
From spiking neurons to rate models: A cascade model as an approximation to spiking neuron
models with refractoriness

Yuval Aviel and Wulfram Gerstner*
Ecole Polytechnique Fédérale de Lausanne (EPFL), School of Computer and Communication Sciences and Brain Mind Institute,

CH 1015 Lausanne, Switzerland
�Received 26 October 2005; published 16 May 2006�

A neuron that is stimulated repeatedly by the same time-dependent stimulus exhibits slightly different spike
timing at each trial. We compared the exact solution of the time-dependent firing rate for a stochastically
spiking neuron model with refractoriness �spike response model� with that of an inhomogeneous Poisson
process subject to the same stimulus. To arrive at a mapping between the two models we used alternatively �i�
a systematic parameter-free Volterra expansion of the exact solution or �ii� a linear filter combined with
nonlinear Poisson rate model �linear-nonlinear Poisson cascade model� with a single free parameter. Both the
cascade model and the second-order Volterra model showed excellent agreement with the exact rate dynamics
of the spiking neuron model with refractoriness even for strong and rapidly changing input. Cascade rate
models are widely used in systems neuroscience. Our method could help to connect experimental rate mea-
surements to the theory of spiking neurons.
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I. INTRODUCTION

Descriptions of neuronal activity range from detailed bio-
physical neuron models �1� to formal neurons used in artifi-
cial neural networks �2�. Somewhere in between these ex-
tremes lies the class of formal spiking neurons �3� such as
the integrate-and-fire neuron �4�. In the presence of noise,
formal spiking neuron models show a high variability of ac-
tion potential firing �5� with realistically looking interval dis-
tributions and coefficients of variation. The transition from
stochastically spiking integrate-and-fire models �i.e., a time-
dependent renewal point process� to stochastically spiking
rate models �i.e., an inhomogeneous Poisson point process�
looks, at first sight, rather innocent: Such a transition
amounts to neglecting all spike-after effects, in particular
refractoriness. However, it is well known that important dif-
ferences exist between Poisson processes and spiking neu-
rons of the integrate-and-fire type. For example, a neuron
model based on linear signal integration followed by nonlin-
ear stochastic spike generation �a linear-nonlinear-Poisson
�LNP� cascade model� shows a reverse correlation function
which directly reflects the linear filtering stage �6,7� whereas
linear signal integration followed by a threshold-and-reset
mechanism as in integrate-and-fire neurons shows a reverse
correlation function which includes components of refracto-
riness �8–10�.

The question of the appropriate level of model is inti-
mately linked to the problem of neural coding—i.e., spike
coding versus rate coding �3,11,12�. A pragmatic experimen-
tal way of defining a time-dependent firing rate of a neuron is
by building up a peri-stimulus time histogram �PSTH� across
several repetitions of the same time-dependent stimulus.
Such a time-dependent rate �or PSTH density� is then the
natural starting point for an interpretation in terms of firing

rate coding. If a rate coding picture is true, the PSTH density
could be seen as the firing rate of an inhomogeneous Poisson
process. However, such an interpretation misses the correla-
tions between spikes in a single spike train generated by
neuronal refractoriness �13,14�, among other factors such as
adaptation.

In this paper we discuss the transition between spiking
neuron models and Poisson rate models in more detail and
focus on the role of refractoriness in the PSTH. As a starting
point, we exploit the fact that, for formal spiking neuron
models such as the leaky integrate-and-fire model, an exact
transition between the PSTH and underlying single-neuron
dynamics is known. Depending on the details of the models
and the type of noise, this relation can be derived in the
framework either of partial differential equations �15–17� or
of an integral equation �18,19�; see also �20�. For practical
reasons we will in the following consider the integral equa-
tion of the PSTH density derived from a spike response
model with escape noise �19�.

In order to transform the integral equation, which is rather
cumbersome to interpret, into a rate model of a more stan-
dard form we proceed in several steps. First, we use a sys-
tematic expansion of the integral equation into a Volterra
series. The first-order term of the series is a linear filter
which gives the reverse correlation function and PSTH den-
sity in the small-signal limit as discussed in earlier studies
�8,21�. The second-order term is also discussed in this paper.

Second, and as an alternative to the systematic series ex-
pansion to higher orders, we also explore the possibility of
truncating the Volterra series after the first order and approxi-
mating the remaining terms by an ad hoc nonlinear “squash-
ing” function. The interest of such an approach lies in the
fact that it leads directly to the standard LNP cascade model
as widely used in systems of neuroscience, in particular vi-
sion �6,7�. By construction, the LNP cascade model derived
by our method is correct to first order. The advantages and
shortcomings of such an approach compared to the full so-*Electronic address: wulfram.gerstner@epfl.ch
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lution by an integral equation and the alternative Volterra
expansion approach are studied in simulations for various
stimulation paradigms.

The paper is organized as follows. The spiking neuron
model we use throughout the paper is discussed in Sec. II. In
Sec. III we review the exact solution of the time-dependent
PSTH density. The evolution of the PSTH density will be
presented in the form of an integral equation derived in ear-
lier studies �3,18,19�. In Sec. IV we present the systematic
Volterra expansion of the equation and in Sec. V the alterna-
tive cascade model �CM� approach. Both approaches are
compared on a couple of stimulation paradigms. Finally, in
Sec. VI, we briefly discuss the connection of our approach to
earlier studies on the relation between spike and effective
rate models.

II. NEURON MODEL

We use a spike response model with escape noise �3�. The
membrane potential is given by

u�t�t̂� = ��t − t̂� + �
0

�

��s�I�t − s�ds , �1�

where I�t� is a time-dependent input current, � characterizes
the passive membrane properties, and � implements a partial
reset of the membrane potential after each spike. The firing
time of the last spike is denoted by t̂. For the sake of sim-
plicity we take simple exponentials with membrane time

constant �m for both � and �, thus ��s� =
def

�m
−1exp�−s /�m� and

��s� =
def

−�0exp�−s /�m� for s�0 �for s�0 the two functions
vanish due to causality�. The parameter �0 controls the
amount of reset after a spike. With this choice of parameters
the spike response model is closely related, but not identical,
to the integrate-and-fire model; for details see �3�. Note that
��s� implements a form of refractoriness that depends only
on the most recent spike in the past. In particular, the above
model does not account for adaptation.

We assume that the neuron is under the influence of a
certain amount of noise. Spike firing is hence stochastic and
governed by an instantaneous firing rate f that depends on
the momentary distance from the threshold �. For the sake of
simplicity we take a simple Arrhenius escape model �22�

f�u� =
C

�m�
exp� �u − ��2

�2 � , �2�

where �u−�� is the distance between the momentary mem-
brane voltage and the formal threshold. Intuitively, a spike
can be triggered if the noise is strong enough to overcome
this distance. The strength of the noise is characterized by a
parameter �. We note that in the low-noise limit ��→0�,
firing occurs only if the membrane potential reaches thresh-
old. The relation of such an Arrhenius escape noise to diffu-
sive noise in the input as could be generated by stochastic
spike arrival has been discussed in �22�. Other choices of the
escape function f can be found in �3,21,22�. Essentially, the
Arrhenius escape function is a reasonable approximation

only in the subthreshold regime—i.e., if the membrane po-
tential is far away from threshold. The scaling with �−1 has
been introduced as an ad hoc factor in order to allow us to
compare the behavior at high- and low-noise levels.

Our standard set of parameters is �m=10 ms, C=1, �=1,
�=3, and �0=1. A typical simulation run with a constant
stimulus of I�t�=1.5 or I�t�=2 is shown in Fig. 1. During
each time step �t , t+	t� of the simulation, a spike is gener-
ated with probability p=1−exp�−f�u�t � t̂��	t�. For 	t→0 the
probability reduces to f(u�t � t̂�)	t as it should since f denotes
the instantaneous rate. The formula for p allows us to work
with finite time steps 	t. In the simulation of Fig. 1 we have
used 	t=1 ms and the bin size of the PSTH was set to
10 ms. The neurons in Fig. 1 fire at a mean firing rate of
approximately 10 Hz or 20 Hz and show a broad distribution
P�s� of interspike intervals. Effects of refractoriness are
clearly visible in both distributions.

The advantage of the escape noise model is that the inter-
spike interval distribution can be calculated analytically us-
ing standard expressions from renewal theory �23�. We intro-
duce the instantaneous firing rate 
�s� of a neuron which has
fired its last spike at s=0—i.e., 
�s�= f(u�t̂+s � t̂�) where
u�t̂+s � t̂�=��s�+	��s��I�t−s��ds�. By definition, the interval
distribution P�s� gives the probability density of finding an
interval of length s. This is equivalent to the probability of
firing at time s given a spike at time s=0 and not firing in
between. Hence,

P�s� = 
�s�exp�− �
0

s


�s��ds��; �3�

the term 
�s� accounts for the instantaneous rate at time s
and the exponential factor gives the probability of not firing
between 0 and s; see �23� or Sec. 5.2.3 of �3�.

An extension of the above reasoning, we can also con-
sider the survivor function Sh�t � t̂�—i.e., the probability of
neuron to “survive” without firing from t̂ to t after having
fired a spike at t̂. For constant input current, the survivor

FIG. 1. �Color online� Model spike trains. Upper panel: an ex-
ample of a spike train generated by a spike response model. The
neuron fires at a mean rate of 10 Hz. Lower panel: the inter-spike-
interval histogram �bars� and the theoretical distribution P0 �lines�.
Both the histograms and theory are plotted for 10 Hz �gray bars,
dashed line� and 20 Hz �black bars, solid line�. The theory agrees
very well with the simulations. The distributions vanish for small
intervals due to refractoriness. Also, a higher output rate yields a
narrower distribution, leading to more regular spike trains.
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function is related to the interval distribution by

Sh�t�t̂� = 1 − �
0

t−t̂

P�s�ds = exp�− �
t̂

t


�s��ds�� , �4�

which yields P�s�=− d
dsSh�t̂+s � t̂�. In the general case of time-

dependent input current, the time course of the survivor
function depends on the time course of the input potential

h�t�� = �
0

�

��s�I�t� − s�ds �5�

that the neuron receives between t̂ and t. With u�t� � t̂�
=��t�− t̂�+h�t�� we have Sh�t � t̂�=exp�−	t̂

t f(u�t� � t̂�)ds��. The
subscript h in the survivor function is intended to remind the
reader that Sh�t � t̂� is a functional of the input potential h�t��
with t̂� t�� t. The survivor function will be used in the next
section.

III. PSTH AND EXACT RATE DYNAMICS

We consider a single neuron that receives a time-
dependent stimulus I�t�. The very same stimulus is repeated
several times and a PSTH is built up. The PSTH is an ap-
proximation to the exact time-dependent firing rate r�t� of the
spiking neuron model in response to the stimulus I�t�.

For a spike response model with escape noise the exact
time-dependent firing rate r�t� can be found from the normal-
ization condition �3,19�

1 = �
−�

t

Sh�t�t̂�r�t̂�dt̂ , �6�

which must hold at any time t. Taking the temporal deriva-
tive yields �19�

r�t� = �
−�

t

Ph�t�t̂�r�t̂�dt̂ , �7�

where Ph�t � t̂�=− d
dtSh�t � t̂� is a generalized time-dependent in-

terval distribution �3�. For constant input h= I0 we have
Ph�t � t̂�= P�t− t̂�. Equation �7� states that the current firing
rate can be derived from the input-dependent interval distri-
bution averaged over all firing rates in the past. In other
words, a neuron that has fired at time t̂ in the past and re-
ceives the input potential h contributes with a weight Ph�t � t̂�
to the firing rate at time t.

In Fig. 2 we perform a simulation that mimics a typical
PSTH experiment. The input current, shown in the lower
panel of Fig. 2, is the sum of a weak constant bias and a
perturbation. The perturbation is composed of a positive or
negative pulse of the form as exp�−s� /�s with s= �t− t0� /�s.
Here �s=5 ms is the standard value for the synaptic time
constant ��s=1 ms in Fig. 2�b��, t0=60 ms is the stimulus
onset, and a is the perturbation strength. The time course of
the stimulus roughly mimics an excitatory �or inhibitory�
postsynaptic current. The stimulus is repeated for 5000 times
and a PSTH with 0.1 ms resolution �0.1 ms is the time step
of the simulation� is built up. The PSTH response is then

smoothed with a triangular filter of base of 1.5 ms and finally
compared with the numerically integrated �time step 0.1 ms�
result of Eq. �7� using the numerical method discussed in
�21�. The agreement is excellent as it should be since Eq. �7�
is an exact solution.

The exact solution is nice to have and readily integrated
numerically after transformation to a partial differential
equation in refractory densities �3,21�. However, since the
solution of Eq. �7� is given implicitly and depends on the
firing rates in the past, it does not fully correspond to our
intuitive notion of a typical rate model. In standard rate mod-
els, the firing rate is given by an explicit function or func-
tional of the input. For example, in a cascade rate model as
used in systems neuroscience �6,7�, the rate

r�t� = g�� L�s�I�t − s�ds� �8�

is given by a convolution of the input with a filter L, fol-
lowed by some nonlinear “squashing” function g—e.g.,
�7,9�. This type of rate model has been called a CM since it

FIG. 2. The PSTH in response to a current pulse. Upper panel:
the PSTH response r�t� of the simulated neuron �thin jagged line�
and the result of the exact solution of the rate dynamics, Eq. �6�
�smooth thick line�, to the input I�t� plotted in the lower panel.
Standard set of parameters, input with time constant �s=5 ms in �a�
and exceptionally �s=1 ms in �b�.
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involves a “cascade” of two processing steps—i.e., linear
filtering followed by a nonlinear function g. The aim of the
next two sections is to approximate the exact, but implicit
rate equation �7� by an explicit expression. Before we turn to
the CM �see Sec. V� we discuss now a systematic Volterra
expansion.

IV. VOLTERRA EXPANSION

We decompose the stimulus into a constant contribution I0
and a time-dependent contribution �I1�t�:

I�t� = I0 + �I1�t� . �9�

The parameter � allows us to scale the strength of the time-
dependent contribution. For �=0 the time-dependent contri-
bution vanishes and the firing rate of the neuron takes a
constant value r0. For �
1 it can be considered as a weak
perturbation; for �=O�1�, the perturbation is strong. A strong
perturbation is characterized by the fact that the rate varia-
tions �r�t�−r0� are of the same order as r0.

In order to arrive at an explicit, but approximate, expres-
sion for the firing rate r�t�, we expand the exact rate equation
�6� or �7� in the parameter �. It turns out that the expansion
can be most easily done on the level of the normalization
equation �6�. Hence we write

r�t� = r0 + �r1�t� +
�2

2
r2�t� + ¯ , �10�

Sh�t�t̂� = S0�t�t̂� + �S1�t�t̂� +
�2

2
S2�t�t̂� + ¯ , �11�

where Eq. �11� denotes the Volterra expansion of the survivor
function Sh�t � t̂�. Note that Sh�t � t̂� is a functional of the time
course h�t�� for t̂� t�� t. Hence with h1=	0

���s�I1�t−s�ds
we have

Sn�t�t̂� = �
0

t−t̂

dx1 ¯ �
0

t−t̂

dxn

�nS�t�t̂�
�h�t − x1� ¯ h�t − xn�

�h1�t − x1� ¯ h1�t − xn� , �12�

where the derivative is evaluated at h�t�= I0.
It is convenient to introduce a filter L�n� of n+1 argu-

ments:

L�n��y,x1, . . . ,xn� =
�nS�y�0�

�h1�y − x1� ¯ �h1�y − xn�

��„y − maxi�xi�… . �13�

The filters are perturbation independent, but since the de-
rivative in Eq. �13� is evaluated at h0, they do depend on the
bias h0. In Fig. 3, we plot the integrated first-order filter
	L�1��y ,x�dy for two different constant inputs, one corre-
sponding to a 10 Hz firing rate and the other to 20 Hz. For
higher constant input, L�1� approaches a � function. This is
explained by the fact that for higher rates the spike train
becomes more regular, as seen in the lower panel of Fig. 1.
The higher the constant input, the more deterministic the

neuron; hence, the transition of the survivor function Sh from
1 to 0 becomes sharper. Since the filters are derivatives of the
survivor function, they approach a � function. This observa-
tion is studied in detail in �19�.

In the Appendix we show that the definition of the filter
L�n� enables us to write the integral of Sn�t � t̂� with an arbi-
trary function z�t̂� as a �n+1�-fold convolution:

�
−�

t

Sn�t�t̂�z�t̂�dt̂ = �
0

�

dy�
0

�

dx1 ¯ �
0

�

dxnL�n�

��y,x1, . . . ,xn�z�t − y�h1�t − x1�h1�t − xn� .

�14�

After these preparations we now return to Eq. �6�. Substi-
tuting the expansions �10� and �11� for r and S into �6� and
sorting according to the order of � we get, for n�1,

0 =
�n

n!
� S0�t�t̂�rn�t̂� + ¯ + 
n

i
�Si�t�t̂�rn−i�t̂� + ¯

+ Sn�t�t̂�r0dt̂ . �15�

Taking the temporal derivative and exploiting the fact that
S0�t � t̂� is just the standard survivor function �4� evaluated for
constant input potential h= I0, we get

rn�t� = �
0

�

P0�s�rn�t − s�ds

− �
i=1

n 
n

i
� d

dt
�

0

�

Si�t�t − s�rn−i�t − s�ds . �16�

With the identity �14� this result can be rewritten in con-
densed form as

rn = P0 * rn − �
i=1

n 
n

i
� d

dt
L�i� * rn−i * h1 * ¯ * h1, �17�

where the asterisk denotes convolution.
We can now solve the rate equation �10� order by order.

The solution to first order has been exploited in previous
studies �8,19,21�. Fourier transform of r1= P0*r1− d

dtL
�1�*h1

yields

FIG. 3. �Color online� The integrated L�1� filter, L�1��x� =
def

	L�1�

��y ,x�dy, plotted for two constant inputs corresponding to
r0=10 Hz �solid line� and r0=20 Hz �dashed line�.
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r̂1 = G1
ˆ h1̂ =

def− i�r0L̂�1�

1 − P̂0

h1̂ , �18�

and inverse Fourier transform yields the linear filter G1 from
which we get r1�t�=	G1�s�h1�t−s�ds.

Similarly, we can derive G2,

r̂2 = G2
ˆ h1̂

2 =
def− i��L̂�1�G1

ˆ + L̂�2�r0�

1 − P̂0

h1̂
2, �19�

and again, inverse Fourier transform yields G2 from which
we get r2�t�=	G2�s ,s��h1�t−s�h1�t−s��dsds�.

In this section we focus on the contribution of the second-
order term. With an escape noise model with escape function
f introduced in Sec. II we find

L�2��y,x1,x2�

= S0�y�0��f��y − x1�f��y − x2� − ��x1 − x2�f��y − x1�� ,

�20�

where the primes denote the first and second derivatives—
i.e., f�=df /du and f�=d2f /du2. In Fig. 4�b� we plot the in-
tegrated second-order filter 	dyL�2��y ,x1 ,x2� as a function of
x1 and x2. We note the order-of-magnitude difference be-
tween the diagonal term and the rest.

In order to see how the different orders contribute, we
return to the PSTH paradigm explored previously in Fig.
2�a�. We compare the exact solution discussed earlier with

the first-order and second-order solutions derived in the
present section. For positive perturbations, the first-order so-
lution underestimates the effect of the perturbation, but this
underestimation is overcorrected by the second-order contri-
bution; cf. Fig. 5. While for small stimulation amplitudes the
second order is better than the first-order approximation, as it
should be, the first-order approximation is actually closer to
the exact solution than the second-order one for the strong
perturbation used in the figure. This suggests that for large
positive perturbations the exact solution is mainly linear for
positive perturbations. We will use this observation in Sec. V.
For negative perturbation, the first-order solution predicts
negative rates, which is physically impossible. The second-
order term corrects this mistake, but still shows a significant
difference to the exact solution; cf. Fig. 5.

From Fig. 4�b� we see that the diagonal term of
Eq. �20� dominates the filter. We suggest, therefore,
to take only the diagonal of the filter, thus reducing
the number of dimensions to 1. Taking only the
diagonal term x1=x2 in Eq. �20�, we have
Ld

�2��y ,x1 ,x2�=��x1−x2�S0�y �0���f��y−x1��2− f��y−x1�� as
the approximate second-order filter. In Fig. 5 this approxima-
tion is compared to the second-order solution. While inclu-
sion of the diagonal term of the second-order offers an evi-
dent improvement over the first-order approximation for
negative perturbations, it is not as good as the full second-
order approximation. Note that the full second-order solution
requires a double integration which is numerically expensive
whereas the combination of the first-order term with the di-
agonal of the second-order term requires only two one-
dimensional integrals.

V. SINGLE- AND DOUBLE-CASCADE MODELS

A straightforward way of improving the approximation in
Fig. 5 is to add higher orders. This would, however, be nei-
ther numerically efficient nor conceptually appealing. We
therefore take another approach. We propose a CM in which
the input goes through a cascade of processing steps: linear
filters, nonlinear operations, and a final nonlinear function.
This could either be a simple CM as in Eq. �8� or a more
involved one as sketched in Fig. 6. The aim of the �final�
nonlinear function is to approximate the cumulative effect of
the missing higher orders.

FIG. 4. �Color online� The integrated second-order filter

L�2��x1 ,x2� =
def

	dyL�2��y ,x1 ,x2�. �a� Without the diagonal. �b� Only
the diagonal. Notice the difference in scale and polarity on the y
axis.

FIG. 5. �Color online� The exact solution �solid line� and the
approximated response. Sum of linear filters up to first- �dashed
line� and second- �dash-dotted line� order. In addition, the sum up to
second order with only the diagonal term in Eq. �20� is plotted with
a dotted line. The input perturbation is the same as in Fig. 2.
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The nonlinear function has to be wisely picked. Observ-
ing Fig. 5, we realize that the linear model approximation is
reasonably good for positive perturbation, but completely
wrong for strong negative perturbations since it predicts
negative rates. Clearly, the response cannot be negative, and
this hard bound introduces strong nonlinearities near zero.
We therefore use as the nonlinear function a squashing func-
tion that is bounded from below by zero and has a linear
behavior for positive input. These demands are met by the
nonlinear function

c1ln�1 + c2ec3z� , �21�

where ci, i=1,2 ,3, are constants to be determined later and z
is a variable.

In order to obtain the first order CM, we write the ap-
proximated response up to first order in � as

r�t�
r0

= 1 + �
r1

r0
+ O��2� �22�

and we replace the right-hand side with the squashing func-

tion given in Eq. �21�, using z =
def

�r1 /r0. For this replacement
to be correct at least to first order, we have to match the �
coefficients of order �0 and �1.

Expanding Eq. �21� to first order in � gives c1ln�1+c2�

+D�
r1

r0
with D =

def
c1c2c3

1+c2
. Matching the zero order of this expan-

sion and that of Eq. �22� yields c1=1/ ln�1+c2�. Matching
also the first-order coefficients yields D=1 or c3=��c2�

=
def

�1+c2�ln�1+c2� /c2. Hence c1 and c3 are both given as a
function of c2 so that we are left with a single free parameter.

The single CM is then given by

r�t� =
r0

ln�1 + c2�
ln�1 + c2e��c2��r1�t�/r0� , �23�

where r1�t�= �G1*h1��t�; see Eq. �18�.
In general, the number of steps in the CM depends on the

desired accuracy—i.e., the order of expansion. Additional
steps are required for higher orders. The additional steps
guarantee that the low orders, as given by the expansion, are
not altered by the squashing function. In particular, we have
to eliminate expressions like �krl

m with k� l�m. In what
follows, the procedure for the second order CM is given.

We introduce auxiliary variables y1 and y2, and define the

variable z in �21� as z =
def

�y1+ �2

2 y2. We then expand Eq. �21�
to second order in �, getting c1ln�1+c2�+D�y1

+D �2

2
�y2+

c3

1+c2
y1

2�, with D defined as above. At the same time
we know that by definition

r�t� = r0
1 + �
r1

r0
+

�2

2

r2

r0
� + O��3� �24�

must hold. By comparing the � coefficients, we get the cor-
rect assignment for y1 and y2:

y1 =
defr1

r0
, y2 =

defr2

r0
−

ln�1 + c2�
c2


 r1

r0
�2

, �25�

where r1�t�= �G1*h1��t� and r2�t�= �G2*h1*h1��t�; see Eq.
�19�. This procedure defines the double CM:

r�t� =
r0

ln�1 + c2�
ln�1 + c2e��c2�z� �26�

with z =
def

�y1+ �2

2 y2 and the substitutions defined in Eq. �25�.
For an interpretation of the double CM, let us look at the

flow diagram in Fig. 6. The input first goes through a set of
two linear filters: in the next step, the filters’ output is further
manipulated according to �25� and finally passed through the
squashing function.

The free parameter c2 is yet to be optimized. To that end,
we compute the exact solution for inhibitory and excitatory
synaptic current inputs of the form xex �cf. lower panel of
Fig. 2�. Both perturbations are given on top of a static bias
input that corresponds to an output rate of r0=10 Hz. We
then approximate the responses using the single CM as de-
scribed in Eq. �23� for a range of c2 values. The responses
are plotted in Fig. 7�a�. The traces of the exact solution and
those of the CM for both inputs display a unimodal response,
with a clear extremum �i.e., maximum for positive perturba-
tion and minimum for negative ones�. We optimize c2 by
minimizing the differences between the extrema of the exact
solution and those of the CM. While this simple method may
not be rigorous, it is simple enough to allow experimental
application. In Fig. 7�b�, the differences at the extrema are
plotted as a function of c2, revealing that the single CM
agrees on a single optimal value for both types of perturba-
tions, c2=1.75. By construction, the performance of the CM
in response to short current pulses is excellent, if the bias rate
is r0=10 Hz—i.e., the one used during optimization of the
parameter c2 �Fig. 8�a��.

Can we use the same value, c2=1.75, also for other values
of the reference rates r0�10 Hz? To answer this question,
we give a series of current pulses of the form xex as in Fig. 2,
but this time with different bias rates. In order to compare
different bias rates, we always plot a normalized response
�r�t�−r0� /r0; cf. Fig. 8�a�. In Fig. 8�b� the responses’ extrema
of the normalized exact solution and that of the single CM
are plotted for constant inputs that correspond to r0=5, 10,
and 20 Hz. We emphasize that c2 is kept fixed for the various
constant inputs. As expected, Fig. 8 shows good agreement
for the r0=10 Hz case. This is due to the fact that optimiza-

FIG. 6. A sketch of the information flow in the double CM. The
input perturbation first goes through the Gi filters of increasing di-
mensions, Eqs. �18� and �19�. In the second step, the result of the
first-order filter, r1, is squared, Eq. �25�. Finally, a nonlinear squash-
ing function, Eq. �21�, is invoked. In the single CM only the upper-
most path is taken.
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tion of c2 was done for this particular constant input. It is
also apparent that the approximation errors of the other rates
are small and confined to positive perturbations. In general,
the errors are only weakly dependent on the constant input
level.

In order to appreciate the contribution of the CM’s
squashing function, we calculate the single- and double-CM
responses to the same perturbations as in Fig. 2 and compare
them again to the exact solution. Figure 9 should be com-
pared to the approximation obtained by the simple linear
filter model as plotted in Fig. 5. While no degradation in
performance is observed in the positive perturbation, a sig-
nificant improvement compared to Fig. 5 can be seen for the
negative one. Also, note that a good fit is obtained already in
the single CM and that little is gained by using the double
CM.

To further assess our finding, we continue the comparison
between the single CM and the exact solution, for a variety
of input scenarios. The c2 value obtained above, 1.75, is
optimal for the input mimicking a strong postsynaptic cur-
rent, but not necessarily for other scenarios �see Fig. 10�. In
principle, c2 can be optimized for each input scenario, I�t�. In
order to test the validity of the model, however, we use the
same c2 value for all the other input scenarios.

A superposition of three incommensurable frequencies
was given as a perturbation I1�t�=0.2�sin�2�f1t�
+sin�2�f2t�+sin�2�f3t��; with f1=1 Hz, f2=6.9 Hz, and
f3=42.7 Hz. A frequency sweep was also given with a per-
turbation I1�t�=0.4 sin�2��t�, with � going from 1 Hz to
20 Hz.

Pyramidal neurons in vivo are exposed to colored noise

that is characterized by a frequency cutoff at 200 Hz �24�. In
Fig. 11, we compare the response of the exact solution to that
of the single CM for filtered noise perturbation with cutoff
frequency at 200 Hz.

To conclude, we tested our model on a wide range of
input scenarios �Figs. 9–11�. For all these input scenarios the
exact solution is hardly distinguishable from the single CM.
The double CM is not shown since its solution is indistin-
guishable from the exact solution. Already the single CM
obtains an excellent estimate of the exact solution. These
results, together with the simple optimization procedure of-
fered, make the single CM an attractive candidate for an
effective rate model of biological neurons.

VI. DISCUSSION

In this paper we have developed an effective rate model
for a spiking neuron of the integrate-and-fire type—i.e., a
spike response model with escape noise. In previous work
�19� the full rate dynamics was given in form of an integral
equation �see also �18,20�� and a linearized version in form
of a linear filter. Here, we have continued beyond first order

FIG. 7. �Color online� Optimizing c2 parameter. �a� Responses
to positive and negative perturbations are computed for the exact
solution �solid line�. They are then computed for the single CM
�dashed line� for a range of c2 values �from top to bottom:
log10�c2�=−2,−1.5, . . . ,1�. �b� The differences at the extrema of the
response are plotted as a function of c2. Negative perturbations are
noted as a dashed line and positives perturbation as a dash-dotted
line. The errors show a single optimal value at c2=1.75. FIG. 8. �Color online� The effect of different constant input

levels on the approximation error. �a� The normalized responses of
the exact solution �solid line� and the CM �dashed line� for a series
of pulses are computed. The difference at responses’ extrema
�marked by circles� is taken as measure of error. The output rate is
set to 10 Hz. �b� The maximum normalized response of the exact
solution �+� and of the CM �solid line and circles� as a function of
perturbation amplitude for various mean output rates �5, 10, and
20 Hz�.
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and expanded the exact solution, Eq. �7�, up to arbitrary or-
der. The expansion, Eq. �10�, gives an explicit expression of
the rate as a function of its input. We emphasize that the
given rate r�t� is the instantaneous rate, averaged over real-
izations of the stochastic process, not over time. Hence, the
dynamics of the rate, up to desired level of accuracy, can be
derived in explicit form.

Our explicit formulas for the firing rate do not imply an
increase in numerical efficiency compared to the rapid inte-
gration scheme of the exact solution �7� based on partial
differential equations for the refractory density as discussed
in �3,21�. In particular, the numerical solution of the full
equation is faster than the second-order Volterra model or the
double CM. The main advantage of the explicit expressions
of the rate in a single equation is to simplify communication
with experimental neuroscientists. In fact, our single CM is
equivalent to the LNP model widely used in systems of neu-
roscience, in particular vision �6,7�. We see the identification
of a mapping between spiking neuron models and a CM of
the LNP type as the main achievement of our paper. As an
aside we suggest that the second-order Volterra model could
potentially be useful as a conceptual framework for experi-
mental systems in neuroscience.

In general, any functional can be expanded into a Volterra
series �25�, hence the general structure of the solution, Eq.
�17�, is not surprising. The specific form of the filters, how-
ever, is determined by the neuron model, Eq. �1�, and the
noise model, Eq. �2�. In particular, refractoriness influences

the shape of the filters. We emphasize that the filters depend
only on the mean input �which determines the reference
point for the Volterra expansion� but are otherwise input in-
dependent. Hence, once the filters are calculated, computing
the approximated response simply amounts to filtering the
input. This can be efficiently computed by using fast Fourier
transform as in Eqs. �18� and �19�.

For the Gaussian hazard function used here, Eq. �2�, we
found that the diagonal dominates the second-order filter.
Hence we proposed a simplification in which the filter in-
cludes only the diagonal. This method gives an approxima-
tion that is not as good as the full second-order filter, but is
much better than using only the first-order filter, as can be
seen in Fig. 5. The advantage of this simplification is the
reduction in filter dimensionality: instead of a two-
dimensional filter, we are left with a one-dimensional filter.

While the linear-nonlinear-Poisson model framework is
widely used in the neuroscience literature, its justification
has so far been mainly heuristic. In this contribution, we
have chosen a simplified noisy spiking neuron model in or-
der to gain a deeper understanding of the relation of LNP
models to spiking neuron models. In our approach, the linear
filter can be calculated exactly and we have shown that the
accuracy of the approximation obtained with linear filters
can be significantly improved by transforming the filters’
output through a nonlinear function. The nonlinear function
replaces the effect of the missing high orders. We found that
the nonlinear function �i� should be positive in order to pre-

FIG. 9. The exact solution �solid line� compared to the single-
�dashed line� and double- �dash-dotted line� CM response. The c2

constant is set to 1.75. The input perturbation is the same as in Fig.
2 and characterized by a time constant of 5 ms for �a� and of 1 ms
for �b�.

FIG. 10. �Color online� Comparison of the exact solution �solid
line� and the single CM �dashed line�. �a� Superposition of three
frequencies: 1, 6.9, and 42.7 Hz. �b� A frequency sweep going from
1 Hz to 20 Hz.
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vent negative firing rates, �b� should behave close to linearly
for large positive perturbations, and �c� should be a smooth
function. Our function, Eq. �21�, meets these criteria.

Our CM constructed along those lines boosts the perfor-
mance of the first-order approximation with only one single
free parameter, called c2 in this paper. In addition, the opti-
mal value of this parameter only weakly depends on the con-
stant input level I0 as Fig. 8 shows. While this optimization
procedure is not rigorous, its simplicity should allow its ap-
plication to experimental data. In a first step, the best linear
filter should be extracted using standard methods. In a sec-
ond step, the single free parameter of the CM has to be
determined. Our results suggest that this can be done for a
simple perturbation, such as a simulated synaptic input cur-
rent. Once fitting is done, the CM should be able to describe
the response to any perturbation with reasonable accuracy.

Finally, our approach has allowed us to develop higher-
order CM’s—e.g., the double CM as sketched in Fig. 6. For
the perturbations we tried, the double CM’s response is in-
distinguishable from the exact solution. However, since the
double CM has an increased structural complexity compared
to the single-CM one and since it is offers no numerical
advantages compared to an efficient implementation of the
exact solution, we advocate the use of either the exact solu-
tion or the single CM rather than the double CM.

In this paper we have used the escape-rate noise model
with a fairly simple Gaussian hazard function, Eq. �2�. This
hazard function matches the behavior of the diffusive noise
model for a subthreshold input. In order to match the diffu-
sive noise model in other scenarios, a more elaborate hazard
function has to be taken �21�. It remains to be investigated
how the approximated response with a more elaborate hazard
function compares with the firing rate of an integrate-and-fire
model with diffusive noise �stochastic arrival of background

spikes�. An alternative approach to calculating the response
of an integrate-and-fire model with diffusive noise is by di-
rect numerical solution of the membrane potential density
equations �15,17,26–28�.

An approach similar to ours was taken by Shriki et al.
�29�. In their model, the input is first passed through a
second-order bandpass filter that models the effect of the
synaptic filtering, then through a threshold-linear function.
The threshold linear function is justified by experimental re-
sults that show a linear f-I curve which is independent of the
leak conductance. The threshold �, however, is leak conduc-
tance dependent. It is interesting to note that their phenom-
enological model and our analytically derived model are
both converging into a similar structure; that is, a CM of
first- or second-order filter and then a threshold-linear func-
tion as the nonlinear function. Note, however, that our model
is designed to capture fast perturbations whereas theirs fo-
cuses on slow variations of the firing rate �see also �30��.

Recently several studies have established a link from elec-
trophysiological data or detailed neuron models to simplified
stochastically spiking neuron models �10,31–35�. We hope
that our present work contributes towards establishing a fur-
ther link from spiking neurons to rate models of the CM
family.

In this paper we have connected the firing rate of the
PSTH with the dynamics of a single-neuron model, charac-
terized by parameters such as the threshold, noise, refracto-
riness, membrane time constant, and synaptic time constant.
Changes in any of these parameters will influence the time
course of the PSTH in a manner predictable by our theory
�see, for example, Figs. 9�a� and 9�b� for the influence of the
synaptic time constant �s�. Analogously, we expect that the
same methods can be applied to a pair of two neurons in
order to analyze the joint PSTH, including correlations. Ide-
ally, such an analysis could reveal the fraction of shared
input as well as functional connectivity between the two neu-
rons.

APPENDIX

In this appendix we show that the nth term Sn�t � t̂� can be
written as an �n+1�-dimensional filter operating on the input
perturbation, h1�t�.

Expanding Sh�t � t̂� in a Volterra series �25� around h0

yields the nth term

Sn�t�t̂� = �
−�

t

¯ �
−�

t �nS�t�t̂�
�h1�s1� ¯ �h1�sn�

���s1 − t̂� ¯ ��sn − t̂�h1�s1�ds1 ¯ h1�sn�dsn,

�A1�

with the derivative taken at the unperturbed input h�t�=h0.
The ��si− t̂� factors are required since Sh�t � t̂� is not defined
for t� t̂.

The Volterra series’ nth-order term is similar to the Taylor
expansion’s nth-order term, only an integration is performed,
since S�t � t̂� is not a function but a functional.

FIG. 11. �Color online� Comparison of the exact solution �solid
line� and the single CM �dashed line� for low-pass-filtered noise
input. �a� The response to filtered noise input perturbation with a
cutoff frequency at 200 Hz. �b� Zoom into �a�.
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Changing variables xi =
def

t−si and y =
def

t− t̂, we get

Sn�t�t − y� = �
0

�

¯ �
0

� �nS�t�t − y�
�h1�t − x1� ¯ �h1�t − xn�

���y − maxi�xi�� · h1�t − x1�

�dx1 ¯ h1�t − xn�dxn. �A2�

Now, since the derivative is taken at the unperturbed in-
put, it is translational invariant with respect to time. Hence
we can arbitrarily set the zero in a convenient point in time,
such as the last spike time. Setting t̂=0, we have t=y.

Defining the n+1 dimension filter

L�n��y,x1, . . . ,xn� =
def �nS�y�0�

�h1�y − x1� ¯ �h1�y − xn�

��„y − maxi�xi�… ,

we can write the nth term as

Sn�t�y� = �
0

�

dx1 ¯ �
0

�

dxnL�n��y,x1, . . . ,xn�

�h1�t − x1� ¯ h1�t − xn�

or, in a convolution notation, Sn�t �y�
= �L�n��y ,x1 , . . . ,xn�*h1* ¯ *h1��t�. The above change of
variables can also be done for the expression
	−�

t Sn�t � t̂�rm�t̂�dw.
Again, setting t̂=0 yields a convolution with rm as well:

�
−�

t

Sn�t�t̂�rm�t̂�dw

= �L�n��y,x1, . . . ,xn� * rm * h1 * ¯ * h1��t� ,

which gives Eq. �14�.
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