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Deep Reinforcement Learning Applications
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A Classification of Deep Reinforcement Learning Methods

Deep RL Algorithms

Model-Free

Policy Optimization Q-Learning

Model-Based

Learn Model Given Model

Policy Gradient

A2C

PPO

TRPO

DQN

C51

HER

QR-DQN

DDPG

TD3

SAC

AlphaZeroWorldModels

VaST

I2A

MuZero

inspired by https://spinningup.openai.com/en/latest/spinningup/rl_intro2.html
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Mini-Batches in On- and Off-Policy Deep RL

Usually we train deep neural networks with independent and identically distributed

(iid) mini-batches of training data.

In this section you will learn

1. that we should not formmini-batches from sequentially acquired data in RL, but

2. use a replay buffer from which one can sample iid, or

3. runmultiple actors in parallel.

Suggested reading: Mnih et al. 2015 and Mnih et al. 2016
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Correlation of Subsequent Observations in RL

I Subsequent images are highly

correlated.

I Images at the end of the episode

may look quite differently from those

at the beginning of the episode.

I In image classification we shuffle

the training data to have

approximately independent and

identically distributed mini-batches.
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Temporally Correlated Weight Updates Can Cause Instabilities
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I wt = wt−1 + 0.02 ·∆wt.
I Temporally correlated

weight updates can

cause large weight

changes⇒ potentially

unstable learning.

I Reshuffling weight

updates helps to

prevent this⇒
reshuffling stabilizes

learning.
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Proposed Solutions for Deep RL

On-policy methods, like policy gradient or SARSA, attempt to improve the policy that is used

to make decisions, whereas off-policy methods, like Q-Learning, improve a policy different

from that used to generate the data.

Off-Policy Deep RL

e.g. DQN

I Put many (e.g. 1M) experiences

(observation, action, reward) of a single

agent into replay buffer (a

first-in-first-out memory buffer).

I Randomly sample from the replay

buffer to obtain mini-batches for

training.

On-Policy Deep RL

e.g. A2C

I Runmultiple agents (e.g. 16) and

environment simulations with different

random seeds in parallel

(ideally, every agents sees a different

observation at any moment in time)

I Obtain mini-batches from the

observations, actions and rewards of

the multiple actors.
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Deep Q-Network (DQN)

1: Initialize neural network Qθ and empty replay buffer R.
2: Set target Q̂← Qθ, counter t← 0, observe s0.
3: repeat
4: Take action at and observe reward rt and next state st+1
5: Store (st, at, rt, st+1) in R
6: Sample random minibatch of transitions (sj , aj , rj , sj+1) from R

7: Update θ with gradient of
∑
j

(
rj + maxa′ Q̂(sj+1, a

′)−Qθ(sj , aj)
)2

8: Increment t and reset Q̂← Qθ every C steps.
9: until some termination criterion is met.

10: return Qθ
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Advantage Actor-Critic (A2C)

1: Initialize neural networks πθ and Vφ.
2: Set counter t← 0, observe s0.
3: repeat
4: for all workers k = 1, . . . ,K do
5: Take action a

(k)
t and observe reward r

(k)
t and next state s(k)

t+1
6: Compute R(k)

t = r
(k)
t + γVφ(s(k)

t+1) and advantage A(k)
t = R

(k)
t − Vφ(s(k)

t )
7: end for
8: Update θ with gradient of

∑
k A

(k)
t log πθ(a

(k)
t ; s(k)

t )
9: Update φ with gradient of

∑
k

(
R

(k)
t − Vφ(s(k)

t )
)2.

10: Increment t.
11: until some termination criterion is met.
12: return πθ and Vφ
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Pros and Cons of On- and Off-Policy Deep RL

Off-Policy Deep RL On-Policy Deep RL

+ lower sample complexity
i.e. fewer interactions with the environment

are needed, because experiences in the re-

play buffer can be used multiple times

- higher sample complexity
because old experiences cannot be used to

update a policy that has already changed.

- higher memory complexity
need to store many experiences in the replay

buffer.

+ lower memory complexity
only the current observations, actions and re-

wards of the parallel agents are kept to update

the policy.
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Quiz

I If we use the SARSA loss rj + Q̂(sj+1, aj+1)−Qθ(sj , aj) in the DQN algorithm,

we just need to include also the next action aj+1 in the replay buffer and

everything will work.

I We could use multiple actors instead of a replay memory with Q-Learning.

I In A2C, if all parallel workersK start together in the first step of the episode and

every episode has the same length, we do not get the desired effect of iid

minibatches.
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Deep Reinforcement Learning for Continuous Control

Suggested reading: Kakade & Langford 2002, Schulman et al. 2015 & 2017, Lillicrap et al. 2016

I High-dimensional continuous action spaces

(e.g. forces and torques). and observation

spaces (e.g. positions, angles and velocities).

I Standard policy gradient could be applied, but it

is difficult to find hyper-parameter settings such

that learning is neither unstable nor very slow.

I Standard DQN cannot be applied, because it is

designed for discrete actions.

In this section you will learn about

1. proximal policy optimization (PPO) methods that

improve standard policy gradient methods and

2. an adaptation of DQN to continuous action

spaces (DDPG).
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How Big a Step Can WeMake in Policy Gradient?

In simple Policy Gradient, the parameters θ of a neural network change according to

θ′ = θ + α∇J(θ)

J(θ) = Es0∼p(s0)[Vθ(s0)] = Est,at∼pθ,πθ

[ ∞∑
t=0

γtRat
st→st+1

]

=
∞∑
t=0

∑
st,st+1,at

γtRat
st→st+1P

at
st→st+1πθ(at; st)pθ(st)

with pθ(st) =
∑

s0,...,st−1,a0,...,at−1

p(s0)
t−1∏
τ=0

P aτ
sτ →sτ+1πθ(aτ ; sτ ).

We actually want J(θ′)− J(θ) to be as large as possible.
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How Big a Step Can WeMake in Policy Gradient?

J(θ′)− J(θ) = J(θ′)− Es0∼p(s0)[Vθ(s0)]
= J(θ′)− Est,at∼pθ′ ,πθ′ [Vθ(s0)]

= J(θ′)− Est,at∼pθ′ ,πθ′

[ ∞∑
t=0

γtVθ(st)−
∞∑
t=1

γtVθ(st)
]

= J(θ′) + Est,at∼pθ′ ,πθ′

[ ∞∑
t=0

γt
(
γVθ(st+1)− Vθ(st)

)]

= Est,at∼pθ′ ,πθ′

[ ∞∑
t=0

γt
(
Rat
st→st+1

+ γVθ(st+1)− Vθ(st)
)]

= Est,at∼pθ′ ,πθ′

[ ∞∑
t=0

γtAθ(st, at)
]

=
∞∑
t=0

Est,at∼pθ′ ,πθ

[
πθ′(at; st)
πθ(at; st)

γtAθ(st, at)
]

http://rail.eecs.berkeley.edu/deeprlcourse/static/slides/lec-9.pdf
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Proximal Policy Optimization: Idea

J(θ′)− J(θ) =
∞∑
t=0

Est,at∼pθ′ ,πθ

[ πθ′(at; st)
πθ(at; st)︸ ︷︷ ︸
=rθ′ (st,at)

γtAθ(st, at)
]

As long as pθ′ is close to pθ such that

Est,at∼pθ′ ,πθ

[
rθ′(st, at)γtAθ(st, at)

]
≈ Est,at∼pθ,πθ

[
rθ′(st, at)γtAθ(st, at)

]
we can take the samples st, at ∼ pθ, πθ obtained with the old policy and optimize the loss

L̂(θ′) =
∞∑
t=0

rθ′(st, at)γtAθ(st, at)
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Proximal Policy Optimization: Losses

L̂(θ′) =
∞∑
t=0

rθ′(st, at)γtAθ(st, at)

Trust-Region Policy Optimization (TRPO)

Maximize L̂(θ′) subject to KL[πθ‖πθ′ ] ≤ δ.

Clipped Surrogate Objectives (PPO-CLIP)

Maximize L̂CLIP(θ′) =
∞∑
t=0

min(rθ′γtAθ, clip(rθ′ , 1− ε, 1 + ε)γtAθ).
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Proximal Policy Optimization

1: Initialize neural networks πθ and Vφ.
2: Set counter t← 0, observe s0.
3: repeat
4: for all workers k = 1, . . . ,K do
5: Take action a

(k)
t and observe reward r

(k)
t and next state s(k)

t+1
6: Compute R(k)

t = r
(k)
t + γVφ(s(k)

t+1) and advantage A(k)
t = R

(k)
t − Vφ(s(k)

t )
7: end for
8: Optimize surrogate loss (TRPO or PPO-CLIP) wrt. θ′ with M epochs.
9: Update φ with gradient of

∑
k

(
R

(k)
t − Vφ(s(k)

t )
)2.

10: Increment t.
11: until some termination criterion is met.
12: return πθ and Vφ
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Summary & Quiz

One can improve the stability and sample efficiency of policy gradient methods by

maximizing in an inner loop a surrogate objective function,

like the one of TRPO or PPO-CLIP.

I With the update of policy gradient, θ′ = θ + α∇J(θ) and a fixed learning rate α,
J(θ′)− J(θ) will allways be positive.

I In proximal policy optimization methods we want to keep the ratio

rθ′(st, at) = πθ′ (at;st)
πθ(at;st) close to one, such that the state visitation probabilites

pθ(st) and pθ′(st) are roughly the same.

I A2C uses each minibatch once to update the policy, whereas proximal policy

methods use each minibatch multiple times, usually.
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Deep Deterministic Policy Gradient (DDPG) 1

In DQN for discrete actions the Q-values forNa actions are given as the activity ofNa
output neurons of a neural network with parameters θ and input given by the state s.

For continuous actions there are infinitely many values; obviously we do not wantNa =∞.

Proposed solution: use a policy network πψ(s) that maps deterministically states s to
continuous actions a.

Lillicrap et al. 2016
1The name is confusing: DDPG is more closely related to DQN than to PG!
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Deep Deterministic Policy Gradient (DDPG)

1: Initialize neural networks Qθ, πψ and empty replay buffer R.
2: Set target Q̂← Qθ, π̂ ← πψ, counter t← 0, observe s0.
3: repeat
4: Take action at = πψ(st) + ε and observe reward rt and next state st+1
5: Store (st, at, rt, st+1) in R
6: Sample random minibatch of transitions (sj , aj , rj , sj+1) from R

7: Update θ with gradient of
∑
j

(
rj + Q̂(sj+1, π̂(sj+1))−Qθ(sj , aj)

)2

8: Update ψ with gradient of
∑
j Qθ(sj , πψ(sj)).

9: Increment t and reset Q̂← Qθ, π̂ ← πψ every C steps.
10: until some termination criterion is met.
11: return Qθ

Lillicrap et al. 2016
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Comparison of Algorithms in Simulated Robotics

Henderson et al. 2017
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Summary

I DQN can be adapted to domains with continuous actions by training an

additional policy network πψ (DDPG).

I Which algorithm works best depends on the problem, usually.

I We did not discuss sufficient and efficient exploration, but it usually has a

strong impact on the learning curve. A simple strategy for Policy Gradient

methods is to add entropy regularization such that the policy does not become

deterministic too quickly, but there are more advanced methods (see e.g. SAC).
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Model-Based Deep Reinforcement Learning

Suggested: Sutton & Barto Ch. 8, Corneil et al. 2018, Silver et al. 2016 & 2018, Schrittwieser et al. 2019

A model-based reinforcement learning method estimates (or knows explicitly) the

transition dynamics (e.g. P as→s′ ) and reward structure (e.g. Ras→s′ ).

In this section you will learn

1. how the model can be used for planning,

2. how we can use standard planning methods in deep RL with variational state

tabulation (VaST),

3. why we may prefer decision time planning over background planning,

4. how AlphaZero learns to play Go withMonte Carlo Tree Search,

5. howMuZero reaches the same level as AlphaZero without explicitly knowing

the rules of the game.
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Background Planning

L

N

M

R
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-7

-9

Deterministic dynamics (P south
M→R = 1, Rsouth

M→R = −6)
Episode ends when the agent reaches R.

1. Start in R

2. for every state s that leads to R (P as→R = 1 for some

a), compute its value V (s) = maxaRas→R, e.g.

V (M) = −6

3. for every state s that leads to an already visited

states s′ compute its value

V (s) = maxa
∑
s′ P as→s′

(
Ras→s′ + V (s′)

)
(1)

e.g. Q(L, south) = −13, V (L) = −3 + (−6) = −9.

Value Iteration Start with arbitrary values V (s) for every
state and iterate equation 1 until convergence. This works

also in infinite-horizon settings, if we include a discount

factor γ < 1.
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Model-Based Deep RL with Variational State Tabulation (VaST)

discrete

latent state · · · st−1 st
at · · ·

observation

ot−1 ot

P ast−1→st

de-conv net

p(ot−1|st−1)
conv net (variational posterior)

q(st|ot, ot−1)
0
10
11

Learn to encode images as discrete states (similar images o, same discrete state s).
Whenever the agent learns something new about the environment (P as→s′ or Ras→s′

changes), update offline the policy by running (a smart version of) value iteration.

Corneil, Gerstner, Brea (2018), ICML
28 / 46



Summary: Background Planning and Variational State Tabulation

I In model-based reinforcement learning we can use background planning to

update the Q- and V-values efficiently (e.g. by value iteration), if the number of

states and actions is not too large.

I Learned abstractions may be useful to map high dimensional states (like

images) to discrete states that can be used with standard planning methods.
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Value Iteration Does Not Scale!

I There are presumably less than 108 intersections of roads in Europe.

Value iteration on current compute hardware is feasible for this problem.

I But there are more than 10170 possible positions for the game of Go.

(The number of atoms on earth is roughly 1050).
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Decision Time Planning

L
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L

N M Z

R M L ...
...

1. Start where you are e.g. in L

2. Expand the decision tree, i.e. move to every state s
that is a successor of L (P aL→s).

3. Iteratively move to the successors of the

successors up to a certain depth or until a terminal

state is reached.

4. Propagate values backwards along the decision

tree like in backward planning (but only along the

decision tree).
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Monte Carlo Tree Search (MCTS)

If you don’t know MCTS: watch https://youtu.be/UXW2yZndl7U

These four steps are iterated many times before choosing an actual action.
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AlphaZero

Silver et al. 2016, Silver et al. 2018

Each state-action pair (s, a) stores the visit countsN(s, a), the total action valueW (s, a),
the mean action valueQ(s, a) and the prior action probability P (s, a).

1. Selection at = arg maxaQ(st, a) + P (st, a)C(s)
√
N(st)/(1 +N(st, a))

with exploration rate C(s) = log((1 +N(s) + cbase)/cbase) + cinit

2. Expansion of leaf node sL: initializeN(sL, a) = W (sL, a) = Q(sL, a) = 0 and

P (sL, a) = pa with (p, v) = fθ(sL)

3. No simulation.

4. BackpropN(st, at) = N(st, at) + 1,W (st, at) = W (st, at) + v,Q(st, at) = W (st,at)
N(st,at)

Actual action sampled from π(a|s0) = N(s0, a)1/τ/
∑
bN(s0, b)1/τ .

Neural network loss: l(θ) = (z − v)2 − π log p + c‖θ‖2

where z ∈ {−1, 0, 1} is the outcome of the game, and (p, v) = fθ(s0)
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AlphaZero: Success Story

Silver et al. 2018
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AlphaZero: Summary

I In each position of the game (for both players), MCTS runs for some time.

I The sub-tree below the actual next state is retained as the initial MCTS tree.

I In contrast to traditional Go/Chess/Shogi software there is no hand-crafting of

promising tree expansions or position evaluations: selection of MCTS is

focused on promising actions (according to learned prior action probability p)
and the value of leaf nodes v is based on a learned position evaluation function.

I Prior action probabilities p are trained with the cross-entropy loss to match the

actual policy π of MCTS and the values v are trained with the squared error loss

to the actual outcome z of the game.

I AlphaZero does not need to learn the reward and transition model

Ras→s′ , P as→s′ ; for MCTS it relies on the hard coded rules of the game.

What if the model is unknown?
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What If the Model Is Unknown?

In high dimensional settings, like in the game Go, it seems hopeless

to learn explicitly Ras→s′ and P as→s′ .

Instead, MuZero demonstrates that it is possible to use MTCS with a learned latent

representation of observations and a learned dynamics model.With this, MuZero

reaches state-of-the-art performance not only on board games Chess, Shogi and

Go but also in the domain of Atari video games.
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HowMuZero uses its model to plan

Schrittwieser et al. 2019

The model consists of three connected compo-

nents for representation, dynamics and prediction.

The initial hidden state s(0) is obtained by passing

the past observations (e.g. the Go board or Atari

screen) into a representation function h. Given a

previous hidden state s(k−1) and a candidate ac-

tion a(k), the dynamics function g produces an im-

mediate reward r(k) and a new hidden state s(k).
The policy p(k) and value function v(k) are com-

puted from the hidden state s(k) by a prediction

function f .
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HowMuZero acts in the environment

Schrittwieser et al. 2019

A Monte-Carlo Tree Search is performed at each timestep t, as described on the previous

slide. An action at+1 is sampled from the search policy πt, which is proportional to the visit

count for each action from the root node. The environment receives the action and

generates a new observation ot+1 and reward ut+1. At the end of the episode the trajectory

data is stored into a replay buffer.
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HowMuZero trains its model

Schrittwieser et al. 2019

A trajectory is sampled from the replay buffer. For the initial step, the representation function

h receives as input the past observations o1, . . . , ot from the selected trajectory.The model

is subsequently unrolled recurrently forK steps. At each step k, the dynamics function g
receives as input the hidden state s(k−1) from the previous step and the real action at+k .

The parameters of the representation, dynamics and prediction functions are jointly trained,

end-to-end by backpropagation-through-time, to predict three quantities: the policy

p(k) ≈ πt+k , value function v(k) ≈ zt+k , and reward r(t+k) ≈ ut+k , where zt+k is a sample

return: either the final reward (board games) or n-step return (Atari).
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MuZero: Success Story

Schrittwieser et al. 2019
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MuZero: Summary

I Instead of relying on a given reward and transition model, MuZero learns an

encoding of observations to states h and a transition function from states to

next states g.

I Like AlphaZero it relies on MCTS with a learned function f that estimates the

action probability p and value v of a state.
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Quiz

I With background planning, decision making is computationally very cheap,

since one can use theQ-values to find the optimal action.

I In Monte Carlo Tree Search, decision making is computationally very cheap,

since one can use theQ-values to find the optimal action.

I In AlphaZero’s MCTS the actual actions are sampled from the prior action

probability P (s, a).
I In AlphaZero’s MCTS the prior action probability is trained to be as close as

possible to the actual policy of MCTS.

I The latent representation in AlphaZero is a binary word, e.g. 10110.
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Conclusions

I The problem of correlated samples can be solved with a replay buffer for

off-policy model-free reinforcement learning (DQN) and multiple parallel actors

for on-policy model-free reinforcement learning (A2C).

I Both, on- and off-policy deep reinforcement learning methods can be adapted

to continuous action spaces, by either making policy gradient methods more

sample efficient and robust (PPO) or adding a deterministic policy network

(DDPG).

I In model-based reinforcement learning we can use background planning (e.g.

value iteration) in moderately sized state spaces and decision-time planning

(e.g. MTCS) for large state spaces and rely on learned state abstractions to

perform planning not on the level of raw observations but on compressed

representations.
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