
An online Hebbian learning rule that performs
Independent Component Analysis

Claudia Clopath
School of Computer Science and Brain Mind Institute

Ecole polytechnique federale de Lausanne
1015 Lausanne EPFL

claudia.clopath@epfl.ch

Andre Longtin
Center for Neural Dynamics

University of Ottawa
150 Louis Pasteur, Ottawa
alongtin@uottawa.ca

Wulfram Gerstner
School of Computer Science and Brain Mind Institute

Ecole polytechnique federale de Lausanne
1015 Lausanne EPFL

wulfram.gerstner@epfl.ch

Abstract

Independent component analysis (ICA) is a powerful method to decouple signals.
Most of the algorithms performing ICA do not consider the temporal correlations
of the signal, but only higher moments of its amplitude distribution. Moreover,
they require some preprocessing of the data (whitening) so as to remove second
order correlations. In this paper, we are interested in understanding the neural
mechanism responsible for solving ICA. We present an online learning rule that
exploits delayed correlations in the input. This rule performs ICA by detecting
joint variations in the firing rates of pre- and postsynaptic neurons, similar to a
local rate-based Hebbian learning rule.

1 Introduction

The so-called cocktail party problem refers to a situation where several sound sources are simul-
taneously active, e.g. persons talking at the same time. The goal is to recover the initial sound
sources from the measurement of the mixed signals. A standard method of solving the cocktail
party problem is independent component analysis (ICA), which can be performed by a class of pow-
erful algorithms. However, classical algorithms based on higher moments of the signal distribution
[1] do not consider temporal correlations, i.e. data points corresponding to different time slices could
be shuffled without a change in the results. But time order is important since most natural signal
sources have intrinsic temporal correlations that could potentially be exploited. Therefore, some
algorithms have been developed to take into account those temporal correlations, e.g. algorithms
based on delayed correlations [2, 3, 4, 5] potentially combined with higher-order statistics [6], based
on innovation processes [7], or complexity pursuit [8]. However, those methods are rather algorith-
mic and most of them are difficult to interpret biologically, e.g. they are not online or not local or
require a preprocessing of the data.

Biological learning algorithms are usually implemented as an online Hebbian learning rule that trig-
gers changes of synaptic efficacy based on the correlations between pre- and postsynaptic neurons.
A Hebbian learning rule, like Oja’s learning rule [9], combined with a linear neuron model, has been
shown to perform principal component analysis (PCA). Simply using a nonlinear neuron combined
with Oja’s learning rule allows one to compute higher moments of the distributions which yields
ICA if the signals have been preprocessed (whitening) at an earlier stage [1]. In this paper, we are
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Figure 1: The sources s are mixed with a matrix
C, x = Cs, x are the presynaptic signals. Us-
ing a linear neuron y = Wx, we want to find the
matrix W which allows the postsynaptic signals
y to recover the sources, y = P s, where P is
a permutation matrix with different multiplicative
constants.

interested in exploiting the correlation of the signals at different time delays, i.e. a generalization of
the theory of Molgedey and Schuster [4]. We will show that a linear neuron model combined with a
Hebbian learning rule based on the joint firing rates of the pre- and postsynaptic neurons of different
time delays performs ICA by exploiting the temporal correlations of the presynaptic inputs.

2 Mathematical derivation of the learning rule

2.1 The problem

We assume statistically independent autocorrelated source signals si with mean < si >= 0 (<>
means averaging over time) and correlations < si(t)sj(t′) >= Ki(|t − t′|)δij . The sources s are
mixed by a matrix C

x = Cs, (1)

where x are the mixed signals recorded by a finite number of receptors (bold notation refers to a
vector). We think of the receptors as presynaptic neurons that are connected via a weight matrix W
to postsynaptic neurons. We consider linear neurons [9], so that the postsynaptic signals y can be
written

y = Wx. (2)

The aim is to find a learning rule that adjusts the appropriate weight matrix W to W ∗ (* denotes the
value at the solution) so that the postsynaptic signals y recover the independent sources s (Fig 1),
i.e. y = P s where P is a permutation matrix with different multiplicative constants (the sources are
recovered in a different order up to a multiplicative constant), which means that, neglecting P ,

W ∗ = C−1. (3)

To solve this problem we extend the theory of Molgedey and Schuster [4] in order to derive an online
biological hebbian rule.

2.2 Theory of Molgedey and Schuster and generalization

The paper of Molgedey and Schuster [4] focuses on the instantaneous correlation matrix but also the
time delayed correlations Mij =< xi(t)xj(t + τ) > of the incoming signals. Since the correlation
matrix Mij is symmetric, it has up to n(n + 1)/2 independent elements. However, the unknown
mixing matrix C has potentially n2 elements (for n sources and n detectors). Therefore, we need to
evaluate two delayed correlation matrices M and M̄ with two different time delays defined as

Mij =< xi(t)xj(t + τ2) > M̄ij =< xi(t)xj(t + τ1) > (4)

to get enough information about the mixing process [10].

From equation 1, we obtain the relation Mij =
∑

l CilCjlΛll and similarly M̄ij =
∑

l CilCjlΛ̄ll

where Λij = δijKi(τ2) and Λ̄ij = δijKi(τ1) are diagonal matrices. Since M = CΛCT and
M̄ = CΛ̄CT , we have

(MM̄−1)C = C(ΛΛ̄−1). (5)
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It follows that C can be found from an eigenvalue problem. Since C is the mixing matrix, a simple
algorithmic inversion allows Molgedey and Schuster to recover the original sources [4].

2.3 Our learning rule

In order to understand the putative neural mechanism performing ICA derived from the formalism
developed above, we need to find an online learning rule describing changes of the synapses as
a function of pre- and postsynaptic activity. Taking the inverse of (5), we have C−1M̄M−1 =
Λ̄Λ−1C−1. Therefore, for weights that solve the ICA problem we expect because of (3) that

W ∗M̄ = Λ̄Λ−1W ∗M, (6)

which defines the weight matrix W ∗ at the solution.

For the sake of simplicity, consider only one linear postsynaptic neuron. The generalization to many
postsynaptic neurons is straightforward (see section 4). The output signal y of the neuron can be
written as y = w∗Tx, where w∗T is a row of the matrix W ∗. Then equation 6 can be written as

w∗T M̄ = λw∗TM, (7)

where λ is one element of the diagonal matrix Λ̄Λ−1.

In order to solve this equation, we can use the following iterative update rule with update parameter
γ.

ẇ = γ[wTM̄ − λwTM ]. (8)

The fixed point of this update rule is giving by (7), i.e. w = w∗. Furthermore, multiplication of (7)
with w yields λ = wTM̄w

wTMw
.

If we insert the definition of M from (2), we obtain the following rule

ẇ = γ[< y(t)x(t + τ1) > −λ < y(t)x(t + τ2) >], (9)

with a parameter λ given by

λ =
< y(t)y(t + τ1) >

< y(t)y(t + τ2) >
.

It is possible to show that ẇ is orthogonal to w. This implies that to first order (in |ẇ/w|), w will
keep the same norm during iterations of (9).

The rule 9 we derived is a batch-rule, i.e. it averages over all sample signals. We convert this rule
into an online learning rule by taking a small learning rate γ and using an online estimate of λ.

ẇ = γ[y(t)x(t + τ1)− λ1

λ2
y(t)x(t + τ2)] (10)

τλλ̇1 = −λ1 + y(t)y(t + τ1)

τλλ̇2 = −λ2 + y(t)y(t + τ2).

Note that the rule defined in (10) uses information on the correlated activity xy of pre- and postsy-
naptic neurons as well as an estimate of the autocorrelation < yy > of the postsynaptic neuron. τλ

is taken sufficiently long so as to average over a representative sample of the signals and |γ| ¿ 1 is
a small learning rate. Stability properties of updates under rule (10) are discussed in section 4.

3 Performances of the learning rule

A simple example of a cocktail party problem is shown in Fig 2 where two signals, a sinus and a
ramp (saw-tooth signal), have been mixed. The learning rule converges to a correct set of synaptic
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Figure 2: A. Two periodic source signals, a sinus (thick solid line) and a ramp (thin solid line), are
mixed into the presynaptic signals (dotted lines). B. The autocorrelation functions of the two source
signals are shown (the sinus in thick solid line and the ramp in thin solid line). The sources are
normalized so that Λ(0) = 1 for both. C. The learning rule with τ1 = 3 and τ2 = 0 extracts the
sinusoidal output signal (dashed) composed to the two input signals. In agreement with the calcula-
tion of stability, γ > 0 , the output is recovering the sinus source because Λsin(3) > Λramp(3). D.
The learning rule with τ1 = 10, τ2 = 0, converges to the other signal (dashed line), i.e. the ramp,
because Λramp(10) > Λsin(10). Note that the signals have been rescalled since the learning rule
recovers the signals up to a multiplicative factor.

weights so that the postsynaptic signal recovers correctly one of the sources. Postsynaptic neurons
with different combinations of τ1 and τ2 are able to recover different signals (see the section 4 on
Stability). In the simulations, we find that the convergence is fast and the performance is very accu-
rate and stable. Here we show only a two-sources problem for the sake of visual clarity. However,
the rule can easily recover several mixed sources that have different temporal characteristics.

Fig 3 shows an ICA problem with sources s(t) generated by an Ornstein-Uhlenbeck process of the
form τsi

ṡi = −si + ξ, where ξ is some gaussian noise. The different sources are characterized
by different time constants. The learning rule is able to decouple these colored noise signals with
gaussian amplitude distribution since they have different temporal correlations.

Finally, Fig 4 shows an application with nine different sounds. We used 60 postsynaptic neurons
with time delays τ1 chosen uniformly in an interval [1,30ms] and τ2 = 0 . Globally 52 of the 60
neurons recovered exactly 1 source (A, B) and the remaining 8 recovered mixtures of 2 sources (E).
One postsynaptic neuron is recovering one of the sources depending on the source’s autocorrelation
at time τ1 and τ2 (.i.e. the source with the biggest autocorrelation at time τ1 since τ2 = 0 for all
neurons, see section Stability). A histogram (C) shows how many postsynaptic neurons recover
each source. However, as it will become clear from the stability analysis below, a few specific
postsynaptic neurons tuned to time delays, where the autocorrelation functions intersect (D, at time
τ1 = 3ms and τ2 = 0), cannot recover one of the sources precisely (E).
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Figure 3: A. The 3 source signals (solid lines generated with the equation τsi ṡi = −si + ξ with
different time constants, where ξ is some gaussian noise) are plotted together with the output signal
(dashed). The learning rule is converging to one of the sources. B. Same as before, but only the one
signal (solid) that was recovered is shown together with the neuronal output (dashed).
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Figure 4: Nine different sound sources from [11] were mixed with a random matrix. 60 postsynaptic
neurons tuned to different τ1 and τ2 were used in order to recover the sources, i.e. τ1 varies from 1ms
to 30ms by steps of 0.5ms and τ2 = 0 for all neurons. A. One source signal (below) is recovered
by one of the postsynaptic neurons (above, for clarity reason, the output is shifted upward). B.
Zoom on one source (solid line) and one output (dashed line). C. Histogram of the number of
postsynaptic neurons recovering each sources. D. Autocorrelation of the different sources. There
are several sources with the biggest autocorrelation at time 3ms. E. The postsynaptic neuron tuned
to a τ1 = 3ms and τ2 = 0 (above) is not able to recover properly one of the sources even though it
still performs well except for the low amplitude parts of the signal (below).
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4 Stability of the learning rule

In principle our online learning rule (10) could lead to several solutions corresponding to different
fixed points of the dynamics. Fixed points will be denoted by w∗ = ek, which are by construction
the row vectors of the decoupling matrix W ∗ (see (5) and (7)). The rule 10 has two parameters, i.e.
the delays τ1 and τ2 (the τλ is considered fixed). We assume that in our architecture, these delays
characterize different properties of the postsynaptic neuron. Neurons with different choices of τ1

and τ2 will potentially recover different signals from the same mixture. The stability analysis will
show which fixed point is stable depending on the autocorrelation functions of the signals and the
delays τ1 and τ2.

We analyze the stability, assuming small perturbation of the weights, i.e. w = ei + εej where {ek},
the basis of the matrix C−1, are the fixed points. We obtain the expression (see Appendix for
calculation details)

ε̇ = γε
Λjj(τ1)Λii(τ2)− Λii(τ1)Λjj(τ2)

Λii(τ2)
, (11)

where Λ(τ)ij =< si(t)sj(t + τ) > is the diagonal correlation matrix.

To illustrate the stability equation (11), let us take τ1 = 0 and assume that Λii(0) = Λjj(0), i.e. all
signals have the same zero-time-lag autocorrelation. In this case (11) reduces to ε̇ = γε[Λjj(τ1) −
Λii(τ1)]. That is the solution ei is stable if Λjj(τ1) < Λii(τ1) for all directions ej (with biggest
autocorrelation at time τ1) for γ > 0. If γ < 0, the solution ei is stable for Λjj(τ1) > Λii(τ1).

This stability relation is verified in the simulations. Fig 2 shows two signals with different autocor-
relation functions. In this example, we chose τ1 = 0 and Λ(0) = I, i.e. the signals are normalized.
The learning rule is recovering the signal with the biggest autocorrelation at time τ1, Λkk(τ1), for a
positive learning rate.

5 Comparison between Spatial ICA and Temporal ICA

One of the algorithms most used to solve ICA is FastICA [1]. It is based on an approximation
of negentropy and is purely spatial, i.e. it takes into account only the amplitude distribution of the
signal, but not it’s temporal structure. Therefore we show an example (Fig. 5), where three signals
generated by Ornstein-Uhlenbeck processes have the same spatial distribution but different time
constants of the autocorrelation. With a spatial algorithm data points corresponding to different time
slices can be shuffled without any change in the results. Therefore, it cannot solve this example. We
tested our example with FastICA downloaded from [11] and it failed to recover the original sources
(Fig. 5). However, to our surprise, FastICA could for very few trial solve this problem even though
the convergence was not stable. Indeed, since FastICA algorithm is an iterative online algorithm, it
takes the signals in the temporal order in which they arrive. Therefore temporal correlations can in
some cases be taken into account even though this is not part of the theory of FastICA.

6 Discussions and conclusions

We presented a powerful online learning rule that performs ICA by computing joint variations in
the firing rates of pre- and postsynaptic neurons at different time delays. This is very similar to a
standard Hebbian rule with exception of an additional factor λ which is an online estimate of the
output correlations at different time delays. The different delay times τ1, τ2 are necessary to recover
different sources. Therefore properties varying between one postsynaptic neuron and the next could
lead to different time delays used in the learning rule. We could assume that the time delays are
intrinsic properties of each postsynaptic neuron due to for example the distance on the dendrites
where the synapse is formed [12], i.e. due to different signal propagation time. The calculation of
stability shows that a postsynaptic neuron will recover the signal with the biggest autocorrelation at
the considered delay time or the smallest depending of the sign of the learning rates. We assume that
for biological signals autocorrelation functions cross so that it’s possible with different postsynaptic
neurons to recover all the signals.

6



A B

signals

di
st

rib
ut

io
n

time delay

a
u

to
c

o
rr

e
la

ti
o

n

C D

time

si
g

n
a

ls

time

si
gn

al
s

Figure 5: Two signals generated by an Ornstein-Uhlenbeck process are mixed. A. The signals have
the same spatial distributions. B. The time constants of the autocorrelations are different. C. Our
learning rule converges to an output (dashed line) recovering one of the signals source (solid line).
D. FastICA (dashed line) doesn’t succeed to recover the sources (solid line).

The algorithm assumes centered signals. However for a complete mapping of those signals
to neural rates, we have to consider positive signals. Nevertheless we can easily compute an
online estimate of the mean firing rate and remove this mean from the original rates. This way the
algorithm still holds taking neural rates as input.

Hyvaerinen proposed an ICA algorithm [8] based on complexity pursuit. It uses the non-
gaussianity of the residuals once the part of the signals that is predictable from the temporal
correlations has been removed. The update step of this algorithm has some similarities with our
learning rule even though the approach is completely different since we want to exploit temporal
correlations directly rather than formally removing them by a ”predictor”. We also do not assume
pre-whitened data and are not considering nongaussianity.

Our learning rule considers smooth signals that are assumed to be rates. However, it is com-
monly accepted that synaptic plasticity takes into account spike trains of pre- and postsynaptic
neurons looking at the precise timing of the spikes, i.e. Spike Timing Dependent Plasticity (STDP)
[13, 14, 15]. Therefore a spike-based description of our algorithm is currently under study.

Appendix: Stability calculation

By construction, the row vectors {ek, k = 1,..,n} of W ∗ = C−1, the inverse of the mixing matrix,
are solutions of the batch learning rule 9 (n is the number of sources). Assume one of these row
vectors eT

i , (i.e. a fixed point of the dynamic), and consider w = ei + εej a small perturbation in
direction eT

j . Note that {ek} is a basis because det(C) 6= 0 (the matrix must be invertible). The rule
(9) becomes:
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ε̇ei =γ[< x(t + τ1)(ei + εej)T x(t) > (12)

− < (ei + εej)T x(t)(ei + εej)T x(t + τ1) >

< (ei + εej)T x(t)(ei + εej)T x(t + τ2 >)
< x(t + τ2 >)(ei + εej)T x(t) >].

We can expand the terms on the righthand side to first order in ε. Multiplying the stability expres-
sion by eT

j (here we can assume that eT
j ej = 1 since the recovering of the sources are up to a

multiplicative constant), we find:

ε̇ =γε
[eT

j CΛ(τ1)CT ej ][eT
i CΛ(τ2)CT ei]− [eT

i CΛ(τ1)CT ei][eT
j CΛ(τ2)CT ej ]

eT
i CΛ(τ2)CT ei

(13)

− ε
4[eT

i CΛ(τ1)CT ej ][eT
j CΛ(τ2)CT ei]

eT
i CΛ(τ2)CT ei

.

where Λ(τ)ij =< si(t)sj(t + τ) > is the diagonal matrix.

This expression can be simplified because eT
i is a row of W ∗ = C−1, so that eT

i C is the unit vector
of the form (0,0,...,1,0,...) where the position of the ”1” indicates the solution number 0. Therefore,
we have eT

i CΛ(τ)CT ek = Λ(τ)ik.

The expression of stability becomes

ε̇ = γε
Λjj(τ1)Λii(τ2)− Λii(τ1)Λjj(τ2)

Λii(τ2)
(14)
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