
Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Deep Nets4: Statistical classification by deep networks

Objectives for today:

- The cross-entropy error is the optimal

loss function for classification tasks

- The sigmoidal (softmax) is the optimal

output unit for classification tasks

- Multi-class problems and ‘1-hot coding’

- Under certain conditions we may interpret the

output as a probability

Part 1: Questions and Aims of this Lecture: The statistical view

Reading for this lecture:

Bishop 2006, Ch. 4.2 and 4.3

Pattern recognition and Machine Learning

or

Bishop 1995, Ch. 6.7 – 6.9

Neural networks for pattern recognition

or

Goodfellow et al., 2016 Ch. 5.5, 6.2, and 3.13 of

Deep Learning

Review: Data base for Supervised learning (single output)

input

car =yes

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

target output

𝑡𝜇 = 1

P data points

𝑡𝜇 = 0 car =no

Previous slide.

As we know from the previous lectures, we work in a supervised setting …

Review: Supervised learning

input

car (yes)

output

Techerteacher

𝒙𝜇

 𝑦𝜇 = 1𝑡𝜇 = 1target output classifier output

classifier

Previous slide.

… and use the target information to adjust the parameters of our classifier which is a

neural network in our case.

Review: Example MNIST

- images 28x28

- Labels: 0, …, 9

- 250 writers

- 60 000 images in training set

MNIST data samples

Picture: Goodfellow et al, 2016

Data base:

http://yann.lecun.com/exdb/mnist/

Previous slide.

As we have seen last week, all data is noisy

5 9

review: data base is noisy

- training data is always noisy

 crossvalidation, regularization

9 or 4?

9 or 4?

What might be a

9 for reader A

Might be a

4 for reader B

Previous slide.

Even the handwritten digits in the MNIST data base.

Note that the LABELS are noisy: what is a 4 for one writer is a 9 for another one.

Question for today

May we interpret

the outputs of

our network as

a probability?

input

output

4 9

Previous slide.

In this lecture, we therefore reformulate the question of classification as follows:

Can we interpret an output activity 𝑦4
𝜇
= 0.8 as the probability of 80 percent that the

pattern 𝜇 is a ‘4’?

The statistical view

A neural network should be seen as a

generative model

that predicts labels probabilistically

Previous slide.

A central notion for a probabilistic interpretation is the concept of a ‘generative model’.

The statistical view

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

car dog other
Idea:

interpret the output

as the probability that

the input pattern

should be classified

as class k

 𝑦𝑘
𝜇

𝒙𝝁

 𝑦𝑘
𝝁
= P(𝐶𝑘|𝒙𝝁)

 𝑦𝑘 = P(𝐶𝑘|𝒙)

pattern from data base

arbitrary novel pattern

Previous slide.

The aim is to interpret the output of unit k

 𝑦𝑘 = P(𝐶𝑘|𝒙)

as the probability that the novel input pattern 𝒙 belongs to class 𝐶𝑘

The notation is that of conditional probabilities

P(𝐶𝑘|𝒙) is the probability of class 𝐶𝑘 given 𝒙.

The statistical view: single class

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ = 𝑦1

0

𝑝− = 1 − 𝑦1

+1 0

Take the output and generate

predicted labels 𝑡1 probabilistically

 𝑦1

 generative model for class label

with 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

predicted label

 𝑦1

Previous slide.

To enable such a probabilistic interpretation, we construct a generative model

consisting of the neural network AND a probabilistic label generator.

The label generator outputs a

1 with probability 𝑝+ = 𝑦1

And a

0 with probability 𝑝− = 1 − 𝑦1

Then we can ask whether the label generated by the model is the (on average) the

correct one. To see this we return to the data base of supervised learning.

Summary: the statistical view

Artificial Neural Network as generative model for class label

with 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

predicted label

 basis for a statistical interpretation of neural networks

You work in the miniproject work with

- regularization methods

- ADAM optimizer

- ReLu for hidden units

- log-policy loss

- TD value and policy gradient

- cross-entropy error function

- sigmoidal (softmax) output

- 1-hot coding for multiclass

This week: Relevant for

Miniproject on image

classification

(Done, used in

both miniprojects)

Done: Relevant for

Miniproject on RL

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

Part 2: The likelihood of data under a model

Previous slide.

To compare the label generated by the model with the one in the data base of

supervised learning, we take a maximum likelihood approach.

The likelihood of a model (given data)

Overall aim:

What is the probability that my set of P data points

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

could have been generated by my model?

Previous slide.

Specifically we ask:

What is the probability that all my data points (input patterns and labels) could have

been generated by my model?

The likelihood of a model (Repetition from ML class)

Detour:

forget about labeled data, and just think of input patterns

What is the probability that a set of P data points

 𝒙𝑘 ; 1 ≤ k≤ 𝑃 ;

could have been generated by my model?

Previous slide.

Since it is a bit difficult to think about labels as a statistical process, let us consider first

the classical problem of generating (unlabeled) data points. This part is a repetition of

topics that have already covered in other classes such as the Machine Learning class

of Jaggi and Urbanke.

https://en.wikipedia.org/wiki/Gaussian_function#/media/

𝑝(𝑥) =
1

2𝜋𝜎
𝑒𝑥𝑝

−(𝑥−𝜇)2

2𝜎2
1

this depends on 2 parameters

𝑤1,𝑤2, = 𝜇, 𝜎

center width

Example: Gaussian distribution

𝑥

Previous slide.

Suppose that we know that the data comes from a Gaussian distribution. However, we

do not know the mean (center) and the standard deviation (width) of the distribution.

~𝑝(𝑥𝑘)

Probability that a random data generation process draws

one sample k with value 𝑥𝑘 is

Random Data Generation Process

𝑝(𝑥𝑘) 𝑝(𝑥)

What is the probability to generate P data points?

𝑃 = 𝑝(𝑥1)∆𝑥 𝑝(𝑥2)∆𝑥 … 𝑝(𝑥𝑘)∆𝑥 … 𝑝(𝑥𝑃)∆𝑥

𝑃 = 𝑛=1
𝑃 [𝑝 𝑥𝑛 ∆𝑥] = 𝑛=1

𝑃 [𝑝 𝑥𝑛] ∙ [∆𝑥]
𝑝

𝑃 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑋 ∙ 𝐶

Product of two terms: C does not depend on the choice of model

Previous slide.

In general, the distribution is not a Gaussian, but some function p(x).
We observe P data points and ask:

What is the probability that the specific set of P data points COULD HAVE BEEN

GENERATED by a random data generation process which draws data from p(x)?

The probability that you would draw a data point x in the range

𝑥𝑘 + ∆𝑥
2

is

which is correct in the limit that ∆𝑥 → 0.

Therefore the probability is to draw the point 𝑥𝑘 is PROPORTIONAL to

The aim is now to generate not just a single one, but all P data points.

Because of (assumed) independence of the data generation process, we can just

multiply the probabilities of all data points.

𝑃 = 𝑝(𝑥𝑘)∆𝑥

~𝑝(𝑥𝑘)

𝑥𝑘 − ∆𝑥
2

< 𝑥 ≤

Probability to generate P data points

𝑃 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑋 ∙ 𝐶

Here 𝑝𝑚𝑜𝑑𝑒𝑙 𝑋 is the ‘likelihood’ that the specific

set of P data points is generated by the model.

Note that C does not depend on the choice of model

(but only on the discretization ∆𝑥)

Previous slide.

For optimization only the part that depends on the model (or the model parameters) is

important. Therefore the constant C can be dropped.

Hence, 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 is not a ‘probability’ but some quantity ‘propotional’ to the probability.

I call it likelihood (in a broad sense).

Likelihood function

𝑝(𝒙𝑘)

Suppose the probability for generating a data point 𝒙𝑘 using

my model is proportional to

Suppose that data points are generated independently.

Then the likelihood that my actual data set

could have been generated by my model is

𝑿 = 𝒙𝑘; 1 ≤ k ≤ 𝑃 ;

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 =

Previous slide.

Note that we performed a small but important change in perspective.

We no longer generate data points, but we ask whether the observed data points

COULD HAVE BEEN GENERATED BY MY MODEL.

Under the assumption that data points are generated independently, the likelihood that

total data set of P data points could have been generated by my model is

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)

Here I use the term likelihood in a broad sense defined as a quantity that is proportional

to the probability. The narrow definition comes on the next slide.

𝑝(𝑥𝑘) =
1

2𝜋𝜎
exp

−(𝑥𝑘−𝜇)2

2𝜎2

Example: for the specific case of the Gaussian

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 = [
1

2𝜋𝜎
]𝑃exp

− 𝑘=1
𝑃 (𝑥𝑘−𝜇)2

2𝜎2

Maximum Likelihood

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 =

BUT this likelihood depends on the parameters of my model

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛,

parameters

Choose the parameters such that the likelihood is maximal!

Previous slide.

The expression

as a function of the model parameters is called the likelihood function (in the narrow

sense).

The aim is now to choose the parameters of the model such that the likelihood that the

data COULD HAVE BEEN GENERATED by the model is maximal.

This optimization procedure is called the Maximum-Likelihood (ML) approach.

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛,

𝑝(𝑥𝑘) =
1

2𝜋𝜎
exp

−(𝑥𝑘−𝑥𝑐𝑒𝑛𝑡𝑒𝑟)2

2𝜎2
Likelihood of point 𝑥𝑘 is

Example: Gaussian distribution

x x xx xx x
𝑥

Which Gaussian is most

consistent with the data?

[] green curve

[] blue curve

[] red curve

[] brown-orange curve

Previous slide.

For example, it is very unlikely that the data points (pink crosses) could have been

generated by the blue distribution.

Example: Gaussian (Repetition from ML class}

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 =

The likelihood depends on the 2 parameters of the Gaussian

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 , 𝜎

Maximize 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 with respect to the model parameters

You have p data points.

Steps:

1) You take the general likelihood formula and insert for each p(x) the Gaussian function.

2) The likelihood depends on the choice of the parameters of the Gaussian.

3) You maximize the likelihood with respect to the parameter 𝑥𝑐𝑒𝑛𝑡𝑒𝑟 that represents the

center of the Gaussian; to do so, set the derivative to zero.

4) The result is

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 1

𝑃
 𝑘=1

𝑃 𝑥𝑘

See: Solution of exercise 1.

Also this whole section is also treated in the class:

Introduction to Machine Learning

Gaussian: best parameter choice for center

𝑥𝑐𝑒𝑛𝑡𝑒𝑟 = 1
𝑃

𝑘=1

𝑃

𝑥𝑘

Conclusion:

choosing parameters such that they maximize the likelihood

that the data COULD HAVE BEEN GENERATED by a

Gaussian, yields a reasonable parameter choice.

NOTE: we never assume that the data was actually

generated by a Gaussian.

Your notes.

Maximum Likelihood (general)

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛, =

Choose the parameters such that the likelihood

is maximal

𝑓 𝑦 = ln(𝑦) Note:

Instead of maximizing

you can also maximize

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿|𝑝𝑎𝑟𝑎𝑚

ln(𝑝𝑚𝑜𝑑𝑒𝑙 𝑿|𝑝𝑎𝑟𝑎𝑚)

𝑦1 < 𝑦2

Previous slide.

The idea is to use, amongst all the possible models, the model with the highest likelihood

that it could have generated the actual observed data. The family of models is

characterized by parameters.

In the case of the Gaussian, the parameters are the center and the width of the Gaussian.

In our case, the parameters will be the weight of the neural network.

Whatever you choose as a family of models, you want to maximize the likelihood

that the observed data could have been generated by your model.

Because the logarithm is a monotone function, the parameter values you find by

maximizing this likelihood are the same as the parameter values you would find if you

maximize

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛,

ln[𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛,]

Maximum Likelihood (general)

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛, =

Choosing the parameters such that the likelihood

is maximal is equivalent to maximizing the log-likelihood

“Maximize the likelihood that the given data

could have been generated by your model”
(even though you know that the data points were generated

by a process in the real world that might be very different)

𝐿𝐿 𝑤1,𝑤2, …𝑤𝑛, = ln 𝑝𝑚𝑜𝑑𝑒𝑙 = 𝑘 𝑙𝑛 𝑝(𝒙𝑘)

Previous slide.

Note that we make no claim that the data actually was generated by your model. The

data may not be Gaussian, and you still try to fit it by a Gaussian.

Similarly, the observed data was certainly not generated by a neural network.

Nevertheless you can fit it by a neural network, using the maximum likelihood

approach.

Summary: Maximum Likelihood Method

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛, =

Choose the parameters such that the likelihood

is maximal.

These parameters are found by maximizing the

log-likelihood

Note1): some people (e.g. David MacKay) use the term ‘likelihood’

ONLY IF we consider LL(w) as a function of the parameters w.

‘likelihood of the model parameters in view of the data’.

Note 2): We can consider −𝐿𝐿 𝑤1,𝑤2, …𝑤𝑛, as a ‘loss function’.

𝐿𝐿 𝑤1,𝑤2, …𝑤𝑛, = ln 𝑝𝑚𝑜𝑑𝑒𝑙 = 𝑘 𝑙𝑛 𝑝(𝒙𝑘)

Previous slide.

The likelihood is a function of the model parameters.

Finding the maximum of the likelihood gives you the best model parameters in the

sense of ‘maximum likelihood’.

Notes:

- The likelihood as a function of model parameters is not normalized to one and

therefore you should not think of it as a probability or a probability density.

- Even though I called this section: ‘the likelihood of data under a given model’, some

textbooks actually use the term of likelihood only in the sense of ‘the likelihood of a

model given the data’. In my opinion both views are OK. The more restrictive, second

point of view emphasizes that you have to optimize the model parameters so as to

maximize the likelihood.

- The negative log-likelihood is a standard loss function in statistics.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Statistical interpretation of artificial neural networks

3A The cross-entropy loss function

Part 3: Statistical interpretation of artificial neural networks

Previous slide.

We now apply to concept of maximum likelihood to artificial neural networks

The likelihood of data under a neural network model

Overall aim:

What is the likelihood that my set of P data points

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃 ;

could have been generated by my model?

Previous slide.

We now ask: what is the likelihood that the P pairs (input, target) that we have in the

training base could have been generated by my neural network?

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ = 𝑦1

0Likelihood of input-output pairs

study point 𝒙𝜇 with 𝑡𝜇=+1: Probability that (𝒙𝜇,+1)

could have been generated

study point 𝒙𝜇 with 𝑡𝜇=0: Probability that (𝒙𝜇 , 0)

could have been generated

network output

generation of predicted labels

Previous slide.

To analyze this we return to the generative model where the neural network output is

interpreted as the probability to generate a label 1 or 0.

Blackboard 3:

Likelihood of P input-output pairs

Your notes.

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ = 𝑦1

0Maximum Likelihood for neural networks

𝐸 𝑤 = −𝐿𝐿 = −ln 𝑝𝑚𝑜𝑑𝑒𝑙

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛 𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 − 𝑦

𝜇
)]

Minimize the negative log-likelihood

parameters= all weights, all layers

For single-class classification tasks, the

cross-entropy loss is the ‘natural’ error function.

Previous slide.

If we consider the output as a model of the probability that a given data point x belongs

to the class C, then a maximum likelihood approach implies that the correct error

function is the cross-entropy loss.

Hence, for classification tasks we should not work with the quadratic loss, but with the

cross-entropy loss.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Statistical interpretation of artificial neural networks

3B Can we interpret the output as probability?

Part 3: Statistical interpretation of artificial neural networks

Previous slide.

The central question is: can we REALLY interpret the output as a probability?

Cross-entropy error function for neural networks

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛 𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 − 𝑦

𝜇
)]

Suppose we minimize the cross-entropy error function

Can we be sure that the output 𝑦
𝜇

will represent the probability?

Intuitive answer: No, because

A We will need enough data for training

(not just 10 data points for a complex task)

B We need a sufficiently flexible network

(not a simple perceptron for XOR task)

Previous slide.

Compared to the previous section, we now ask the inverse question:

Let us start with the cross-entropy error function. If we have found the parameters that

minimize the cross-entropy error function, does that guarantee that the output is the

probability?

The answer has to be negative, because:

A if we do not have enough data points, the best error function cannot help us.

B if the network is just a simple perceptron, it is most likely not be flexible enough to

solve the task at hand.

In the following, we will therefore assume that

A we have always ‘enough data’ and B the network is ‘flexible enough’.

The mathematical arguments on the blackboard should show HOW these assumptions

are used to derive some strong conclusions.

Output = probability ?

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛 𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 − 𝑦

𝜇
)]

Suppose we minimize the cross-entropy error function

Assume

A We have enough data for training

B We have a sufficiently flexible network

Aim:

From Cross-entropy to output probabilities

Your notes.

Blackboard 4:

From Cross-entropy to output probabilities

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛 𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 − 𝑦

𝜇
)]

Hypothesis A: we have many examples

Hypothesis B: network is flexible enough

Previous slide/Blackboard calculations.

The calculations with discrete bins ∆𝑥 show that the notions ‘enough examples’ and

‘flexible enough’ are linked to each other: we need enough data samples in each bin to

reliably estimate the fraction of positive examples in a bin; and the network must have

enough flexibility to output for each bin a different value.

In neural network applications we do not have discrete inputs, but the logic is the same:

the flexibility of the network per unit distance (controlled by regularization) must match

the number of data points per unit distance, and analogously in high dimensions.

Minimization of the crossentropy guarantees that the output is a probability only in the

limit of an infinite number of data points in a network of arbitrary flexibility.

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛 𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 − 𝑦

𝜇
)]

Hypothesis A: we have many examples

Hypothesis B: network is flexible enough

Summary: From Cross-entropy loss to probabilities

Then minimizing the cross-entropy error function

leads to an output

 𝑦 ≈
𝑛1(𝑥)

𝑛0 𝑥 + 𝑛1(𝑥)
≈ P(C|𝐱)

Note: - flexibility at x must somehow ‘match’ the number of examples at x.

- in high dimensions we require LOTS of data!

QUIZ: Maximum likelihood solution means

[] find the unique set of parameters that generated the data

[] find the set of parameters that best explains the data

[] find the best set of parameters such that your model could

have generated the data

Miminization of the cross-entropy error function

for single-class output

[] is consistent with the idea that the output 𝑦1 of your network

can be interpreted as

[] guarantees that the output 𝑦1 of your network

can be interpreted as

 𝑦1 = P(𝐶1|𝒙)

 𝑦1 = P(𝐶1|𝒙)

[]

[x]

[x]

[x]

[]

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Statistical interpretation of artificial neural networks

4. Sigmoidal as a natural output function

Part 4: Sigmoidal as a natural output function

Previous slide.

In this part we show that the sigmoidal function enables a nice probabilistic

interpretation of the neuronal activities.

Why sigmoidal output ? – single class

𝑎

1

0
𝑤𝑗,𝑘

(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ = 𝑦1

0

𝑝− = 1 − 𝑦1

Observations (single-class):

- Probability must be between 0 and 1

- Intuitively: smooth is better

 𝑦1

𝑔(𝑎)

 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

natural choice/best choice for 𝑔 𝑎 ?

Previous slide.

Suppose that we have taken all the necessary steps to interpret the output as a

probability. What does this imply for the shape of the output function g(a)?

If the output is a probability, then it should lie in the range [0,1]. Thus the output must be

bounded from above and from below. Moreover, a smooth function (black) will be

better suited to express probabilities than a step function (red).

We now derive a ‘natural’ shape of the output function g(a).

Note that I avoid the term ‘optimal’ shape because the derivation shows that other

choices would be possible – but the sigmoidal function will come out as something very

convenient.

Blackboard 5:

derive optimal sigmoidal

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ = 𝑦1

0

Your notes.

Why sigmoidal output ? – single class

𝑎

1

0
𝑤𝑗,𝑘

(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ = 𝑦1

0

 𝑦1

𝑔(𝑎)

 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

 𝑦1 = 𝑔 𝑎 =
1

1 + 𝑒−𝑎

total input a (“activation/drive”)

of output neuron can

be interpreted as log-prob. ratio

Previous slide.

In a probabilistic setting, a natural choice for the output function is

𝑔 𝑎 =
1

1 + 𝑒−𝑎

The total input (activation variable a) of the output neuron can be interpreted as the

logarithm of the fraction p(x,C)/p(x,\C)

probability p(x,C) that the input is x and belongs to the class

ln ---

probability p(x, \C) that the input is x and does not belong to the class

called the log-probability ratio. Here \C means: does NOT belong to class C.

People interpret the log-probabilities as a difference between

‘evidence in favor for assignment to class ’

‘evidence against assignment to class ’ .

Exercise this week: compare with ln[p(C|x)/p(\C|x)]

https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:

for a= 3: g(3) =0.95

for a=-3: g(-3)=0.05

𝑔 𝑎 =
1

1 + 𝑒−𝑎

sigmoidal output = logistic function

Previous slide.

Above an activation value of a = 3 the probability to generate a 1 in the output is above

95 percent.

Thus the most likely output is ‘yes, this input belongs to the class’.

For an activity of zero, the probability is exactly 50 percent:

There is as much evidence for and against the assignment of this input to the class.

Summary: Why sigmoidal output ?

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ = 𝑦1

0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

 𝑦1 = 𝑔 𝑎 =
1

1 + 𝑒−𝑎

can be interpreted as log-probability ratio.

If we interpret the output

as a probability that the data x belongs to

class C1, then the drive/activation a of a

sigmoidal output unit

Previous slide.

Summary of main finding.

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Statistical interpretation of artificial neural networks

4. Sigmoidal as a natural output function

5. Multi-class problems

Part 5: Multi-class problems

Previous slide.

So far we worked with probabilities for a single class C, such as ‘car’ versus ‘not car’,

represented by a neural network with a SINGLE output.

Multiple Classes

mutually exclusive classes

input

output
car dog

multiple attributes

input

output

teeth dog ears

Previous slide.

In the following we consider a network with multiple outputs. We need to distinguish

between two different paradigms.

A (left): the outputs refer to attributes. For example a dog picture can show teeth, and

ears, and the dog. Therefore several outputs can be active at the same time.

B (right): the outputs refer to mutually exclusive classes. For example, an image can be

classified as either a car or a dog or a house, but not two at the same time. [This is an

important assumption which implies that I we exclude the case that the image could

show one car and two dogs.]

Multiple Classes: Multiple attributes

Multiple attributes:

input

output

teeth dog ears

equivalent to several

single-class decisions

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

1 0

 𝑦1

1 0 1

Previous slide.

The case of multiple attributes can be treated as several single-class decisions that are

taken in parallel. The image can contain ears or not ears; teeth or not teeth, … . The

fact that we see an ear does not exclude the fact that we see on the same image also

some teeth.

Multiple Classes: Mutually exclusive classes

mutually exclusive classes

input

output
car dog

either car or dog:

only one can be true



outputs interact

Previous slide.

For mutually exclusive classes, the situation is different. We assume that the image

contains one class at a time: either a car, or a dog, or a tree, or a house, but not several

items at the same time.

This implies that the outputs must interact. If one of the output shows ‘true’ the other

must show ‘not true’.

Exclusive Multiple Classes

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

 𝑦1

1

1-hot-coding:

 𝑡𝑘
𝜇
=1→ 𝑡𝑗

𝜇
=0 for j ≠k

Previous slide.

In the case of mutually exclusive classes, the database of supervised learning has

labels that reflect ‘one-hot coding’: For each input 𝒙 exactly one of the target values is 1

and all the others are zero.

Exclusive Multiple Classes

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

 𝑦1

1-hot-coding:

 𝑡𝑗
𝜇
=0 for j ≠k

1

Outputs are NOT independent:

𝑘=1

𝐾

 𝑡𝑘
𝜇
= 1 exactly one output is 1

 𝑡𝑘
𝜇
=1→

𝑘=1

𝐾

 𝑦1
𝜇
= 1 Output probabilities sum to 1

Previous slide.

Similarly, an interpretation of the networks outputs as probabilities implies that the

outputs of the network must sum to one.

In addition the PREDICTED output labels must also sum to one

The question then is how we can implement both conditions.

𝑘=1

𝐾

 𝑦1
𝜇
= 1

𝑘=1

𝐾

 𝑡𝑘
𝜇
= 1

Recall: Why sigmoidal output ?

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

1 0

Observations (multiple-classes):

- Probabilities must sum to one!

𝑎

1

0

 𝑦1

𝑔(𝑎)

 𝑦3

1 0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

 𝑦1

1 0

AIM:

derive softmax as optimal multi-class output

Your notes.

In the exercises this week, you will show that the conditions that

(i) outputs are probabilities

(ii) probabilities add up to one,

imply the ‘softmax’ output function.

Softmax output

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

 𝑦𝑘 = P(𝐶𝑘|𝒙) = 𝑷(𝑡𝑘 =1|𝒙)

 𝑦𝑘 = P(𝐶𝑘|𝒙) =
𝒆𝒙𝒑(𝑎𝑘)

 𝒋 𝒆𝒙𝒑(𝑎𝑗)

0

 𝑦3

0

 𝑦1

1

‘softmax’:

Interaction of output units

that guarantees normalization

Previous slide.

A generative probabilistic model for mutually exclusive classes (‘1-hot-coding’) implies a

neural network where the output neurons interact in the form of a ‘softmax’ function.

Mathematically speaking: if we want to interpret the output of neuron k as

then the outputs should interact with each other so that the output of neuron k is

The right-hand side is called the ‘softmax’ function.

The denominator of the softmax function ensures normalization of probabilities to one.

Writing the numerator as an exponential ensures that probabilities are always positive.

 𝑦𝑘 = P(𝐶𝑘|𝒙) = 𝑷(𝑡𝑘 =1|𝒙)

 𝑦𝑘 =
𝒆𝒙𝒑(𝑎𝑘)

 𝒋 𝒆𝒙𝒑(𝑎𝑗)

Exclusive Multiple Classes

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(𝑡1 =1|𝒙)

 𝑦1

1-hot-coding:

 𝑡𝑗
𝜇
=0 for j ≠k

1

Output labels are NOT independent:

PREDICTED labels NOT independent

𝑘=1

𝐾

 𝑡𝑘
𝜇
= 1 exactly one output is 1

 𝑡𝑘
𝜇
=1→

Previous slide.

For a single-class problem, we have seen that a maximum likelihood approach leads to

a cross-entropy error function.

We repeat the derivation for the analogous situation of mutually exclusive classes.

The result is also called cross-entropy error function.

Blackboard 6:

output labels as symbols

mutually exclusive classes

4 symbols: A, B, C, D

symbolprob

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

0

 𝑦1

1

𝒕 = 𝑡1 , 𝑡2 , 𝑡3 , 𝑡4 arbitrary

A= {1, 0, 0, 0}

B= {0, 1, 0, 0}

C= {0, 0, 1, 0}

D= {0, 0, 0, 1}

𝑝𝐴
𝑝𝐵

𝑝𝐶
𝑝𝐷

0

 𝑦4

𝑝𝐴 + 𝑝𝐵 + 𝑝𝐶 + 𝑝𝐷 = 1

Previous slide:

1-hot coding implies that the symbol for each target is a string such as

{0,0, …,0,1,0, …0}.

In the case of four mutually exclusive classes, class C is represented by the string

{t1,…, t4} = {0,0,1,0}.

We can write the probability 𝑝𝐶 as

and use this to derive the log-likelihood function.

𝑝𝐶 = 𝑝𝐴
0 ∙ 𝑝𝐵

0 ∙ 𝑝𝐶
1 ∙ 𝑝𝐷

0

4 symbols: A, B, C, D

symbolprob

𝒕 = 𝑡1 , 𝑡2 , 𝑡3 , 𝑡4 arbitrary

A= {1, 0, 0, 0}

B= {0, 1, 0, 0}

C= {0, 0, 1, 0}

D= {0, 0, 0, 1}

𝑝𝐴
𝑝𝐵

𝑝𝐶
𝑝𝐷

𝑝𝐴 + 𝑝𝐵 + 𝑝𝐶 + 𝑝𝐷 = 1

Blackboard 6:

output labels as symbols

mutually exclusive classes

Your notes.

Summary: Cross-entropy error for Multiclass problems

𝐸(𝑤) = −

𝑘=1

𝐾

𝜇

[𝑡𝑘
𝜇
𝑙𝑛 𝑦𝑘

𝜇
]

Minimize* the cross-entropy

parameters= all weights, all layers

We have a total of K classes (mutually exclusive: either dog or car)

KL 𝑤 = − 𝑘=1
𝐾 𝜇[𝑡𝑘

𝜇
𝑙𝑛 𝑦𝑘

𝜇
] − 𝜇[𝑡𝑘

𝜇
𝑙𝑛 𝑡𝑘

𝜇
]}

Compare: KL divergence between outputs and targets

KL 𝑤 = 𝐸 𝑤 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

*Minimization under

the constraint:

 𝑘=1
𝐾 𝑦𝑘

𝜇
= 1

 softmax

Previous slide.

The cross-entropy error function for mutually exclusive classes is a generalization of the

cross-entropy formula for a single class. To see this, assume that we have exactly two

mutually exclusive classes: thus if the targets of the first output is 1 the target of the

second output must be zero (and vice versa). This assumption leads back to the single-

class cross-entropy formula.

For the multi-class problem, the cross-entropy error function can be interpreted as the

KL divergence between actual outputs and targets plus a constant.

For the position of the minimum of the error function the constant is irrelevant.

Since output probabilities sum to one, and since we want to interpret the outputs as

probabilities, the minimization must be performed under the constraint

 𝑘=1
𝐾 𝑦𝑘

𝜇
= 1.

Working with the softmax function in the output guarantees that this constraint is always

satisfied

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Statistical interpretation of artificial neural networks

4. Sigmoidal as a natural output function

5. Multi-class problems

6. Summary and Quiz

Part 6: Summary and Quiz

Previous slide.

Summary of the probabilistic interpretation.

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑥𝑗
(1)

output layer

use sigmoidal unit (single-class)

Modern Neural Networks for classification

hidden layers

use rectified linear unit

f(x)=x for x>0

f(x)=0 for x≤0

 𝑦1 = 𝑔 𝑎 =
1

1 + 𝑒−𝑎

 𝑦𝑘 = 𝑔 𝑎 =
𝑒𝑎𝑘

 𝑖 𝑒
𝑎𝑖

 𝑦3 𝑦1

or softmax (exclusive multi-class)

Previous slide.

The statistical interpretation of Neural Networks suggest to use for classification tasks a

sigmoidal unit and for exclusive classes a softmax function.

There are no rigorous theoretical arguments for hidden units. In practice, modern

artificial neural networks often use piecewise linear units.

So far we only focused on the function used in the output layer. The question arises

whether there is also an ‘ideal’ function for the hidden neurons.

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑥𝑗
(1)

Modern Neural Networks for classification

 𝑦3 𝑦1

Best error function in context

of classification:
cross-entropy loss (single-class)

𝐸(𝑤) = −

𝑘

𝜇

[𝑡𝑘
𝜇
𝑙𝑛 𝑦𝑘

𝜇
]

Cross-entropy loss:

mutually exclusive classes

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛 𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 − 𝑦

𝜇
)]

QUIZ: Modern Neural Networks in a statistical setting

[] softmax unit should be used for exclusive multi-class in

an output layer in problems with 1-hot coding

[] sigmoidal units should be used for multiple attribute-classification

problems

[] two-class problems (mutually exclusive) are the same as

single-class problems

[] multiple-attribute-class problems are treated as

multiple-single-class problems

[] the above choices guarantee that the outputs can be

interpreted as probabilities

[] we need to be careful, if we want to interpret

the output as a probability

[x]

[x]

[x]

[x]

[]

[x]

QUIZ: Modern Neural Networks in a statistical setting

[] Suppose we minimize, in a multi-class setting the cross-entropy loss with

respect to the model parameters (weights and thresholds of a neural network).

THEN the final set of parameters at the global minimum corresponds to the

maximum-likelihood solution in the statistical sense.

We have a problem with two mutually exclusive classes.

Albert uses soft-max for the two outputs of his neural network and

minimizes the cross-entropy loss

Berta works with a single output, uses a sigmoidal unit for it, and

minimizes the loss

[] At the global minimum, the two solutions are completely equivalent.

[] Both approaches work, but the solution of Berta is (slightly) better.

[] Both approaches work, but the solution of Albert is (slightly) better.

[x]

[x]

[]

[]

𝐸(𝑤) = −

𝑘

𝜇

[𝑡𝑘
𝜇
𝑙𝑛 𝑦𝑘

𝜇
]

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛 𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 − 𝑦

𝜇
)]

Your notes..

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks

Statistical classification by deep networks

Objectives for today:

- The cross-entropy error is the optimal

loss function for classification tasks

- The sigmoidal (softmax) is the optimal

output unit for classification tasks

- Exclusive Multi-class problems use ‘1-hot coding’

- Under certain (restrictive) conditions we may interpret the

output as a probability

Reading for this lecture:

Bishop 2006, Ch. 4.2 and 4.3

Pattern recognition and Machine Learning

or

Bishop 1995, Ch. 6.7 – 6.9

Neural networks for pattern recognition

or

Goodfellow et al.,2016 Ch. 5.5, 6.2, and 3.13 of

Deep Learning

