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A path-integral approach is developed for the analysis of spike-triggered-average quantities in
neurons with voltage-gated subthreshold currents. Using a linearization procedure to reduce the
models to the generalized integrate-and-fire form, analytical expressions are obtained in an exper-
imentally relevant limit of fluctuation-driven firing. The influences of voltage-gated channels as
well as excitatory and inhibitory synaptic filtering are shown to affect significantly the neuronal
dynamics prior to the spike. Analytical forms are given for all relevant physiological quantities,
such as the mean voltage triggered to the spike, mean current flowing through voltage-gated chan-
nels and the mean excitatory and inhibitory conductance waveforms prior to a spike. The math-
ematical results are shown to be in good agreement with numerical simulations of the underlying
non-linear conductance-based models. The method promises to provide a useful analytical tool for
the prediction and interpretation of the temporal structure of spike-triggered averages measured
experimentally.
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I. INTRODUCTION

Reverse-correlation methods have a long tradition in
the neurosciences [1] and are widely used to characterize
the response properties of neurons [2, 3]. Spike-triggered
averages, defined as the mean value of some physiologi-
cal quantity over the time prior to a spike, provide con-
venient experimental measures of the salient features of
the activity in presynaptic populations that result in a
spiking of the post-synaptic neuron. This experimental
method is a standard approach used for the mapping of
receptive-field structure of retinal ganglion cells [4], neu-
rons of the lateral geniculate nucleus [5] and the primary
visual cortex [6, 7] as well as different classes of auditory
neurons (e.g. [2, 8]).

The spike-triggered average of the intracellular voltage
(which will be referred to as STV) is one of the more ex-
tensively used quantities: it is accessible in both in vitro
and in vivo experiments, and is a function of the com-
bined effects of the temporal structure of the synaptic
drive and the response properties of the cell. In an ex-
perimental context, a correct inference from the intracel-
lular voltage to the underlying patterns in the synaptic
input leading to a spike requires an accurate model of
the neuronal response properties: two cells with different
voltage-gated-current expression profiles will show signif-
icantly different STVs from exposure to the same presy-
naptic stimulus. Hence, an analytical understanding of
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the processes that shape the STV and related observ-
ables is essential for the understanding of the computa-
tional properties of neurons as encoded in their differing
thresholded response to fluctuating synaptic drive.

Even in the steady state, extracting the temporal fea-
tures from non-linear stochastic systems can be math-
ematically demanding. For rate-based neuron models,
the relation between the spike-triggered average and the
properties of the underlying model are relatively well
understood (e.g., [9, 10]). However, for spiking neuron
models this problem is more difficult, and only recently
have a number of results been reported for the STV of
integrate-and-fire (IF) neurons: a general formula based
on mapping the IF model to an escape noise model [11];
an eigenvalue analysis for the leaky IF model of the in-
fluence of averaging over isolated and non-isolated spikes
[12]; an approximation based on the observation of the
time-symmetry of the STV for the leaky IF model [13];
analytical formulae in the low-rate limit for the leaky IF
neuron and the power-law scaling near threshold [14, 15];
exact results for the STV of the non-leaky IF model [15];
and a formula [14] for the STV of a two-variable general-
ized IF neuron. These earlier studies approximated the
synaptic fluctuations by a white-noise source. However,
excitatory and inhibitory synapses have distinct receptor-
inactivation kinetics that lead to a filtering of the input.
This feature of synaptic drive could have a potentially
significant impact on the temporal patterning of the re-
sponse, but has been neglected in previous STV analyzes.

This paper examines the combined effects on spike-
triggered quantities of voltage-gated channels and the fil-
tered synaptic drive typical of excitatory AMPA synapses
and inhibitory GABAergic synapses. As will be seen,
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this involves a significant extension of the path-integral
formulation previously used for the white-noise case.
Of particular interest will be the effects of subthresh-
old currents that provide negative feedback, like the
hyperpolarization-activated depolarizing current Ih [16]
that underlies resonant or oscillatory phenomena [17–22]
at the cellular level. Here a generalized integrate-and-
fire neuron [20, 21] will be used to derive expressions for
the time course of the spike-triggered voltage, transmem-
brane currents and synaptic conductances. The method
identifies the distinct roles played by voltage-activated
channels, and excitatory and inhibitory synaptic drive in
the run-up to the spike.

II. THE MODEL

The full non-linear conductance-based model, which
will be integrated numerically, will first be described.
Following that, the approximation scheme required to
reduce the model to a form which may be tackled math-
ematically is briefly reviewed and the simplified descrip-
tion, in terms of linear stochastic differential equations,
provided.

Conductance-based model

The membrane voltage V of the cell obeys an equation
comprising a capacitive term, of capacitance C = 1nF in
parallel with a set of subthreshold transmembrane cur-
rents Isub and a synaptic driving current Isyn

C
dV

dt
+ Isub = Isyn. (1)

The spike-generation mechanism is described by a strict
threshold at Vth =−55mV followed by a reset at a value
Vre. The form of the reset has a negligible effect on the
dynamics because the neuronal response will be treated
in the low-rate regime in which memory of the previous
spike will have faded by the time of the next one. The
effect of the hard threshold and the difference that might
be expected were a non-linear spike-generating current
to be included, is considered in the Discussion.

Subthreshold currents

The subthreshold currents considered here comprise:
a passive leak current IL of conductance gL and rever-
sal potential EL =−85mV; a current IP providing pos-
itive feedback, similar to the persistent sodium current,
with instantaneous activation, a reversal potential EP =
40mV and a maximal conductance gP ; and IW an Ih-like
hyperpolarization-activated depolarizing current of max-
imal conductance gW , reversal potential EW = −20mV
with an activation variable W with voltage-history de-
pendent dynamics. The instantaneous currents take the

form

IL = gL(V − EL) and IP = gPP∞(V − EP ) (2)

with the third current of the form

IW = gWW (V −EW ) with τW
dW

dt
= W∞ −W. (3)

where τW =75ms. The activation variables P∞ and W∞
are of the form

A∞(V ) = (1 + exp ((V − VA)/∆A))−1 (4)

where VA is the voltage at which half the channels are
open and ∆A measures the width of the activation curve.
For IW these parameters take the values VW =−70mV,
∆W = 15mV and for IP these parameters take the val-
ues VP = −60mV, ∆P = 15mV. It can be noted that
these choices for the activation are relatively broad, so as
to allow a meaningful comparison with the linearization
procedure. For currents with sharper activation curves
the linearization procedure will of course be less accurate,
but it will nevertheless provide a good indication of the
qualitative response and may be systematically improved
upon by going to higher order.

Three distinct neuron models are considered; (i) a pas-
sive neuron with gL = 0.05 and gP = gW = 0, (ii) a neu-
ron with a sag and rebound response with gL = 0.05,
gW =0.145, and gP =0, and (iii) a neuron with damped
oscillations gL = 0.15, gW = 0.15, and gP = 0.062. All
conductances have units of µS. The response of these
three neuron models to step current inputs is shown in
figure 1A.

Synaptic current

The synaptic current Isyn is mediated by changes in
excitatory ge(t) and inhibitory conductance gi(t). The
resulting current [23] can be written

Isyn = ge(V − Ee) + gi(V − Ei) (5)

where Ee = 0mV and Ei = −75mV are the equilibrium
potentials for the two synaptic drives. Using excitation
as an example, the total conductance increases by ce each
time an excitatory presynaptic spike arrives and in be-
tween spikes the conductance relaxes back to baseline
with a relaxation timescale τe = 3ms typical for fast ex-
citatory kinetics

τe
dge

dt
= −ge + ceτe

∑
δ(t− tk) (6)

where the excitatory spike arrival times tk are Poisson
distributed with a rate Re with a similar equation for
fast inhibition for which τi = 10ms. It is assumed that
excitatory and inhibitory spike trains are uncorrelated.
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Monte-Carlo simulations

A forward Euler scheme of time step dt=10µs or less,
was used to integrate the above equation sets (with Pois-
sonian shot noise given in Eq. 6) for sufficiently long time
periods required for the acquisition of 10000 spikes. In
figure 1B we show for the three neuron models defined
above a typical voltage trajectory leading to an output
spike.

Approximation strategy

In order to reduce the full model into a tractable form,
the standard methods [20, 21, 24–26] of linearization of
the activation variables (4) and taking the diffusion limit
of the Poisson processes are taken. To perform the lin-
earization, the voltage is expanded around its equilibrium
value with only terms that are of first order in the voltage
and fluctuating transmembrane conductances retained.
As has been shown [27, 28] this is equivalent to the Gaus-
sian approximation [29–33] for which the tonic conduc-
tance increase and additive fluctuations of the conduc-
tance drive are retained, but the multiplicative term is
dropped. This is a consistent approximation for the non-
thresholded neuron [27, 28] because both shot-noise ef-
fects and conductance fluctuation effects are neglected.
However, shot-noise and conductance fluctuations are re-
tained in the numerical simulations to which the math-
ematical solutions will be compared. Full details of this
procedure can be found in the Appendix A.

The simplified model

The resulting linearized model comprises a set of
stochastic differential equations that are the basis of the
analytical treatment in this paper:

τv v̇ = −v − γw + x+ y (7)
τwẇ = −w + v (8)
τxẋ = −x+ σx

√
2τx ξx(t) (9)

τy ẏ = −y + σy

√
2τy ξy(t) (10)

where v is the voltage measured from its resting potential,
w is proportional to the activation of the IW subthreshold
current, and x and y are proportional to the excitatory
and inhibitory synaptic fluctuations. The quantities ξx
and ξy are independent Gaussian white-noise processes
with zero mean and delta correlations 〈ξ(t)ξ(t′)〉=δ(t−t′).
The strength of the subthreshold current IW on the volt-
age is measured by the parameter γ. A value of γ > 0
results in a negative feedback that can lead to a sag re-
sponse or damped oscillations [20]. All parameters of the
linearized model can be related to those of the full non-
linear model, with the details given in Appendix A. The
subthreshold dynamics defined by the set of equations
(7-10) is supplemented by a threshold vth and reset at

vre, which are also measured from the baseline resting
potential.

III. PATH INTEGRAL REPRESENTATION

In this section we will use a brief review of our previ-
ous results [14], for neurons subject to a Gaussian-white-
noise approximation of synaptic current fluctuations, to
introduce the path-integral framework. This also allows
for the differences between the cases of unfiltered and fil-
tered synaptic drive to be highlighted more clearly in the
next section.

The path integral formulation for excitatory fluctua-
tions x(t) is used here as an example. It is assumed that
the neuronal voltage reaches the threshold at time t = 0
and so a time interval [−T, 0] prior the spike will be con-
sidered. We split this time interval into N bins of size ∆t

such that tk =−T+k∆t. Integrating equation (9) over a
time bin and neglecting terms O(∆2

t ) yields

xk+1 = xk −
∆t

τx
xk + σx

√
∆t

τv
ψk (11)

where ψk is a Gaussian random number of zero mean and
unit variance. The distribution of xk+1 at tk+1, given xk

at tk, will also Gaussian and so the probability density
of finding a discrete-time trajectory with values {xk} can
be written

P({xk}) ∝ exp

(
−

1∑
k=−N

ψ2
k

2

)
= exp (−S({xk})) . (12)

The quantity S({xk}) on the right-hand side of equation
(12) can be rewritten by solving equation (11) for ψk,
yielding

S({xk}) =
1

4σ2
x

1∑
k=−N

∆t

τx

(
τx
xk+1 − xk

∆t
+ xk

)2

. (13)

For calculational purposes it proves convenient to take
the continuum limit ∆t→0 to yield

S(x(t)) =
1

4σ2
xτx

0∫
−T

dt (τxẋ+ x)2 dt. (14)

This quantity is called the action [34] of the path inte-
gral. For the case of relatively weak fluctuations noise
considered here, σx is small, and so the probability den-
sity will be strongly peaked around the trajectory that
minimizes the integral on the right-hand side of equation
(14). The extremizing trajectory may be found using
standard methods of the calculus of variations. In gen-
eral the limit T→∞ will be taken so that trajectories will
be considered that came out of a steady-state ensemble
in the distant past. This is an acceptable approximation
for neurons that fire with a typical period that is con-
siderably longer than the intrinsic time constants of the
membrane dynamics.
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Neuronal response to Gaussian
white-noise Synaptic fluctuations

The spike-triggered average trajectory has been pre-
viously analyzed, in the weak-noise limit, for neurons
with a passive response [14, 15, 35] and with linear mem-
branes exhibiting a sag or damped oscillatory response
[14] when the synaptic fluctuations are modeled using
Gaussian white noise. These results are now briefly re-
viewed, using the formalism demonstrated in the deriva-
tion of equation (14).

Passive membranes

The case of a passive membrane with a white-noise
drive is given by equation (7) with γ=0 and x+y replaced
by σv

√
2τvξ(t) where σ2

v is the variance of the voltage in
absence of threshold. This equation is of the Ornstein-
Uhlenbeck form and so has an action identical in form
to that given by equation (14) but with the assignment
x→ v and T→∞:

S =
1

4σ2
vτv

0∫
−∞

dt(Lvv)2 (15)

where the operator and its adjoint are defined as

Lz = 1 + τz
d

dt
and L†z = 1− τz

d

dt
(16)

for any quantity z. From the calculus of variations the
minimizing trajectory obeys

LzL†zv = 0 yielding v(t) = vthe
t/τv . (17)

This result [14, 15, 35] provides a good approximation
to the spike-triggered average voltage in the low-rate,
fluctuation-driven firing regime. However, near thresh-
old vth a boundary effect intervenes that is not captured
by the low-rate approximation. Near the boundary the
trajectory can be shown [14] to take the form of a power
law for t→ 0, t < 0

v(t) ' vth − σv

√
16|t|
πτv

. (18)

This singular behavior is due to the interaction of the
white-noise with an absorbing boundary and is also ob-
served in the absence of leak currents [15].

Linearized, quasi-active membranes

Biologically important membrane response properties
such as a sag/rebound, associated with the Ih current, or
damped oscillations have been modeled [14, 20, 21] using
equations (7,8) with γ > 0 and the Gaussian white-noise

approximation with the replacement x+ y → σ
√

2τvξ(t).
The action in this case takes the form

S =
1

4σ2τv

0∫
−∞

dt (Lvv + γw)2. (19)

The minimization problem becomes straightforward
when equation (8) is re-arranged to yield v = Lww and
substituted into the integral to give the integrand in the
form (LvLww + γw)2. The minimizing trajectory satis-
fies

(LvLw + γ)(L†vL†w + γ)w = 0. (20)

This fourth-order linear equation has exponential solu-
tions with eigenvalues ±λ1 and ±λ2 where

λ1,2 = −1
2

(τv + τw)±
√

(τv − τw)2 − 4τvτwγ
τvτw

. (21)

On imposing the boundary conditions v(t=0)=vth, fur-
ther optimization over the possible values of w at thresh-
old yields the spike-triggered average voltage as

v(t) =
vθ

λ1λ2τ2
w + 1

(22)

×
(
λ2(λ2

1τ
2
w−1)

λ1 − λ2
e−λ1t+

λ1(λ2
2τ

2
w−1)

λ2 − λ1
e−λ2t

)
. (23)

Though the action in equation (19) comprised two system
variables, as shown in equation (20) it was possible to
substitute for one of the variables (v) so as to rewrite the
action in terms of a single state variable. This simple
approach is not possible for the case of two independent
noise sources with distinct filter constants and therefore
a more involved method needs to be developed, as will
now be shown.

IV. FILTERED SYNAPTIC DRIVE

In order not to overly obscure the reading of the basic
framework required to treat the case of two noise sources
with distinct filtering constants, the bulk of the calcu-
lation details are to be found in Appendix B. We will
now proceed with the case of the passive membrane, and
then extend these novel results to the case of linearized,
quasi-active membranes.

A. Passive membranes with filtered noise sources

The passive model (γ = 0) with filtered synaptic drive,
Eqs.(7)-(10), has an action of the form

S(x, y) =
1
4

0∫
−∞

{
1

σ2
xτx

(Lxx)2 +
1

σ2
yτy

(Lyy)2
}
dt , (24)
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FIG. 1: Comparing simulations (black) of the full conductance-based model to the low-rate theoretical predictions (color,
Eqs. (30)-(32), Eqs. (34)-(36) and (B20)-(B21)). A. Response of the model to a small current pulse causing a steady-state
depolarization of about 0.5 mV. Three types of response are distinguished: passive decay, sag/rebound and damped oscillations.
B. Sample voltage trajectories leading to an output spike. C. Spike-triggered average voltage. D. Spike-triggered average
synaptic conductances (red: excitatory conductance, green: inhibitory conductance). E. Spike-triggered average values of the
intrinsic membrane current (cyan: Ih, h-current; magenta: INaP, persistent sodium current). Parameters for the case of passive
decay were: rate of arrival of excitatory and inhibitory conductance pulses, Re = 4.17 kHz, and Ri = 1.25 kHz; amplitude
of conductance pulses, ce = 3.6 nS and ci = 4.6 nS; firing rate r = 1.1 Hz. For the sag/rebound case, Re = 3.06 kHz,
Ri = 0.8 kHz, ce = 3.27 nS, ci = 6.26 nS, firing rate r = 1.3 Hz. For damped oscillations, Re = 4.59 kHz, Ri = 2.81 kHz,
ce = 0.76 nS, ci = 0.80 nS, and firing rate r = 0.1 Hz.

where the two synaptic fluctuations x, y are assumed to
be independent. It is now no longer possible to reduce
the problem to a variational minimization over a single
variable; the action functional must be minimized over
the set of paired trajectories {x(t), y(t)} which trigger an
output spike exactly at t = 0, i.e., which led to v(0) = vθ.
Using equation (7), this condition can be rewritten as an
integral constraint

G(x, y) =

0∫
−∞

et/τv (x(t) + y(t)) dt− τvvθ = 0 . (25)

Following the standard methods of the calculus of varia-
tions (see Appendix B) the solution to this minimization
problem satisfies the system of differential equations

LxL†xx = Λet/τv (26)

LyL†yy = Λet/τv (27)

where Λ is the Lagrange multiplier associated with the
threshold condition. This gives

x(t) = c1e
t/τv + c2e

t/τx (28)

y(t) = d1e
t/τv + d2e

t/τy . (29)

The four constants c1, c2, d1 and d2 can be determined
by inserting these expressions back into Eqs.(24)-(25) and
solving the resulting algebraic minimization problem (see
Appendix B). The resulting form of the mean excitatory
synaptic fluctuations in the run up to the spike is

x(t) = θx

(
2τv

τv − τx
et/τv +

τx + τv
τx − τv

et/τx

)
, (30)

where

θx = vθ

(
1 +

σ2
yτy(τv + τx)
σ2

xτx(τv + τy)

)−1

. (31)
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FIG. 2: Comparing simulations (black) of the simplified model (Eqs 7-10) to the low-rate theoretical predictions (color, Eqs. (30)-
(32), Eqs. (34)-(36) and (B20)-(B21)). A. Sample voltage trajectories leading to an output spike. B. Spike-triggered average
voltage. C. Spike-triggered average synaptic conductances (red: excitatory conductance, green: inhibitory conductance). D.
Spike-triggered average values of the intrinsic membrane current (cyan: Ih, h-current; magenta: INaP, persistent sodium
current). The parameters of the reduced model were derived from the full model in figure 1. For all three cases, τw = 75 ms.
For the case of passive decay, τv = 6.56 ms, γ = 0, σx = 3.65 mV, σy = 2.13 mV and firing rate r = 1.0 Hz. For the sag/rebound
case, τv = 6.68 ms, γ = 0.62, σx = 2.86 mV, σy = 2.41 mV and firing rate r = 1.0 Hz. For damped oscillations, τv = 39.02 ms,
γ = 3.20, σx = 4.67 mV, σy = 3.53 mV and firing rate r = 0.2 Hz.

A similar expression for the inhibitory fluctuations is ob-
tained by switching the indices x and y. Then, from equa-
tions (7, 30, 31) the time course of the spike-triggered
average membrane voltage is found to be

v(t) = θx

(
τv

τv − τx
et/τv +

τx
τx − τv

et/τx

)
+ θy

(
τv

τv − τy
et/τv +

τy
τy − τv

et/τy

)
. (32)

The theoretical results of equations (30)-(32) are in good
agreement with numerical simulations of the passive neu-
ron model (Fig. 2B and C). Equation (32) allows for an
interpretation of the quantities θx and θy. At the point
of the spike, when t=0 the voltage vth is equal to their
sum. Hence, θx and θy measure the contribution of exci-
tatory and inhibitory fluctuations to the reaching of the
threshold. Both these terms are positive, but the correct
interpretation is that the positive inhibitory contribution
comes from fluctuations in inhibition that momentarily
weaken the baseline inhibition. It can further be noted
that, because θx/θy ∝ σ2

x/σ
2
y, the relative contribution

of the synaptic fluctuations scales with the ratio of their
variances.

The form of the voltage equation (32) shows explic-
itly the effect of the filtering of the noise. If the limit
of τx, τy → 0 is taken, the white-noise result Eq.(17) is
recovered. However, given that the values for the mem-

brane time constant for cortical cells are in the range
10 − 40ms and that inhibitory filtering has a time con-
stant of 10ms, the filtering can be significant. This effect
is further compounded when conditions of high synaptic
conductance are considered for which the effective mem-
brane time constant τv can be reduced to as little as 5ms
[36]. Under such circumstances the synaptic contribution
(prefactor of the exponential with the τy decay) is twice
as large as the contribution from the membrane dynamics
(prefactor of the exponential with the τv decay).

B. Linearized active membranes with filtered noise

The case of quasi-active membranes is now studied,
in which an additional subthreshold current is present
(γ > 0). The calculation proceeds as for the passive case,
but with the threshold condition now taking the form

0∫
−∞

(p1e
−λ1t+p2e

−λ2t)(x(t)+y(t))dt−τvvθ = 0 . (33)

The eigenvalues λ1 and λ2 are given by (21), and the
coefficients p1 and p2 are related to the change of coor-
dinates that diagonalizes the linear system (7)-(8) (see
Appendix B for details). The stationarity condition
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FIG. 3: Spike-triggered averages at very low firing rates. The theoretical predictions (color, Eqs. (30)-(32), Eqs. (34)-(36)
and (B20)-(B21)) are compared with numerical simulations of the simplified model (black) for a firing rate of 10−4Hz. A.
Sample voltage trajectories leading to an output spike. B. Spike-triggered average voltage. C. Spike-triggered average synaptic
conductances (red: excitatory conductance, green: inhibitory conductance). D. Spike-triggered average values of the intrinsic
membrane current (cyan: Ih, h-current; magenta: INaP, persistent sodium current). The parameters are the same as in figure
2, except: σx = 1.54 mV, σy = 1.37 mV (decay), σx = 1.39 mV, σy = 1.31 mV (sag/rebound), σx = 2.33 mV, σy = 2.36 mV
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(Euler-Lagrange equation) gives the following form for
the synaptic conductances

x(t) = c1e
−λ1t + c2e

−λ2t + c3e
t/τx

y(t) = d1e
−λ1t + d2e

−λ2t + d3e
t/τy .

The constants ck and dk can be determined calculated in
closed form (see Appendix B for details). We obtain for
the synaptic conductances

x(t) = θx

(
(τv+τw)λ1λ2(1−τxλ1)(1−τxλ2)

1+τ2
wλ1λ2−τx(λ1+λ2)

)
×(

2(1+τwλ1)
(1−τ2

xλ
2
1)(λ1−λ2)

e−λ1t +
2(1+τwλ2)

(1−τ2
xλ

2
2)(λ2−λ1)

e−λ2t

+
(τx−τw)

(1+τxλ1)(1+τxλ2)
et/τx

)
, (34)

with the eigenvalues λ1, λ2 given by (21), and

θx = vθ

(
1 +

σ2
yτy(1−τxλ1)(1−τxλ2)
σ2

xτx(1−τyλ1)(1− τyλ2)

× 1+τ2
wλ1λ2 − τy(λ1+λ2)

1+τ2
wλ1λ2 − τx(λ1+λ2)

)−1

. (35)

The voltage trajectory can be expressed as v(t) = vx(t)+
vy(t), where

vx(t) = θx

(
(1−τxλ1)(1−τxλ2)

1+τ2
wλ1λ2 − τx(λ1+λ2)

)
×(

λ2(λ2
1τ

2
w−1)

(1−τ2
xλ

2
1)(λ1−λ2)

e−λ1t +
λ1(λ2

2τ
2
w−1)

(1−τ2
xλ

2
2)(λ2−λ1)

e−λ2t

+
λ1λ2(λ1+λ2)(τ2

w−τ2
x)τx

(1−τ2
xλ

2
1)(1−τ2

xλ
2
2)

et/τx

)
(36)

and vy(t) is obtained by switching the indices x and y.
By taking the limit τx, τy→0, it can be verified that
this expression is consistent with the result for unfiltered
synaptic fluctuations, equation (22). For γ→0, we have
λ1→−1/τv and λ2→−1/τw and the result for the pas-
sive membrane, Eq.(32), is recovered.

Similarly to the passive case, it can be seen that the
two quantities θx and θy measure the contributions of ex-
citatory and inhibitory conductance fluctuations to the
total membrane depolarization. Since the eigenvalues λ1

and λ2 have a negative real part, it follows that these two
contributions are positive: the voltage run-up to the spike
is due to both an increase in excitation and a decrease in
inhibition, so that both excitatory and inhibitory fluctu-
ations take part in firing the cell. Furthermore, the rel-
ative contribution of each conductance again scales with
the ratio of the noise strengths, θx/θy ∝ σx/σy.
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FIG. 4: Spike-triggered averages: effects of correlations between excitation and inhibition. The theoretical predictions of
appendix C (color) with numerical simulations of the simplified model (black) for a correlation coefficient ρ = 0.4. A. Sam-
ple voltage trajectories leading to an output spike. B. Spike-triggered average voltage. C. Spike-triggered average synaptic
conductances (red: excitatory conductance, green: inhibitory conductance). D. Spike-triggered average values of the intrinsic
membrane current (cyan: Ih, h-current; magenta: INaP, persistent sodium current). The parameters are the same as in figure 2,
except: σx = 4.86 mV, σy = 3.33 mV, firing rate 0.7 Hz (decay), σx = 3.27 mV, σy = 2.90 mV, firing rate 0.1 Hz (sag/rebound),
σx = 5.84 mV, σy = 5.89 mV, firing rate 0.2 Hz (damped oscillations).

C. Comparison of the theory with numerical
simulations of the full model

Figure 1 compares the theoretical results of the pre-
ceding section with numerical simulations of the full
conductance-based model defined by Eqs. (1)-(6). The
theoretical spike-triggered average voltage and conduc-
tances were obtained using Eqs. (30)-(32) for the decay
case (left column in Fig. 1), and Eqs. (34)-(36) for the two
other cases (sag/rebound and damped oscillations). For
the latter we also show in figure 1D the spike-triggered
average of the voltage-activated subthreshold currents
and compare it to the theoretical results of Eqs. (B20)-
(B21) given in appendix B.

The data shows a good agreement between theory and
simulation, particularly given the fact that the full model
incorporates two nonlinear voltage-gated subthreshold
currents and retains both the conductance and shot-noise
aspects of the synaptic drive, whereas the theoretical cal-
culations were carried out with the linearized model and
within the Gaussian approximation to synaptic fluctua-
tions. The bulk part of the spike-triggered average is well
approximated for all three types of subthreshold dynam-
ics. The theory also captures the time course of the ex-
citatory and inhibitory synaptic conductances in the run
up to the spike: in the low-firing rate regime the aver-
age trajectory preceding a spike is close to the trajectory
of highest probability calculated from the variational ap-

proach.

The major discrepancy occurs in a small temporal re-
gion, just before the spike threshold is crossed. In the
last few milliseconds (< 5ms) before the spike is trig-
gered, the synaptic conductances in the theory begin to
relax back to their baseline value - a feature that is not
seen in the simulations. The reason for this is that in
the extremization procedure the voltage derivative dv/dt
must be zero at threshold because the most likely trajec-
tory during weak noise is the one which glances threshold
(this can be seen directly from the analytical expressions
of the STV, equations (32) and (36)). This progressive
slowing of the membrane potential also causes a slight
shift of the STV along the time axis, which is most vis-
ible in the case of damped oscillations (right column in
Fig. 1). This effect does not stem from the linearization
of the voltage-gated currents or the approximation of the
synaptic input, as it is also seen in numerical simulations
of the reduced model (see figure 2). Rather, it is due to
the fact that the theory is asymptotically exact in the
limit of vanishing firing rate, and that the conditions in
the numerical simulations depart slightly from this limit.
Indeed, a clear convergence is seen as the firing rate ap-
proaches zero (figure 3).
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Including cross-correlations between excitation and inhibition

The theory developed above is readily extended to the
case of correlated synaptic drive, in which the excitatory
and inhibitory conductances are no longer independent.
Details of how this extension can be implemented are
given in the Appendix C. Figure 4 shows an example of
the effects of correlated synaptic fluctuations, for which
the correlation coefficient ρ is equal to 0.4 (see Appendix
for a definition) where a positive correlation coefficient
means that excitatory and inhibitory inputs tend to oc-
cur synchronously, thus partially canceling each other.
In this case, the theory again predicts spike-triggered av-
erage quantities very satisfactorily, with the discrepancy
near the threshold comparable to the uncorrelated case.

Although the time course of the membrane voltage is
largely unaffected by the correlations, the shape of the
synaptic conductances is significantly altered. Techni-
cally, this difference is due to the appearance of a mixed
mode ∼ et/τy in the excitatory conductance, and vice
versa for inhibition. Some modes may be suppressed and
others enhanced in a way that will be most favorable
for the emission of a spike, leading to significant changes
in the patterns of the spike-triggered average synaptic
inputs. For example, in the case of passive decay, the
initial slow decrease in inhibition is accompanied by a si-
multaneous decrease in excitation as a result of the cor-
relation between the two. The fast increase in excitation
that follows is also accompanied by an increase in the
inhibitory conductance. Finally, it can be noted that the
case of negative correlations does not differ significantly
from the uncorrelated case and is thus not examined in
detail here.

V. DISCUSSION

We have derived analytical expressions for the spike-
triggered average of generalized integrate-and-fire neu-
rons with voltage-activated subthreshold currents. Our
theory allowed us to construct a direct relation between
spike-triggered averages and neuronal response proper-
ties, complementing other approaches that focused on
the relation to different quantities such as the popula-
tion activity [11] or the phase response curve [37]. Our
results, which are exact in the limit of low firing rates, are
shown to provide a good approximation to the empirical
spike-triggered average for firing rates up to a few Hz.
The model used in this paper is able to reproduce three
important types of subthreshold voltage dynamics seen
in biological neurons: passive decay, h-current sag, and
damped voltage oscillations. The results clearly demon-
strate that the form of the spike-triggered average is de-
termined by both the response properties of the neuron
and the statistics of the synaptic input, with potential
implications for models of spike time-dependent plastic-
ity where the spike-triggered average membrane poten-
tial plays a role in shaping the distribution of synaptic

weights.

Although other parameters, such as conductance and
shot-noise effects, the nonlinearity of voltage-gated con-
ductances, or the nature of the spike-generation mecha-
nism, may have an influence on the precise shape of the
STV, they do not change the qualitative aspect of our
results. Therefore, our analysis also emphasizes the po-
tential of the generalized integrate-and-fire model as an
analytical tool: the results presented here are in good
agreement with numerical simulations of the full non-
linear model comprising two voltage-gated currents and
driven by conductance-based synaptic shot noise. Our
calculations show that for this type of models, the form
of the spike-triggered average depends on the response
properties of the neuron in the vicinity of the mean volt-
age, which could underlie a switching between differ-
ent modes of information processing depending on the
amount of background synaptic input. As an example,
stellate cells of the entorhinal cortex display sag/rebound
behavior at resting and hyperpolarized membrane poten-
tials, and damped oscillations at more depolarized volt-
ages [22]. This implies that the most likely voltage tra-
jectory has different properties in these voltage ranges,
and may support the existence of two distinct operat-
ing modes where the neuron fires in response to different
types of synaptic inputs.

The path-integral formalism reviewed here has had
previous applications for the case of one-variable non-
linear integrate-and-fire neurons [35] and generalized
integrate-and-fire neurons [14] driven by white noise.
Here, we developed an extension of this method to in-
clude temporal correlations in the synaptic inputs, which
allowed us to separate the roles of excitatory and in-
hibitory conductances in shaping the membrane poten-
tial run-up to the spike. In the regime considered here,
i.e., the case of low-frequency, noise-driven spike gener-
ation, the average synaptic input consists in an increase
in excitation coincident with a withdrawal of inhibition.
Since the contribution of each synaptic pathway to the
total membrane depolarization scales with the intensity
of its fluctuations, the role of inhibition may be as large,
or even larger, as that of excitation itself. This shows
that inhibitory fluctuations, that weaken the background
level of inhibition, take an active part in the generation
of action potentials - a fact that could be particularly
important during high-conductance, cortical up-states.
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APPENDIX A: REDUCTION OF THE
CONDUCTANCE-BASED MODEL

The reduction strategy is to consider the voltage fluc-
tuations as small deviations away from the resting poten-
tial E0, which will be determined below. Expansion of
the shot-noise synaptic conductances leads to a Gaussian
approximation of the fluctuations and expansion voltage-
activated currents leads to a linear description of the
membrane response.

Gaussian approximation of the synaptic current

Following [27], the synaptic conductances (using ex-
citation as an example) in equation (5) can be sep-
arated into tonic ge0 and fluctuating geF components
ge =ge0+geF where ge0 =ceτxRe. In the diffusion approx-
imation the shot-noise conductance fluctuations become
an Ornstein-Uhlenbeck process

τx
dgeF

dt
= −geF + σe

√
2τxξ(t) (A1)

where the conductance variance is σ2
e = c2eτxRe/2 and

ξ(t) is zero-mean, delta-correlated 〈ξ(t)ξ(t′)〉 = δ(t− t′)
Gaussian white noise. The fluctuations geF (t) and giF (t)
drive the voltage away from its rest E0 so the synaptic
current (Eq. 5) may be approximated to first order in
V −E0 as

Isyn ' ge0(Ee − V ) + gi0(Ei − V )
+ geF (Ee − E0) + giF (Ei − E0). (A2)

Terms of the form geF (E0−V ), and similar for inhibition,
have been dropped because they are beyond first order:
V −E0 grows with geF and giF .

Linearization of voltage-gated currents

A convenient method [24, 25] is to linearize the volt-
age around resting potential E0 which in this context
is the steady-state voltage of the neuron in the absence
of synaptic fluctuations (though retaining the tonic con-
ductance of the synaptic drive). The potential E0 can be
found from the numerical solution of the following equa-
tion

E0 =
gLEL+gWW0EW +gPP0EP +ge0Ee+gi0Ei

gL + gWW0 + gPP0 + ge0 + gi0
(A3)

where W0 =W∞(E0) and P0 =P∞(E0) denotes the acti-
vation variables evaluated at E0.

It proves convenient to introduce a variable that mea-
sures the voltage deviation from rest v = V −E0 and
similarly a variable w=(W0−W )/W ′

0 that measures the
deviation of the IW activation variable from its resting
value W0, where W ′

0 is the voltage derivative of W∞ eval-

uated at E0.

C
dv

dt
= −vg + wgWW ′

0(EW − E0)

+geF (Ee − E0) + geF (Ee − E0) (A4)

τw
dw

dt
= v − w (A5)

where the conductance g is found to be

g=gL+gWW0+gPP0+gPP
′
0(EP−E0)+ge0+gi0. (A6)

These equations, together with the equations for the
Gaussian conductance fluctuations of the form (A1), rep-
resent the first-order expansion of the dynamics. The
substitutions x=(geF /g)(Ee−E0), σx =(σe/g)(Ee−E0),
τx = τe and likewise for inhibition and the variable y,
together with the identifications τv = C/g and γ =
−(gW /g)W ′

0(EW−E0) yield the reduced set of four equa-
tions (7-10).

APPENDIX B: MINIMIZATION OF THE
ACTION FUNCTIONAL FOR COLORED NOISE

We consider the n-variables generalized integrate-and-
fire model defined by

τv
dv

dt
= −v −

n−1∑
k=1

γkwk + I(t) (B1)

τk
dwk

dt
= v − wk (B2)

for k = 1, . . . , n− 1, where I(t) = x(t) + y(t) is the fluc-
tuating part of the synaptic current. The most probable
escape trajectory for this system is obtained by minimiz-
ing the action functional

S(x, y) =
1
4

0∫
−∞

{
1

σ2
xτx

(Lxx)2 +
1

σ2
yτy

(Lyy)2
}
dt . (B3)

In order to preform the minimization, it is necessary to
calculate the response of the model to an injected current
I(t). We start by rewriting the system in vector notation
as

ẋ = Ax+ J(t) (B4)

where x = (x1, x2, . . . , xn) is a vector containing the
voltage variable (x1 = v) and the n − 1 auxiliary vari-
ables (xk+1 = wk, k = 1, . . . , n − 1), and J(t) =
(I(t)/τv, 0, 0, . . . , 0). The matrix A is formed of the
coefficients of the linear system. If the time constants
τk are all different, this matrix admits n distinct eigen-
vectors e1, . . . , en (generally complex-valued), associated
with the eigenvalues λ1, . . . , λn. The change of variables
z = S−1x, where S = (e1 . . . , en) is the matrix whose
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columns are formed of the eigenvectors of A, results in
the diagonalized system

ż = Dz + J̃(t) (B5)

whereD = diag(λ1 . . . , λn), and J̃ = S−1J . This system
is easily solved and the vector x is obtained with the
inverse transformation, x = Sz. For an initial condition
of the form x(0) = (x0

1, x
0
2, . . . , x

0
n), this gives

xi(t) =
∑
k,l

SikS
−1
kl x

0
l e

λkt +

t∫
0

∑
k

Pike
λk(t−s) I(s)

τv
ds ,

(B6)
where the coefficients Pik are given by Pik = SikS

−1
k1 .

Thus, for a trajectory starting at the equilibrium point
x0 = (0, 0, . . . , 0) at time −∞, the threshold condition
can be written as

G(x, y) =
0∫

−∞

∑
k

pke
−λkt (x(t) + y(t)) dt− τvvθ = 0 , (B7)

which is the n-dimensional analogue of equation (33).
Note that we have written pk instead of P1k. The first ex-
tremality condition (Euler-Lagrange equation) thus reads(

1− τ2
x

d2

dt2

)
x(t)− Λ

∑
k

pke
−λkt = 0 . (B8)

This equation is solved by

x(t) =
n+1∑
k=1

cke
−λkt (B9)

where we have defined λn+1 = −1/τx. Similarly, we ob-
tain for y(t)

y(t) =
n+1∑
k=1

dke
−νkt (B10)

where ~ν = (λ1, . . . , λn,−1/τy).
When these expressions are inserted back into the ac-

tion functional and threshold condition, we obtain an
algebraic minimization problem for the constants ck and
dk. The solution can be written in matrix form as

Λ =
τvvθ

σ2
xτx (~µTX−1~µ) + σ2

yτy (~ηTY −1~η)
(B11)

~c =
(
Λσ2

xτx
)
X−1~µ (B12)

~d =
(
Λσ2

yτy
)
Y −1~η (B13)

where for k, l = 1, . . . , n+ 1,

Xkl = − (1− τxλk)(1− τxλl)
λk + λl

(B14)

µk = −
n∑

i=1

pi

λi + λk
, (B15)

and similar expression for Y and η are obtained by
switching the indices x and y and the eigenvalues λk and
νk. Finally, the amount θx of membrane depolarization
that is contributed by the excitatory drive can be written
as

θx = vθ

(
1 +

σ2
yτy
(
~ηTY −1~η

)
σ2

xτx (~µTX−1~µ)

)−1

, (B16)

with a similar expression for θy.
Using the notations of appendix A, the time course of

the synaptic conductances ge(t) = ge0 + x(t)/(Ee − E0)
and gi(t) = gi0 + y(t)/(Ei−E0) are determined from the
constants ck and dk and equations (B9) and (B10). The
membrane voltage is then obtained using equation (B6).
For n = 2, we obtain equations (34)-(35) for the synaptic
conductances, and v(t) = vx(t) + vy(t) where

vx(t) = −
(
p1

2λ1
− p2

λ1+λ2

)
c1
τv

+
(

p1

λ1+λ2
+
p2

2λ2

)
c2
τv

+
(

τxp1

1−τxλ1
+

τxp2

1−τxλ2

)
c3
τv
, (B17)

and vy is obtained from vx by switching the indices x
and y. The coefficients pk = P1k are those introduced in
equation (B6) and for the voltage variable we have

p1 =
1+τwλ1

τw(λ1−λ2)
, p2 =

1+τwλ2

τw(λ2−λ1)
, (B18)

which gives equation (36). The second subthreshold cur-
rent w(t) is obtained with equation (B17) using the co-
efficients

p1 = −p2 =
τv(1 + τwλ1)(1 + τwλ2)

γτ2
w(λ2 − λ1)

. (B19)

This gives w(t) = wx(t) + wy(t) where

wx(t) = θx

(
(1−τxλ1)(1−τxλ2)(1+τwλ1)(1+τwλ2)

γτw(1+τ2
wλ1λ2 − τx(λ1+λ2))

)
×(

τvλ2(1+τwλ1)
(1−τ2

xλ
2
1)(λ2−λ1)

e−λ1t +
τvλ1(1+τwλ2)

(1−τ2
xλ

2
2)(λ1−λ2)

e−λ2t

+
(τv+τw)(τx−τw)τ2

xλ1λ2

(1−τ2
xλ

2
1)(1−τ2

xλ
2
2)

et/τx

)
. (B20)

Finally, the time course of the intrinsic membrane cur-
rents in figure 1 can be calculated using the parameters
from the linearization of the conductance-based model as

IW (t)=−gW

(
W∞(E0)+w(t)

dW∞

dv

∣∣∣
E0

)
(E0−EW )

IP (t)=−gP

(
P∞(E0)+(v(t)−E0)

dP∞
dv

∣∣∣
E0

)
(E0−EP ) .

(B21)
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APPENDIX C: CROSS-CORRELATIONS
BETWEEN SYNAPTIC EXCITATION AND

INHIBITION

Correlations between the two synaptic inputs can be
modeled by defining the synaptic input as

τx
dx

dt
= −x+ σx

√
2τx

[√
1− ρ2ξx(t)− ρξy(t)

]
(C1)

τy
dy

dt
= −y + σy

√
2τyξy(t) (C2)

where ρ is the cross-correlation coefficient between the
excitatory and inhibitory inputs (not the synaptic con-
ductances themselves). In this case, the action functional
takes the form

S(x, y) =
1

4(1 + ρ)
×

0∫
−∞

 (Lxx)2

σ2
xτx

+
(Lyy)2

σ2
yτy

+ 2ρ
(Lxx)(Lyy)√
σ2

xτx
√
σ2

yτy

 dt . (C3)

The associated Euler-Lagrange equations read

L†xLxx+ ρL†xLyy = Λ
∑

k

pke
−λkt (C4)

L†yLyy + ρL†yLxx = Λ
∑

k

pke
−λkt (C5)

and are solved by

x(t) =
n+2∑
k=1

cke
−λkt (C6)

y(t) =
n+2∑
k=1

dke
−λkt (C7)

with λn+1 = −1/τx and λn+2 = −1/τy. This leads to
the coupled system of algebraic equations

(
X Z
ZT Y

)(
~c
~d

)
= Λ

(
~µ
~η

)
, (C8)

where the matrices X,Y, Z are defined by

Xkl = − (1− τxλk)(1− τxλl)
(σ2

xτx)(λk + λl)
(C9)

Ykl = − (1− τyλk)(1− τyλl)
(σ2

yτy)(λk + λl)
(C10)

Zkl = −ρ (1− τxλk)(1− τyλk)√
σ2

xτx
√
σ2

yτy(λk + λk)
(C11)

µk = ηk = −
n∑

i=1

pi

λi + λk
. (C12)

Using the definition

(
~µ∗

~η∗

)
=
(
X Z
ZT Y

)−1(
~µ
~η

)
(C13)

we obtain the Lagrange multiplier as

Λ =
τvvθ

~µ~µ∗ + ~η~η∗
. (C14)

Finally the coefficients ck and dk are given by ~c = Λ~µ∗

and ~d = Λ~η∗.
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