
Commentary: Computational models of intrinsic
motivation for curiosity and creativity∗

Sophia Becker1,2, Alireza Modirshanechi1,2, and Wulfram Gerstner1,2

1School of Computer and Communication Sciences, EPFL
2School of Life Sciences, EPFL

Abstract

We link Ivancovsky et al.’s novelty-seeking model (NSM) to computational models of
intrinsically motivated behavior and learning. We argue that dissociating different forms of
curiosity, creativity, and memory based on the involvement of distinct intrinsic motivations
(e.g., surprise and novelty) is essential to empirically test the conceptual claims of the NSM.

Human and animal behavior is driven not only by extrinsically available rewards like food and
money but also by various intrinsic motivations, such as the desire to experience novelty or sur-
prise.1,2 Curiosity and creativity are two modes of cognitive processing where such intrinsic mo-
tivations have a significant influence. Ivancovsky et al.’s novelty-seeking model (NSM) creates a
valuable conceptual link between these intuitively related modes, and divides the shared cognitive
processes underlying curiosity and creativity into four phases.? However, the model’s high-level
conceptual nature makes it challenging to give quantitative explanations and derive experimen-
tally testable hypotheses. To address this problem, we relate each of the four phases of the NSM
to computational models of intrinsically motivated behavior and learning. We discuss (i) in which
ways computational models support or contradict the NSM’s core claims, and illustrate (ii) how
computational models make the conceptual explanations and predictions of the NSM empirically
testable.

First, the NSM posits that curiosity and creativity share brain networks and mechanisms to detect
‘novelty’, either in the external space of sensory stimuli (curiosity) or in the internal space of
associations (creativity). Second, these shared mechanisms initiate downstream processing of the
‘novel’ stimulus or association.3 However, while Ivancovsky et al. use ‘novelty’ as a general notion,
distinct intrinsic motivations contributing to curiosity (e.g., novelty, surprise, information-gain) are
mathematically well-defined,4,5 have different neural signatures,6–9 and are triggered by different
statistical regularities of the task or environment10 (see11 for a review). For example, novelty
signals are triggered by unfamiliar stimuli and situations, both when the unfamiliarity is expected
and when it is unexpected.12 Surprise signals, on the other hand, arise in the face of unexpected
stimuli, both familiar and unfamiliar ones.9 In line with that, different neuromodulatory signals are
thought to communicate expected vs. unexpected novelty or uncertainty;13,14 and computational
models suggest different network mechanisms for the detection of novelty and surprise.15,16 Despite
the partial overlap in the processing of novelty and surprise,9 we can thus not simply speak of
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‘novelty’ detection as a homogeneous process as assumed in the NSM. When empirically testing
shared neural mechanisms of curiosity- and creativity-related signal detection and downstream
processing, we should therefore consider how the neural correlates of curiosity and creativity may
vary across environments and experimental tasks.

Third, the NSM proposes that both curiosity and creativity require a balance of exploratory and
exploitatory states of mind (SoM), and that this balance is mediated by cognitive control processes.
This NSM prediction agrees with reinforcement learning-based (RL) models that arbitrate between
intrinsic motivations (curiosity/exploratory SoM) and extrinsic motivations (reward/exploitatory
SoM).5,17 Importantly, these RL models quantify the respective contributions of exploration and
exploitation to behavior, and allow to test which mechanisms regulate the trade-off between the
exploratory and exploitatory states. For example, a recent model that arbitrates exploration and
exploitation based on the agent’s reward optimism18 provides a concrete computational implemen-
tation of Ivancovsky et al.’s conceptual links between curiosity, creativity and the SoM dimension
of openness to experience. We propose that this modeling approach is a useful tool to experimen-
tally validate links between curiosity/creativity and different SoM dimensions as suggested by the
NSM.

Lastly, a central component of the NSM is the bidirectional link between memory and curios-
ity/creativity.3 However, there are different forms of memory and distinct synaptic learning rules
that are influenced by intrinsic motivational signals (three-factor learning rules19,20). While we
agree with the bidirectional link between curiosity/creativity and memory systems, we propose
that the respective memory system with which curiosity and creativity engage could differ (e.g.,
recognition vs. episodic memory). More importantly, distinct forms of curiosity and creativity
may link to different learning rules and roles of memory. For example, novelty is particularly im-
portant for initial memory formation,21,22 while surprise signals the violation of known rules and
expectations?,?, 23 and might therefore be more important for targeted memory updates. Another
relevant distinction that the NSM is currently abstracting is between (i) memory systems that
support the detection of intrinsic motivational signals and (ii) memory systems that are down-
stream targets of curiosity/creativity-related signals. These memory systems may – but do not
have to – be identical. For example, novelty detection relies on state representations in sensory
areas and recognition memory,12,24 but downstream novelty signals are also involved in updating
semantic or episodic memories.21,22,25 To empirically determine how memory is shared by curiosity
and creativity, it is necessary to experimentally test how different memory systems are involved
at each stage and in each type of curiosity/creativity-related processing.

To conclude, we illustrated how the high-level cognitive NSM framework relates to concrete com-
putational models of intrinsically motivated behavior and learning. While computational models
and the NSM align on the general structure of curiosity and creativity-related processing, com-
putational models suggest important distinctions within each phase of the NSM. In particular,
different forms of curiosity and creativity arising from the contribution of distinct intrinsic moti-
vational signals, like novelty and surprise, could differ in the specifics of how they are detected,
signaled to downstream targets and interacting with memory systems. Linking the NSM to com-
putational models is thus a necessary step to empirically test the NSM’s conceptual predictions
and gain insights into the neural correlates and network mechanisms underlying curiosity and
creativity.
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