation of

neurons) are neglected.

Minima and saddle points

(i) Statistical argument (Random Matrix Theory/Spin Glass)

For balanced random systems, eigenvalues will be randomly

distributed with zero mean:

draw N random numbers (for N eigenvalues)

 rare to have all positive or all negative

Rare to have maxima or minima

Most points of vanishing gradient are saddle points

Most high-error saddle points have multiple

dimensions of escape

But what is the random system here?

The data is ‘random’ with respect to the design of the system!

Review: Goodfellow et al., Deep Learning, 2016

Previous slide.

For these random matrix or spin glass arguments, and similarly Gaussian process

models, the question arises where the randomness stems from. The answer is that,

when we design the neural network, we did not yet look at the data. Therefore, the data

points can be considered as random constraints on the possible configuration of

weights. This notion can be formalized but this is not the topic here. See Goodfellow et

al. (2016) for references.

Minima and saddle points

(i) Statistical argument

 Eigenvalues of Hessian Matrix

(ii) Geometric argument

 Permutations (between global minima)

Two arguments

Claim:

There are many more saddle points than minima

Previous slide.

Remember that there are two different arguments.

So far we discussed the statistical argument. Let us now look at the second one.

Minima and saddle points

(ii) Geometric counting argument

using weight space symmetry

 number of saddle points increases

rapidly with number of parameters

(even more rapidly than the number of equivalent

global minima that arise from permutations)

Second argument

There are many more saddle points than minima

Previous.

We focus on global minima to keep the argument simple. Permutation minima are

connected with each other by saddles. We claim that there are many more saddles

than global minima.

To connect the global minima with each other we imagine that we decrease the

distance between two weight vector positions. Once the distance between two weight

vectors is zero, I can remove one of them and shift its output weight to his partner. I can

then turn it and make it identical to any other weight vector in the same layer, and

exchange with that one, at no extra cost!

Thus the barrier of the saddle point between permutation minima is the lowest one of all

possible pairs.

Error function: minima and saddle points

𝑑2

𝑑𝑤𝑎
2 𝐸(𝑤𝑎) > 0

𝑑2

𝑑𝑤𝑏
2 𝐸(𝑤𝑏) < 0

𝑤𝑏𝑤𝑎

𝑤𝑎

𝑤𝑏

minimum

2 minima, separated by

1 saddle point

Image: Goodfellow et al. 2016

Your notes.

Just a reminder how a saddle separating two minima looks in two dimensions.

Loss function and weight space symmetry

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤41
(1)

Solutions in weight space

𝑤31
(1)

Minima and saddle points: Example

𝑥1

𝑥2

0

0

4 hyperplanes

‘input space’

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤41
(1)

𝑤31
(1)

𝒘4
(1)

𝒘3
(1)

Minima and saddle points: Example after permutation

𝑥1

𝑥2

0

0

4 hyperplanes

‘input space’

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤41
(1)

𝑤31
(1)

𝒘3
(1)

𝒘4
(1)

Previous three slides:

We have seen previously that if we found one global minimum there is a huge number

of equivalent minima arising from permutations.

Concretely, in this example

permutations of neurons 3 and 4 in the first layer give exactly the same solution.

3 slides:

1. Brown neuron (i=4) and blue neuron (i=3

2. Hyperplanes of both

3. Now we want to exchange these neurons

After Permutation

Minima and saddle points: Example

𝒙

𝑋𝑗
(1)

𝑊1𝑗
(2)
= 1

𝑊𝑗1
(1)

Teacher Network:
Committee machine

𝒙

𝑥𝑗
(1)

𝑤1𝑗
(2)
=?

𝑤𝑗1
(1)
=?

Student Network:

𝑥1

𝑥2

0

0

4 hyperplanes

‘input space’

Previous slide.

Data is generated from a teacher network (left).

Neurons in the first hidden layer implement hyperplanes (e.g., blue neuron).

The green neuron in the second layer sums up all contributions with equal weight. Such

a configuration is called a committee machine (‘all votes count equally’).

The hyperplanes in input space are shown as blue lines on the right-hand side. They

are characterized by their weight vectors (black). The end point of the weight vector

indicates the location of the hyperplane.

The student network has the same architecture, but freely adaptable weights in both

layers.

Permutation Minima are connected by Saddle Points
4 hyperplanes

‘input space’
Student

Network:

Red

Teacher

Network:

Blue

𝑥1

𝑥2

0

0

Approach

- Slowly decrease distance

between two weight vectors

- Let other weight vectors

equilibrate to (nearby)

minimum-loss configuration

Permutation Minima are connected by Saddle Points
4 hyperplanes

‘input space’
Student

Network:

Red

Teacher

Network:

Blue

𝑥1

𝑥2

0

0

Permutation Minima are connected by Saddle Points
4 hyperplanes

‘input space’
Student

Network:

Red

Teacher

Network:

Blue

𝑥1

𝑥2

0

0

Permutation point:

- if two weight vectors are identical

 you can relabel at no extra cost

Previous slide.

We want to explore the saddle between two equivalent permutation minima.

To do so, we initialize the student with weights perfectly aligned with those of the

teacher. Then we force the student to have two weight vectors approach each other. All

other weights remain free and are minimized (under the constraint that the two chosen

weight vectors have a certain distance (dist, horizontal axis; loss, vertical axis).

As the distance is reduced from the initial configuration, the loss increases. When the

distance is zero, the two weight vectors are identical (and implement the same

hyperplane). At this moment, the labels of the two vectors can be exchanged at not

cost. Thereafter we can relax back to the original position, but with exchanged labels of

the vector.

The point at dist=0 is a saddle because all other

weights have been minimized.

minimum

distance

constraint

weights

- Slowly decrease distance between two weight vectors

- Let other weight vectors equilibrate to (nearby) minimum-loss

configuration

- Once two weight vectors have merged, exchange labels and

relax back on same path

Permutation Minima are connected by Saddle Points

𝑥𝑗
(1)

𝑤1𝑗
(2)
=?

𝑤31
(1)

Student Network:

𝑤42
(1)

Construct Permutation Minima Connected by Saddle Points

exchange vectors at

permutation point

(where the two

vectors collapse)

Construct Permutation Minima Connected by Saddle Points

Previous slide.

We go back on the same path, but after the change of the indices.

Minima and saddle points: Geometric argument

Geometric argument exploiting the

weight space symmetry

 count number of saddle points

 lower bound: permutation points

There are many more saddle points than global minima

𝑥𝑗
(1)

𝑤1𝑗
(2)
=?

𝒘𝟒
(𝟏)

map 4 vectors onto 3 positions

(each position taken at least once,

exactly one twice)

Your notes.

Now we start with the counting argument. 4 hidden neurons give 4 weight indices, that

we have to place on three vector positions.

Minima and saddle points: weight space symmetry

Geometric argument and weight space symmetry

 count permutation points

Claim: There are many more saddle points than minima

Layer with n hidden neurons:

 n vector indices for (n-1) positions

 permutation points

 lower bound for first-order saddles)

Previous slide.

For first-order permutation points, we have to place n vector indices on n-1 locations

that define the configuration with (n-1) neurons in the hidden layer that we found by our

shifting-of-weight-vector construction.

We do this placement in the following sequence: :

We have 1 special position with 2 weight vectors and n-2 with one weight vector each.

To select the special position that has double weights, we have n-1 possibilities.

Once we have chosen our special location, we have n!/2! possibilities to distribute the

weight indices. The factor 2! arises because it does not matter in which order the two

weight vectors are filled into the special position.

Note that there might be even MORE first-order permutation points, because depending

on which weight vectors we merge, different configurations (=positions of n-1 weight

vectors) arise. These configuations will in general not all have the same loss.

Saddle points: Geometric argument and weight space symmetry

Lower bound for first-order saddles

 count permutation points in layer with n hidden neurons

There are many more saddle points than minima

 n vectors for (n-1) specific positions


𝑛!

2!
(𝑛 − 1) first-order permutation points

Lower bound for second-order saddles

 n vectors for (n-2) specific positions


𝑛!

3!

𝑛−2
1
+
𝑛!

2!2!

𝑛−2
2

Previous slide.

For second-order permutation points, we have to place n vector indices on n-2 positions.

We have two overall possibilities:

(i) We have 1 special position with 3 weight vectors and n-3 with one weight vector

each. To select the special position that has triple weights, we have n-2 possibilities.

Once we have chosen our special location, we have n!/3! possibilities to distribute

the weight indices

(ii) We have 2 special positions with 2 weight vectors each and n-4 with one weight

vector each. To select the special positions with double weights, we

have n(n-1)/2 possibilities. Once we have chosen our special locations

we have n!/4 possibilities to distribute the weight indices.

Note that the term in paragraph (ii) dominates largely for large n. We use this

observation for an overall lower bound on the next slide.

 number of saddle points increases rapidly with

number n of neurons in hidden layer

(much more rapidly than the number of minima)

There are many more saddle points than minima

Theorem: a layer with n neurons generates

at least a factor of
1

2𝐾
𝑛−𝐾
𝐾

more Kth - order saddles (K <n/2)

than global permutation minima.

Saddle points: Geometric argument and weight space symmetry

Your notes.

Here comes a more precise formulation of the theorem.

Summary: loss landscape in a deep neural network

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

In a network with m hidden layers and

n neurons per hidden layer.

We have found one global minimum.

Then there are at least

minima thwith the same loss

and at least
𝑚

2𝐾
𝑛−𝐾
𝐾
𝒏!𝒎

Kth-order saddle points (K<n/2)

𝒏!𝒎

J. Brea et al. (2019), Weight space symmetry …

https://arxiv.org/pdf/1907.02911.pdf

Minima and saddle points: modern neural network view

E

> 𝒏!𝒎 MANY

good minima

more 1st order

saddle

even more

high-order

saddles

weights

Neural network with m hidden layers and n neurons per hidden layer.

Input dimension also n. Output dimension q.

Then dimensionality of weight space: 𝑁 = 𝑚 ∙ 𝑛2 + 𝑛 ∙ 𝑞

Quiz: Saddle points

A deep neural network with many neurons

[] has a huge number of equivalent minima and

even many more saddle points

[] gradient descent is slow close to a saddle point

[] close to a saddle point there is only one dimension

to go down

[x]

[x]

[]

Previous slide.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Loss landscape and optimization methods for deep learning

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points

3. Why are there so many saddle points?

4. Momentum

Part 4: Gradient Descent with Momentum

Previous slide.

The next question is: how do we find the minima?

Review: Standard gradient descent:

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛
1 = −𝛾

𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

Previous slide.

The contour lines (niveau lines) of the error function 𝐸 𝒘 are shown as a function of

two arbitrarily chosen weights. Gradient descent corresponds (with standard Euclidian

metrics) to a movement downward perpendicular to the niveau lines, starting from the

weight vector 𝒘 1 at time t=1

If the step size (learning rate 𝛾) is too large, the movement shows oscillations.

Momentum: keep previous information

∆𝑤𝑖,𝑗
𝑛
1 = −𝛾

𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

∆𝑤𝑖,𝑗
𝑛
𝑚 = −𝛾

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛
+ 𝛼 ∆𝑤𝑖,𝑗

𝑛
𝑚 − 1

In first time step: m=1

In later time step: m

Blackboard2

Previous slide.

A momentum term

keeps information about the previous direction.

It suppresses therefore these oscillations while giving rise to a ‘speed-up’ in the

directions where the gradient does not change

gradient descent with momentum

𝐸(𝒘)𝒘(1)

∆𝑤𝑖,𝑗
𝑛
1 = −𝛾

𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛 ∆𝑤𝑖,𝑗

𝑛
𝑚 = −𝛾

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛
+ 𝛼 ∆𝑤𝑖,𝑗

𝑛
𝑚− 1

𝑤𝑎 − 𝑤𝑎
∗

𝑤𝑏

𝑤𝑎

𝑤𝑏

Blackboard2

gradient descent with momentum (constant slope)

𝑤𝑎𝑤𝑎
∗

∆𝑤𝑖,𝑗
𝑛
𝑚 = −𝛾

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛
+ 𝛼 ∆𝑤𝑖,𝑗

𝑛
𝑚− 1

Blackboard2

gradient descent with momentum (steep valley)

𝑤𝑏𝑤𝑏
∗

∆𝑤𝑖,𝑗
𝑛
𝑚 = −𝛾

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛
+ 𝛼 ∆𝑤𝑖,𝑗

𝑛
𝑚− 1

Your notes. (Calculation of the speed increase and speed decrease)

Momentum suppresses oscillations

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛
2 = −𝛾

𝑑𝐸(𝒘 2)

𝑑𝑤𝑖,𝑗
𝑛
+ 𝛼 ∆𝑤𝑖,𝑗

𝑛
1

good values for 𝛼: 0.9 or 0.95 or 0.99 combined with small 𝛾

𝒘(2)

Previous slide.

Graphical illustration of how the momentum term suppresses oscillations.

The direction of changes of the weight vector in time step t=2 adds to the local gradient

(perpendicular to the contour lines)

in the direction of the update in time step t=1.

The factor a of the momentum term can be close to 1.

𝛼∆𝒘 1

Nesterov Momentum (evaluate gradient at interim location)

𝐸(𝒘)𝒘(1)

∆𝒘 1

∆𝑤𝑖,𝑗
𝑛
2 = −𝛾

𝑑𝐸(𝒘 𝟐 + 𝛼∆𝑤𝑖,𝑗
𝑛
1)

𝑑𝑤𝑖,𝑗
𝑛

+ 𝛼 ∆𝑤𝑖,𝑗
𝑛
1

good values for 𝛼: 0.9 or 0.95 or 0.99 combined with small 𝛾

𝒘(2)

Previous slide.

The Nesterov momentum evaluates the gradient at time step t=n+1, not directly at the

momentary location 𝒘 𝒏 + 𝟏 , but at a hypothetical location

𝒘 𝒏+ 𝟏 + 𝛼∆𝑤𝑖,𝑗
𝑛 𝑛

that would be reached by using the momentum term from time step n.

It then combines the local gradient at this hypothetical location with the momentum

term, starting (just as in the simple momentum scheme) from the actual location

𝒘 𝒏 + 𝟏 .

Quiz: Momentum

Momentum

[] momentum speeds up gradient descent in ‘boring’ directions

[] momentum suppresses oscillations

[] with a momentum parameter a=0.9 the maximal speed-up

is a factor 1.9

[] with a momentum parameter a=0.9 the maximal speed-up

is a factor 10

[] Nesterov momentum needs twice as many gradient

evaluations as standard momentum

[x]

[x]

[]

[x]

[]

Your notes.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points

3. Why are there so many saddle points?

4. Momentum

5. RMSprop and ADAM

Part 5: RMSprop and ADAM

Artificial Neural Networks

Loss landscape and optimization methods for deep learning

Previous slide.

RMSprop and ADAM are two widely used methods for minibatch updates that combine

momentum with further information.

Error function: batch gradient descent

𝑤𝑏

minimum

𝑤𝑏𝑤𝑎

Image: Goodfellow et al. 2016

𝑤𝑎

𝒘(1)

Previous slide.

Let us consider downward movement on an error function with a saddle. For some

initial conditions, the trajectory is first attracted toward the saddle before it moves into

one of the two minima, depending on the initial condition.

Error function: stochastic gradient descent

𝑤𝑎

old

minimum

𝑤𝑏

The error function for a small mini-batch

is not identical to that of the true full batch

𝑤𝑏

𝑤𝑎

old

minimum

The error function for a small mini-batch

is not identical to that of the true full batch

Error function: stochastic gradient descent

Error function: stochastic gradient descent

𝑤𝑎

old

minimum

𝑤𝑏

The error function for a small mini-batch

is not identical to that of the true full batch

Previous slide.

If the error function is evaluated on a minibatch (which means only on part of the data),

the exact location of the minima and the saddle is different.

Therefore, for the first minibatch the gradient would lead to the minimum with positive

𝑤𝑏 , and for the second minibatch toward the minimum with negative 𝑤𝑏 .

𝐸(𝒘)𝒘(1)

∆𝒘 1

Stochastic gradient evaluation

∆𝑤𝑖,𝑗
𝑛
1 = −𝛾

𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

real gradient: sum over all samples

stochastic gradient: one sample

Idea: estimate mean and variance from k=1/𝛼 samples

Previous slide.

The situation is even more extreme with stochastic gradient descent where a single

example is evaluated at each time step – whereas the ‘true’ gradient is the one

evaluated on all examples (batch update).

The main idea of RMSprop and ADAM is to estimate the ‘mean’ gradient and its

variance by a running average.

Note that a momentum term with weight a can be seen as a running average of the

gradient of roughly 1/a examples (see Exercises).

Quiz: RMS and ADAM – what do we want?
A good optimization algorithm

[] should have a different ‘effective learning rate’ for each weight

[] should have smaller update steps for noisy gradients

[] the weight change should be smaller for small gradients and larger for large ones,

as in standard gradient descent

[] the weight change should be larger for small gradients and smaller for large ones

[] the weight change should be always the same size (unless gradient is zero)

Previous slide.

Think about what YOU believe would be most useful. Make a commitment by ticking

one or several boxes. We will come back to these questions later, at the end of this

part.

Stochastic gradient evaluation

∆𝑤𝑖,𝑗
𝑛
1 = −𝛾

𝑑𝐸(𝒘(1))

𝑑𝑤𝑖,𝑗
𝑛

real gradient: sum over all samples

stochastic gradient: one sample

Idea: estimate mean and 2nd moment from k=1/𝜌 samples

Running Mean: use momentum

𝑣𝑖,𝑗
𝑛
𝑚 =
𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛
+ 𝜌1𝑣𝑖,𝑗

𝑛
𝑚 − 1

Running second moment: average the squared gradient

𝑟𝑖,𝑗
𝑛
𝑚 = (1 − 𝜌2)

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛

𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖,𝑗
𝑛
+ 𝜌2𝑟𝑖,𝑗

𝑛
𝑚− 1

Previous slide.

Hence, the mean of the gradient is estimated using a momentum term (‘online

average’) with parameter

𝜌1

Similarly, the second moment of the gradient is estimated using an online average with

parameter

𝜌2

Note that the second moments form a matrix of correlations. Here we focus on the

‘diagonal terms’ only which are simply the square of one component of the gradient.

Attention: 1. do not confuse this with the Hessian matrix of second derivatives.

2. do not confuse the second moment with the covariance matrix.

Stochastic gradient evaluation: signal-to-noise-ratio

=−
𝑑𝐸(𝒘(𝑚))

𝑑𝑤𝑖

Mean over k samples

<
𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖
>

average the squared gradient over k samples

<
𝑑𝐸(𝒘 𝑚)

𝑑𝑤𝑖

𝑑𝐸(𝒘 𝑚)

𝑤𝑖
>

Blackboard 3/Exerc. 1

Raw Gradient:

Example:

consider 3 weights w1,w2,w3

Time series of gradient

by sampling:

for Dw1 : 1.1; 0.9; 1.1; 0.9; …

for Dw2 : 0.1; 0.1; 0.1; 0.1; …

for Dw3 : 1.1; -0.9; 1.1 -0.9; …Dwi

Adam and variants

The above ideas are at the core of several algos

- RMSprop

- RMSprop with momentum

- ADAM

Your notes on the exercise.

RMSProp

Goodfellow et al., Deep Learning 2016, MIT Press

Previous slide.

RMSprop algorithm.

The variables r estimate the diagonal elements of the second moment of the gradient.

The operator ‘circle-dot’ indicates elementwise multiplication.

The update step is scaled by the square-root of the second moment.

The delta is a small number to stabilize the division.

There is no smoothing of the gradient itself (no momentum term).

2nd moment

RMSProp with Nesterov Momentum

squared

Goodfellow et al., Deep Learning 2016, MIT Press

Previous slide.

This is the version with smoothing (the delta has been suppressed in the notation but

should always be kept in practice.)

Note that second moment and variance are not exactly the same (see also exercises).

For variance, you subtract the mean before you square.

Adam

Goodfellow et al., Deep Learning 2016, MIT Press

Previous slide.

The first moment is the online average of the mean of the gradient, equivalent to the

momentum.

The second moment is similar to the variance. But in contrast to the variance, the mean

is not subtracted before squaring.

The bias correction terms are a bit arbitrary. The idea is that (as we have seen for the

momentum term earlier) evaluating a constant gradient using a momentum term with

parameter r gives effectively rise to a factor 1/[1-r] . However, since it takes some time

to build up this factor, one could artificially introduce this factor in the first few time steps

– and this is what is done in this algorithm. However, this argument makes sense only if

the gradient is indeed constant over many steps!

Adam and variants

The above ideas are at the core of several algos

- RMSprop

- RMSprop with momentum

- ADAM

Result: parameter movement slower in uncertain directions

Your notes.

Quiz (2nd vote): RMSprop with Momentum and ADAM

A good optimization algorithm (take ADAM as example)

[] should have different ‘effective learning rate’ for each

weight

[] should (in batch mode) have the same weight update step

for small gradients and for large ones

[] should have smaller update steps for noisy gradients

during stochastic gradient descent

[x]

[x]

[x]

Your notes.

Summary:

- Momentum:

- suppresses oscillations (even in batch setting)

- implicitly yields a learning rate ‘per weight’

- smoothens gradient estimate (in online setting)

- Adam and variants:

- adapt learning step size to certainty

- include momentum

- smaller effective learning step for noisy directions

Previous slide.

We can distinguish three main features of momentum:

- it suppresses oscillations. Note that oscillations arise even in the batch setting if the

valley of the error function has steep slopes and the learning rate is chosen too big.

- in a narrow valley the effective step size of weight changes aligned with the valley

axis increases, whereas those point toward the steep walls of the valley decreases.

- in stochastic online gradient descent, momentum acts as an exponentially shaped

averaging filter.

In addition to momentum, Adam (and its variants) also estimate the second moment of

the gradient. This estimate can then be used to adapt the step size to the certainty:

smaller weight updates if the gradient estimate is noisy (has a large second moment

compared to its mean).

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points

3. Why are there so many saddle points?

4. Momentum

5. RMSprop and ADAM

6. No Free Lunch Theorem

Part 6: No Free Lunch Theorem

Artificial Neural Networks

Loss landscape and optimization methods for deep learning

Previous slide.

No Free Lunch theorems (there are several variants) are foundational and

philosophically important to answer the question: why do deep neural networks work so

well?

No Free Lunch Theorem

Which data set looks more noisy?

Which data set is easier to fit?

A B

Commitment:

Thumbs up
Commitment:

Thumbs down

Previous slide.

Let us start with two data sets.

line
wave package

No Free Lunch Theorem

Previous slide.

And here a possible explanation (hidden behind the blue boxes).

easy to fit

line
wave package

No Free Lunch Theorem

easy to fit

Your notes

No Free Lunch Theorem

The NO FREE LUNCH THEOREM

states

“ that any two optimization

algorithms are equivalent when their

performance is averaged across all

possible problems"

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

See Wikipedia/wiki/No_free_lunch_theorem

https://en.wikipedia.org/wiki/Optimization_(mathematics)
http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

Previous slide.

The conclusion is: there is no reason to believe that an algorithm that works well on one

data set will also work well on an arbitrarily chosen other data set.

“NFL theorems because they demonstrate

that if an algorithm performs well on a

certain class of problems

then it necessarily pays for that with

degraded performance on the set of all

remaining problems”

The mathematical statements are called

No Free Lunch (NFL) Theorems

•Wolpert, D.H., Macready, W.G. (1997), "No Free Lunch Theorems for Optimization", IEEE Transactions on Evolutionary Computation 1, 67.

•Wolpert, David (1996), "The Lack of A Priori Distinctions between Learning Algorithms", Neural Computation, pp. 1341-1390.

See Wikipedia/wiki/No_free_lunch_theorem

http://ti.arc.nasa.gov/m/profile/dhw/papers/78.pdf
http://www.zabaras.com/Courses/BayesianComputing/Papers/lack_of_a_priori_distinctions_wolpert.pdf

Previous slide.

Even worse, if the algo works well on some problem, there must exist another problem

on which the algorithm works badly.

Quiz: No Free Lunch (NFL) Theorems

[] Deep learning performs better than most other algorithms

on real world problems.

[] Deep learning can fit everything.

[] Deep learning performs better than other algorithms on

all problems.

Take neural networks with many layers, optimized by

Backprop (with momentum/ADAM) as an example of deep learning

[x]

[x]

[]

Your notes.

No Free Lunch (NFL) Theorems

- Choosing a deep network and optimizing it with

gradient descent is an algorithm

- Deep learning works well on many real-world problems

- Somehow the prior structure of the deep network

matches the structure of the real-world problems

we are interested in.

Previous slide.

The reason that deep networks work well must be linked to the type of data on which

we test them.

No Free Lunch (NFL) Theorems

Geometry of the information flow in neural network

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx x

x

x

xx
x

xx x

x
xx

x

Previous slide.

One possible explanation of why neural networks work well is the notion of

hyperplanes. Even though the data is local, you make a cut through the whole space.

This predefines additional ‘compartments’ that can be reused later for other data.

This argument might be applicable in the last few layers before the output.

Reuse of featuers in Deep Networks (schematic)

xx x

x

x

xx
x

xx x

x
xx

x

animals

birds

4 legs
wings

snout

fur
eyes

tail

Previous slide.

A specific illustration of this idea is given here

Summary: No Free Lunch (NFL) Theorems and Deep Networks

Somehow the prior structure of the deep network

matches the structure of the real-world problems

we are interested in.

Always use prior knowledge if you have some

Example: - images, translation invariance

- music, tone translation invariance

- known symmetries of tasks

Wulfram Gerstner

EPFL, Lausanne, Switzerland

1. Questions and Aims of this Lecture

2. Error function: minima and saddle points

3. Why are there so many saddle points?

4. Momentum

5. RMSprop and ADAM

6. No Free Lunch Theorem

7. Deep Networks versus Shallow Networks

Part 7: Deep Networks versus Shallow Networks

Artificial Neural Networks

Loss landscape and optimization methods for deep learning

Previous slide.

In the following we explore the idea of carving out regions in the space by hyperplanes.

Distributed representation

In 0dim input space

In 1dim input space with:

0 hyperplanes

1 hyperplane

2 hyperplanes?

3 hyperplanes?

4 hyperplanes?

How many different regions are carved

Previous slide.

First we work in zero dimensions. There is only one dot, this is the smallest possible

region: d=0  1 region

We now work in one dimension (horizontal black axis).

The continuous axis is one connected region.

If we add a first hyperplane, we cut the axis into 2 separate regions. Therefore we have

added one extra region.

After adding the nth hyperplane, we have n+1 regions. Each hyperplane adds one

‘crossing’ of the horizontal axis.

d =1  n+1 regions (where n is the number of hyperplanes in 1d)

Distributed representation

In 2dim input space with:

3 hyperplanes?

4 hyperplanes?

How many different regions are carved

Increase dimension

= turn hyperplane

= new crossing

= new regions

Previous slide.

Suppose we have n hyperplanes in 1 dimension.

This corresponds to n PARALLEL hyperplanes in 2 dimension. The number of separate

regions is still n+1, just as in 1 dimension.

Suppose now we slowly turn one of the hyperplanes into an ARBITRARY position.

Each time it crosses another hyperplane the tilting process creates a new region.

Hence n-1 new regions are created.

Repeat this with the all n hyperplanes. Each time I create (n-1) new regions – except

that I have now overcounted by a factor of 2.

Distributed multi-region representation

in 2dim input space by

n hyperplanes?

How many different regions are carved

1 + n + n(n-1)/2

Previous slide.

In 2 dimension:

I have n lines. If I tilt one line  adds n-1 new crossings  adds n-1 new regions.

I can do this for each of the n existing lines: they were parallel in the 1d setting, I turn it

= add new crossings.

Total (n)(n-1)/2 new crossings (corrected for counting twice).

But in 1d, I had already n+1 regions. Therefore, total number of regions is given by the

formula 1 + n + n(n-1)/2

x2

x3

Distributed representation

In 3d input space by:

1 hyperplane

2 hyperplanes

3 hyperplanes?

4 hyperplanes?

How many different regions are carved

Previous slide.

Let us extend the argument to three dimensions.

At the beginning it is easy, and the number of regions increases exponential.

But how do we treat 4 hyperplanes?

Distributed multi-region representation

In 3 dim input space by:

3 hyperplanes?

4 hyperplanes?

we look at 4 vertical planes

from the top (birds-eye view)

Keep 3 fixed, but

then tilt 4th plane

How many different regions are carved

Previous slide.

In 3 dimension:

I have n vertical hyperplanes, I look on these from the top. Thus the third dimension is

not yet used. Now I tilt one of these hyperplanes.

 the tilting adds as many new regions as there were crossings in 2 dimensions of

the remaining n-1 hyperplanes  adds (n-1)(n-2)/2 new regions.

Again, this tilting argument can be repeated for each of the n vertical planes (but avoid

double counts!)

So we can build a proof by induction:

The number of NEW regions with n hyperplanes in d dimensions, is linked to the

number of crossings with n-1 hyperplanes in d-1 dimensions.

The total number of regions is the NEW regions plus the number of OLD regions with n

hyperplanes in d-1 dimensions.

Distributed multi-region representation

Number of regions cut out by n hyperplanes

In d –dimensional input space:

𝑛𝑢𝑚𝑏𝑒𝑟~𝑂(
𝑛

𝑑!

𝑑

)

But, without additional layers, we cannot learn arbitrary targets

by assigning arbitrary class labels {+1,0} to each region,

unless exponentially many hidden neurons:

generalized XOR problem

𝑛𝑢𝑚𝑏𝑒𝑟 =

𝑗=0

𝑑
𝑛
𝑗

Your notes.

Conclusion:

1. MANY regions created by a n hyperplanes in d dimension.

2. However, this does not mean that all of these can be assigned to arbitrary classes.

For example, 2 hyperplanes carve 4 regions, but an XOR configuration cannot be

solved unless we add an extra layer.

3. The argument can then be repeated for all layers. The input dimension in layer n is

the number of neurons in layer n-1.

Distributed multi-region representation

There are many, many regions!

But there is a strong prior that we do not need

(for real-world problems) arbitrary labeling of these regions

in the sense of a generalized XOR problem.

With polynomial number of hidden neurons:

 Generalization

Previous slide.

Intuitively speaking, hyperplanes can be re-used to assign labels, because the

configuration of XOR is rather uncommon in real-world problems.

An example is shown in the next slide

Distributed representation vs local representation

Example: nearest neighbor representation

xx x

x

x

xx
x

o

Nearest neighbor

Does not create

A new region here

o

o

o

o
o

Previous slide.

Illustration of the re-use of regions, carved out by hyperplanes, for several classes.

An alternative method to hyperplanes would be nearest-neighbor classification. In this

case the assignment to the orange and red classes would be extended, without carving

out a new region.

Deep networks versus shallow networks

Performance as a function of number of layers

on an address classification task

Image: Goodfellow et al., Deep Learning, MIT Press 2016

Previous slide.

Increasing the number of layers increases performance.

Deep networks versus shallow networks

Performance as a function of number of parameters

on an address classification task

Image: Goodfellow et al., Deep Learning, MIT Press 2016

Previous slide.

For the same number of parameters (weights), a convolutional neural network with 11

layers performs better than a fully connected network with three layers.

For convolutional networks: see lecture ‘week 7’,

Conclusion: experimentally it was found that deep networks perform better than shallow

ones.

Deep networks versus shallow networks

- Somehow the prior structure of the deep network

matches the structure of the real-world problems

we are interested in.

- The network reuses features learned in other contexts

Example: green car, red car, green bus, red bus,

tires, window, lights, house,

 generalize to red house with lights

Previous slide.

One potential (non-mathematical) explanation of the success of deep networks is the

fact that features in the real world in which we are interested extend over large regions

of the data space so that we have seen examples of green trees and green buses, but

also red cars, red buses and white houses, we can generalize to red houses.

Wulfram Gerstner

EPFL, Lausanne, Switzerland

Objectives for today:

- Error function landscape:

there are many equivalent minima and even more saddle points

- Momentum

gives a faster effective learning rate in boring directions

- Adam

gives a faster effective learning rate in low-noise directions

- No Free Lunch: no algorithm is better than others

- Deep Networks: are better than shallow ones on

real-world problems due to feature sharing

Artificial Neural Networks

Loss landscape and optimization methods for deep learning

