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Finite-sized populations of spiking elements are fundamental to brain function but also are used in many
areas of physics. Here we present a theory of the dynamics of finite-sized populations of spiking units, based on
a quasirenewal description of neurons with adaptation. We derive an integral equation with colored noise that
governs the stochastic dynamics of the population activity in response to time-dependent stimulation and calculate
the spectral density in the asynchronous state. We show that systems of coupled populations with adaptation can
generate a frequency band in which sensory information is preferentially encoded. The theory is applicable to
fully as well as randomly connected networks and to leaky integrate-and-fire as well as to generalized spiking
neurons with adaptation on multiple time scales.
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I. INTRODUCTION

Multiscale modeling of complex systems has led to impor-
tant advances in fields as diverse as complex fluid dynamics,
chemical biology, soft-matter physics, meteorology, computer
science, and neuroscience [1–6]. In these approaches, math-
ematical methods such as mean-field theories and coarse-
graining provide the basis to link properties of microscopic
elements to macroscopic variables. In many cases, macro-
scopic variables fluctuate due to a finite number of microscopic
elements. For instance, in the brain, neurons can be grouped
into populations of 50 to 1000 neurons [7] with similar prop-
erties [8,9]. Fluctuations of the global activity of such popula-
tions are not captured in classical mean-field theories [10,11],
which assume infinite system size. Here we put forward a
theory for the fluctuating macroscopic activity in networks of
pulse-coupled elements occurring in neuronal networks [12],
queuing theory [13], and synchronizing fireflies [14].

Finite-size effects in networks of spiking elements have
been approached by different methods, including extensions
of the Fokker-Planck equation for neuronal membrane poten-
tials [10,15], stochastic field theory [16], moment expansions
in networks of generalized linear models (GLM) [17], mod-
ified Hawkes processes [18–20], simplified Markov neuron
models [21–27] and the use of a linear response formal-
ism for spike trains perturbed by finite-size fluctuations
[28–30]. These studies lack, however, slow cellular feedback
mechanisms mediating adaptation.

Adaptation characterized by a reduced response of a neuron
to slow compared to fast inputs is a widespread phenomenon
in the brain and has important implications for signal
processing [31–34] and the spontaneous activity of single
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neurons [35–37]. On the population level, adaptation has been
recently analyzed using a quasirenewal (QR) theory [38]. The
QR framework uses tools of renewal point process theory [39]
to treat neurons with arbitrary refractoriness. In particular,
the dynamics of the population activity is determined by an
integral equation [11,40,41]. These studies, however, have
assumed an infinitely large population.

Here we present a theory for the interaction of finite-sized
populations of adapting neurons. The theory is valid for the
broad class of neuron models that can be approximated by
a QR point process. This includes integrate-and-fire (IF) as
well as GLM neurons, for which parameters can be reliably
extracted from experimental data [9,12,42].

Based on this theory we analyze information filtering
(noise shaping) in neuronal populations. We show that in a
single population no noise shaping occurs, but that in coupled
populations, band-pass-like noise shaping is possible due to
adaptation and connectivity.

This article is structured as follows: First, we present the
general dynamics of the population activity and its fluctuations.
We then describe how randomly connected, adapting neurons
can be treated in this framework. For fluctuations about a
stationary state, we linearize the dynamics and compute the
spectral density of the population activity. We then determine
its coherence with external input signals and quantify infor-
mation transmission.

II. RESULTS

A. Dynamics of globally coupled renewal models

Our main quantity of interest is the population activity
A(t) = N−1 ∑N

i=1 si(t), where si(t) = ∑
k δ(t − t ki ) is the

spike train of neuron i with spike times tki and N denotes the
number of neurons. In experiments or simulations, the mea-
sured activity Ā(t) would be determined by temporal filtering
of the population activity, i.e., Ā(t) = ∫ ∞

−∞ A(t − s)f (s)ds

with a normalized filter function f (s) with finite support.
Below we will use a rectangular filter f (s) = θ (s)θ (�t −
s)/�t , where θ (s) is the Heaviside step function.

1539-3755/2014/90(6)/062704(10) 062704-1 Published by the American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.062704
http://creativecommons.org/licenses/by/3.0/


DEGER, SCHWALGER, NAUD, AND GERSTNER PHYSICAL REVIEW E 90, 062704 (2014)

To determine the fluctuation statistics of A(t), we generalize
the integral equation of an infinite population [11] to large
but finite N . Let us first consider a homogeneous population
of all-to-all connected renewal neurons. In this case, the
spikes of each neuron occur with an instantaneous rate or
hazard function ρH(t,t̂), which only depends on its last
spike time t̂ � t and the synaptic input determined by the
history H(t) = {A(t ′)}t ′<t of the population activity. Note
that for uncoupled stationary networks, the hazard reduces
to ρH(t,t̂) = ρ(t − t̂), as it should be for a renewal model. The
probability density of the next spike time t given t̂ is given by
PH(t,t̂) = ρH(t,t̂)SH(t,t̂), with the survivor function defined
as SH(t,t̂) = exp(− ∫ t

t̂
ρH(t ′,t̂)dt ′).

Our approach is to use the Gaussian approximation for
large N , i.e., we calculate the first- and second-order statistics
of A(t) as a functional of its past activity (see Appendix B).
However, the dynamics of A depends on its own history
H(t) and on the occupation density of refractory states t − t̂

across the population [43]. Thus, we have to average over
the possible refractory states consistent with a given history
H. To perform the Gaussian approximation, the dynamics of
the full system is coarse-grained by discretizing time with
a small time step �t which is still large enough to include
many spikes of the population. For large N , the number of
neurons that fire in the time bin at t and had their last spike
in bin t̂ is a Gaussian random number with mean and variance
n0(t̂)PH(t,t̂)�t , where n0(t̂) = N

∫ t̂+�t

t̂
A(s) ds is the past

spike count at t̂ < t . Summing over t̂ and treating �t as
macroscopically infinitesimal, we find the conditional mean
activity (see Appendix B)

a(t) =
∫ t

−∞
PH(t,t̂)A(t̂)dt̂, (1)

which is equal to the population integral [11] for the infinite
system. For finite N , A(t) will be of the form

A(t) = a(t) + δA(t), (2)

where the deviation δA(t) has zero mean and a diverging
standard deviation

√
a(t)/(N�t) because the variance of the

spike count in [t,t + �t] is given by N�t a(t). Importantly,
δA(t) cannot be described by a white noise process but future
values δA(t + τ ), τ > 0, are correlated with δA(t) because
they share a common history H(t). In fact, a neuron that
fired its last spike at t̂ < t cannot have its next spike at both
times t and t + τ , which induces a negative correlation for the
deviations at t and t + τ . We find (see Appendix B) for τ � 0
the conditional correlation function

〈δA(t + τ )δA(t)〉H(t)

= N−1a(t)δ(τ ) − N−1
∫ t

−∞
PH(t + τ,t̂)PH(t,t̂)A(t̂) dt̂, (3)

where 〈·〉H(t) denotes the average conditioned on the history
of A before t . Thus, the correlation function is in general
explicitly time dependent.

B. Adaptation and random connectivity

In the presence of adaptation, the instantaneous rate of
a neuron depends on all its previous spikes so it can no

FIG. 1. (Color) Schematic of the spike response model (a GLM
for spike generation) with exponential escape noise and the derived
quasirenewal population model.

longer be described by renewal theory. Here we describe how
adapting neurons in networks may still be approximated by
a quasirenewal process. Specifically, we consider a homoge-
neous population of neurons modeled by the spike-response
model with escape noise [11], also known as GLM [9,12,42],
with hazard function

ρi(t) = c exp[(hi(t) − ϑi(t))/δu] (4)

(Fig. 1). That is, neuron i produces a spike in a small
time interval [t,�t) with probability ρi(t)�t . This probability
depends on the input potential hi(t) = [κ ∗ (

∑N
j=1 wij sj (t) +

I )](t), which is driven by presynaptic spike trains sj (t) (with
synaptic weight wij ) and external input I (t). The membrane
filter kernel is given by κ(t) = θ (t − τs) exp ( − (t − τs)/τm),
where τs and τm are the synaptic delay and the membrane time
constant, respectively. The operation ∗ denotes the convolution
(f ∗ g)(t) = ∫ ∞

−∞ f (t − s)g(s)ds and θ (t) is the Heaviside
step function. The variable ϑi defined as ϑi(t) = (si ∗ η)(t) can
be interpreted as a dynamic firing threshold that is triggered
by the neuron’s own output spike train si(t) [9]. Here, η(t) is a
feedback kernel that consists of two parts, η = ηa + ηr: a short-
range refractory kernel ηr(t) = θ (t)[Jrθ (t − τabs) exp(−(t −
τabs)/τm) + θ (τabs − t)D] mainly affected by the last spike
and a long-range adaptation kernel ηa(t) = Jaθ (t) exp(−t/τa)
that accumulates the spike history on a longer time scale τa.
An absolute refractory period is included in ηr(t) by setting
it to D = 1012 for 0 < t < τabs. Our choice of the kernels
corresponds to a leaky IF model with dynamic threshold [44]
and a reset by a constant amount −Jr after each spike.

The parameter c in Eq. (4) sets a baseline firing rate and δu

sets the strength of intrinsic noise (“softness” of threshold).
Fits of this model to pyramidal neuron recordings yielded
δu ≈ 4 mV [45]. Our standard parameter set given below
corresponds to an amplitude of single postsynaptic potentials
of 0.25 mV (excitatory, exc.) and −1.1 mV (inhibitory, inh.).
In the following, we measure voltage in units of δu, so δu = 1
in dimensionless units. For the synaptic weights wij , we use
a homogeneous random network as specified in Appendix A
below.

The dependence of the term exp(ϑi) in Eq. (4) which
describes the feedback of the neuron’s own spiking history
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si can be approximated by the explicit contribution of the last
spike of the neuron at t̂ and the average effect of previous
spikes up to t̂ [38]:

eϑi (t) ≈ eη(t−t̂)
〈
e
∫ t̂

−∞ si (t ′)η(t−t ′)dt ′ 〉
tki <t̂

.

Here the average is taken over all previous spike times tki < t̂ .
As shown in Ref. [38], this average can be approximated by

exp[
∫ t̂

−∞(eη(t−t ′) − 1)〈si(t ′)〉 dt ′]. Replacing further the firing
rate 〈si(t ′)〉 by the population activity A(t ′), the threshold ϑi(t)
becomes

ϑ(t,t̂) = η(t − t̂) + (γt−t̂ ∗ A)(t), (5)

for all neurons with last spike at t̂ . The kernel γτ (s) =
θ (s − τ )(eη(s) − 1) represents the effect of adaptation in the
QR approximation. Furthermore, for homogeneous random
networks and large N , the local field hi caused by synaptic
input to neuron i is determined by A and an effective weight
w̄ = N−2 ∑

i,j wij [10], hence

h(t) = [κ ∗ (JsA + I )](t), (6)

where Js = Nw̄. The above steps enable us to treat neuronal
adaptation and network coupling in a quasirenewal framework
with hazard function

ρH(t,t̂) = c exp[h(t) − ϑ(t,t̂)]. (7)

Note that ρH(t,t̂) is identical for all neurons which have fired
their last spike at t̂ .

In Fig. 2 the population activity of a spiking neural network
simulation is compared to the theoretical prediction (2).
To evaluate (1) numerically, we iteratively compute SH(t +
�t,t̂) = SH(t,t̂)(1 − ρH(t,t̂)�t), with SH(t,t) = 1, and use
PH = ρHSH. The QR population integral describes the re-
sponse of the population activity and its fluctuations for
stationary, as well as for slowly or rapidly varying inputs.

FIG. 2. (Color) Quasirenewal approximation of the popula-
tion dynamics. Coarse-grained population activity Ā(t) [Ā(t) =
n0(t)/(N�t), where n0(t) is the spike count in [t,t + �t), with
�t = 2 ms, black] resulting from 500 randomly connected adapting
neurons (4) receiving a common input current [I (t), blue]. The
theoretical expectation a(t) [green, Eq. (1)] based on QR approxima-
tion (7), and expected fluctuations [red, one standard deviation (s.d.),
a(t) ± (N�t)−

1
2 a(t)

1
2 ]. At time t , a(t) depends on the actual history

Ā(t ′) (black) for t ′ < t . Standard parameters (see Appendix A), except
for I (t) as shown and c = 5s−1. Inset shows mean (green) and s.d.
(red) of deviations δA(t) = Ā(t) − a(t) as a function of

√
a, averaged

over 25 repetitions of the displayed I (t) (dots) vs theory (lines).

C. Linearized population dynamics

The amount of information transmitted and processed in
sensory areas of the brain is limited by the fluctuations of the
population activities [46–48]. Likewise, in decision networks,
finite-size-induced fluctuations determine the reliability of
decisions [49,50]. The spontaneous activity of cortical net-
works is typically asynchronous and is believed to underlie
cortical information processing [51]. In order to analytically
determine the power spectrum of the spontaneous population
activity, we linearize the dynamics around the large-N limit.
To this end, we assume that in the limit N → ∞ and for
constant external input I (t) = I0 the network dynamics has
an equilibrium point with activity A0 corresponding to an
asynchronous firing state. With this equilibrium activity we
can associate a renewal neuron model that is obtained from
the original model, Eq. (4), by replacing hi(t) and ϑi(t,t̂) by
h0 = κ ∗ (JA0 + I0) and ϑ0(t − t̂) = η(t − t̂) + (γt−t̂ ∗ A0),
respectively. In the following, we will use the subscript “0”
to refer to quantities of the associated renewal model. For
finite system size, N < ∞, the activity will deviate from
A0. Through (5) and (6) the fluctuations �A(t) = A(t) − A0

also lead to fluctuations �h(t) = h(t) − h0(t) and �ϑ(t,t̂) =
ϑ(t,t̂) − ϑ0(t − t̂), which in turn influence A(t). Our goal is to
determine the spectral properties of �A(t).

To simplify the derivations, we approximate the QR kernel
γτ by its mean with respect to the time τ since the last spike,

γ (s) =
∫ ∞

0
P0(τ )γτ (s)dτ = (eη(s) − 1)[1 − S0(s)]. (8)

Expanding (1)–(3) to first order in �A, �h, and �ϑ yields the
linearized stochastic dynamics (see Appendix C)

A(t) = A0 + (Q ∗ �A)(t) +
√

A0/Nξ (t). (9a)

Here Q(t) = P0(t) + A0
d
dt

(L ∗ [κJs − γ ])(t) determines the
linear response of the expected activity a to a perturbation
�A. For our model (4), the kernel L in this expression is
given byL(t) = θ (t)

∫ ∞
0 ρ0(s)S0(s + t)ds butL can be derived

for most common neuron models [11] or, alternatively, may
be estimated from neural recordings. The noise term ξ (t) is
stationary Gaussian noise with correlation function

〈ξ (t)ξ (t + τ )〉 = δ(τ ) −
∫ ∞

0
P0(s + τ )P0(s)ds (9b)

for all τ ; cf. (3). Equation (9) shows that the population
activity in the stationary state is a Gaussian process with
memory, where finite-size fluctuations are described by the
colored noise ξ (t).

D. Fluctuations in coupled populations

Let us now turn to K populations consisting of 
N =
(N1, . . . ,NK ) neurons. Parameters of neurons and coupling are
homogeneous within each population but may differ between
one group and the next. To incorporate network coupling, the
network input (6) becomes hk(t) = (κk ∗ (J 
A)k)(t) for k =
1, . . . ,K , where J is the coupling matrix and 
A(t) is a vector
of population activities. For each population the dynamics are
given by (9) but Q(t) is now a K × K matrix of coupling ker-
nels. Using the Fourier transform f̃ (ω) = ∫ ∞

−∞ f (t)e−iωtdt ,
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this matrix can be written as Q̃(ω) = P̃0 + iωA0L̃(K̃J − G̃),
where the matrices P0,A0,L,K,G are defined as the diagonal
matrices of the vectors 
P0, 
A0, 
L,
κ, 
γ , respectively. The power
spectrum, defined as the Fourier transform of the correlation
function CA(τ ) = 〈� 
A(t)� 
AT (t + τ )〉, can be obtained from
the transformed Eq. (9) as C̃A(ω) = (1 − Q̃)−1N−1A0(1 −
P̃0P̃†

0)(1 − Q̃†)−1. Here † denotes the adjoint matrix (conjugate
transpose). It is instructive to rewrite this expression in terms
of the power spectrum of the associated renewal model [52]
C̃0(ω) = A0(1 − P̃0)−1(1 − P̃0P̃†

0)(1 − P̃†
0)−1 as follows:

C̃A(ω) = B̃N−1C̃0B̃†, B̃ = [1 − R̃0(J − K̃−1G̃)]−1 (10)

Here R̃0 = iω(1 − P̃0)−1Ã0L̃K̃ is the diagonal matrix con-
taining the linear response functions of the associated renewal
models with respect to current perturbations 
I (t) [11]. Equa-
tion (10) shows that finite-size fluctuations are characterized
by the renewal spectrum C̃0(ω), shaped by recurrent input (via
J and K̃) and adaptation (via G̃) and reduced by the factor
N−1. There are several known limit cases: First, for vanishing
adaptation, G̃ = 0, we recover the linear response result of
Refs. [28–30] for networks of white-noise-driven IF neurons.
Our formula shows that adaptation appears as an additional
diagonal term in the effective coupling matrix J − K̃−1G̃
and hence can be interpreted as an inhibitory self-coupling.
Second, if both adaptation and recurrent connections vanish,
G̃ = 0 and J = 0, we arrive at C̃A(ω) = N−1C̃0(ω) because the
superposition of independent spike trains does not change the
shape of the power spectrum. Third, our result also includes
the frequently employed Hawkes process [18–20], which is
recovered for a constant single neuron spectrum C̃0 = A0 and

FIG. 4. (Color) Signal processing and coherence shaping in a
feed-forward chain of recurrently connected neural populations,
simulation vs theory. Left: Schematic of the network. Right: Spectral
coherences 
i1 (13) of I1 and Aexc.

i , theory (13) (lines) vs simulation
result (light colored lines). Colors indicate coherences of signals I1

and population activity Ai . The mutual information rate is closely
related to the spectral coherence, see text. Standard parameters, except
for increased coupling Js = 10. The input current I1(t) is a Gaussian
white noise with spectral density C̃I,1(ω) = 3 s−1.

vanishing adaptation, G̃ = 0. For a comparison of our result
to simulations, see Fig. 3, which will be discussed below. In
section F we make use of Eq. (10) to quantify information
filtering in neural populations (Fig. 4). A comparison to the
special cases of Eq. (10) described above is shown in Fig. 5.

In Figs. 3(a)–3(b) the spectral density is shown compared
to simulations, where the frequency equals ω/(2π ). The
spectra are well described by the novel theory, which captures
refractoriness, recurrent feedback, and the reduction of power
at low frequencies due to adaptation. The latter arises from
negative correlations between ISIs typical for adapting neu-
rons [37]. Interestingly, this purely nonrenewal effect is well

(a) single population networks (b) excitation-inhibition network

(c) (d1) (d2) (d3)

FIG. 3. (Color) Spectral density of the population activity in random networks. Simulation (light colored lines) vs theory (10) (solid lines).
(a) Single populations (K = 1); [(b)–(d)] coupled exc.-inh. network (K = 2) [in (b) green lines show the amplitude of the cross spectrum].
[(c)–(d)] The limit ω → 0 in dependence on parameters for the K = 2 case shown in (b); symbols mark simulation results for different
connection probabilities (�, � ,◦: p = 0.2, 0.5, 1) while keeping Js = Nw̄ fixed; solid lines show theory (10). Symbols mostly fall on top
of each other indicating independence of results with respect to p. In (c) colors are as in (b), in (d1)–(d3) only the exc. population is shown,
colors denote number of neurons (blue, green, red, and cyan: N = 50, 250, 500, 1000). Standard parameters [marked by arrows in (c) and (d),
cf. Appendix A] were used except as indicated.
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accounted for by our quasirenewal theory. Since adaptation
effects are most prominent at low frequency, we examined the
dependence of the power on the model parameters for ω → 0
[Figs. 3(c)–3(d)]. Our theory describes the simulations well
across the studied parameter range.

E. Influence of correlated external signals

Neuronal networks in the brain are subject to external
influences, either due to sensory input or ongoing activity
in other brain areas. How do neuronal populations respond
to small, time-dependent input currents 
I (t) = (I1, . . . ,IL)
with spectral density C̃I (ω)? To answer this question, we
proceed as before and linearize Eqs. (1)–(3) with respect to
the small fluctuations �hk(t) = (κk ∗ (J� 
A + M 
I )k)(t) of the
local field. Here we restrict our analysis to independent inputs

I , such that C̃I is diagonal with entries C̃I,i , but also included
a K × L mixing matrix M, which allows us to model shared
input. The resulting spectral density is given by the sum

C̃A(ω) = B̃[N−1C̃0 + R̃0MC̃I M†R̃†
0]B̃†. (11)

Thus, additional fluctuations due to the stimulus 
I are shaped
by both the single neuron filter R̃0M and the network and
adaptation filter B̃ (10), combining the effects of recurrent
connectivity and adaptation.

F. Information transmission

Our theory allows us to quantify the transmission of
information from external input signals 
I (t) through a system
of coupled neural populations. The coherence between the
signal j and the activity of population i


ij (ω) = |〈Ĩ ∗
j (ω)Ãi(ω)〉|2

C̃I,j (ω)(C̃A(ω))ii
(12)

can be regarded as a frequency-resolved measure of in-
formation transmission. Information theory [53–55] states
that the mutual information rate is bounded from below by
− ∫ ∞

0 log2[1 − 
ij (ω)] dω
2π

.

Since adaptation attenuates the response to slowly changing
signals, one might expect that it also attenuates low-frequency
information content. For a single population, however, this
is not the case, but instead the coherence is low pass, i.e., it
monotonically decreases for increasing frequency [29]. Here
we show that in coupled populations of adapting neurons,
coherences can be nonmonotonic allowing the neural circuit
to preferentially encode information in certain frequency
bands. Put differently, a multipopulation setup can realize an
information filter.

Using Eq. (12), we find the general form of the coherence
matrix:


ij (ω) = |(B̃R̃0M)ij |2C̃I,j∑K
k=1

[
N−1

k |B̃ik|2C̃0,k + |(B̃R̃0M)ik|2C̃I,k

] . (13)

In this expression, the numerator represents the contribution
of the signal Ij (t) to the power spectrum of population i.
This effective signal power is divided by the total power
spectrum of population i, which consists of direct (k = i) and
indirect (k �= i) sources of variability. Both sources contain
internally generated noise due to finite size Nk as well as signal
power. However, the diagonal elements (k = i) of the shaping
matrices can be much stronger than the off-diagonal elements
(k �= i) depending on the coupling matrix J. Therefore, we
expect that the direct source of variability dominates in the
denominator.

If there is only one population (K = 1), the term |B̃11(ω)|2
occurs in both numerator and denominator and cancels.
Thus, coupling and adaptation do not shape the coher-
ence in a single population. Furthermore, the signal term
|R̃0,1(ω)|2M11C̃I,1(ω) is matched in both numerator and de-
nominator, which leads to a flat coherence at frequencies where
the signal dominates the finite N noise. At high frequencies,
the neural response amplitude |R̃0|2 decays due to the leaky
membrane, but the spontaneous spectrum C̃0 has a constant
high-frequency limit equal to A0. One therefore typically
observes a low-pass-like information transfer characteristics
of single neurons or populations [29,56,57].

(a) single population networks (b) excitation-inhibition network

FIG. 5. (Color) Spectral density of the population activity in random networks [as in Fig. 3(a)–3(b)] with comparison to earlier theories
(special cases). Simulation (light colored lines) vs theory (10) (solid lines). For comparison, uncoupled renewal processes (B̃ = 1) (dotted
lines); coupled renewal processes (B̃−1 = 1 − R̃0J) (dash-dotted lines); Hawkes process (B̃−1 = 1 − R̃0J, C̃0 = A0), (dashed lines). (a) Single
populations (K = 1); (b) coupled exc.-inh. network (K = 2). Blue dash-dotted and solid lines coincide because inhibitory neurons here have
no adaptation (Ja = 0). Standard parameters were used except as indicated.
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For several populations (K > 1), however, we can dis-
tinguish two cases: If the signal is read out at a receiving
population, Mij �= 0, the signal power in the numerator
is matched by the dominating direct signal power in the
denominator, and hence the shaping of the signal power
cancels. In contrast, if read out at a different population,
Mij = 0, the signal j contributes only indirectly to the power
spectrum of population i via synaptic connections. Thus, we
expect that the shape of signal power and power spectrum (i.e.,
numerator and denominator, respectively) generally differs if
the transmission path involves multiple populations.

As an example of this mechanism, we show a feed-
forward chain of excitatory and inhibitory populations (Fig. 4,
K = 6, L = 1). In the first layer, the effective signal power
is reduced at low frequencies because of adaptation and
inhibitory feedback. However, the power spectrum of Aexc,1(t)
is dominated by the same signal power and hence exhibits a
very similar reduction of low-frequency power. Consequently,
the coherence (being the ratio of these two spectra) is rather
flat at low frequencies and shows a decay at higher frequencies
(Fig. 4, red lines). This low-pass characteristics changes
at later stages in the chain (green and blue): The signal
term is increasingly more shaped by adaptation and coupling
properties, whereas the noise spectrum changes less. As a
result, the coherence shows a maximum at a finite frequency
(Fig. 4, blue lines). This band-pass structure becomes more
pronounced from layer to layer, representing a form of
information filtering. Coherence functions with band-pass
characteristics have been observed in neurons postsynaptic
to electroreceptor afferents in electric fish [58,59].

III. CONCLUSIONS

We have shown that fluctuations in finite-sized networks of
spiking neurons are captured by a colored-noise term added
to the population integral equation of the infinite system. Our
approach yields spectral densities of the population activity
in randomly or fully connected multipopulation networks
which are in excellent agreement with simulation results. Our
quasirenewal theory includes refractory effects and adaptation
on multiple time scales. In contrast to earlier treatments of
neuronal refractory effects in population dynamics [17,19,20]
or linear response formulas for adaptive neurons [60], the QR
population integral, derived directly from the neuron model
definition, captures the time-dependent, nonlinear dynamics
and adaptation of neural population activity.

We applied our theory to information filtering by coupled
populations of spiking neurons with adaptation. We showed
that, although impossible in single populations due to a
cancellation of signal and noise terms of the coherence,
coupled populations can filter information through adaptation
mechanisms and neuronal interactions. This mechanism might
be exploited in the layered structure of cortical circuits or in
sensory systems of insects where signals traverse a sequence
of nuclei [34].

In this paper we treated populations of point neurons
with static synapses and applied linear response theory. How
to generalize our theory to incorporate effects of nonlinear
dendritic integration, spike-synchrony detection, and short-
term synaptic plasticity, which all contribute to information

filtering [61–63], is an important question that merits further
investigation. Nonetheless, due to the versatility of GLM mod-
els, our theory already provides a useful tool for interpreting
neural data at the population level. For example, our theory
suggests that, in in vitro experiments with optogenetically
evoked input currents and simultaneous measurements of
neural activity [64], system parameters may be identified based
on the relation of the spectra, Eq. (11). Moreover, large-scale
neural systems can now be analyzed as coupled populations
of model neurons with single-cell parameters extracted from
experiments and simulated using a multiscale approach.
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APPENDIX A: NETWORK SIMULATIONS

We compare our theoretical results to simulations of
networks of excitatory and inhibitory neurons defined by (4).
In the case K = 1 [Fig. 3(a)], we use 
N = N and J = Js; in
the case K = 2 [Figs. 3(b)–3(d)], 
N = (4/5N,1/5N ) and J =
((Js, − 1.1 Js),(Js, − 1.1 Js)). In the case K = 6 (Fig. 4), each
exc. (inh.) population consists of 4/5N (1/5N ) neurons and J
with entries as in Fig. 4 (left), where exc. (inh.) couplings are Js

(−1.1 Js). Generally, neurons of population i receive synapses
from a random subset of pNj neurons of population j , each
with synaptic weight wij = Jij /(pNj ) and delay τs. Unless the
connection probability p is 1, self-connections are excluded.
Networks were simulated for 2 × 104s using NEST [65] (neu-
ron model pp_psc_delta, temporal resolution 2 ms). Standard
parameters, unless indicated otherwise: N = 500, c = 10 s−1,
τm = 0.01 s, τa = 0.3 s, �t = τs = τabs = 2 ms, Jr = 3, Ja =
1, Js = 5, p = 0.2, I0 = 0, σI = 0. In the exc.-inh. network,
for the inh. neurons which typically show little adaptation [9],
we deactivated adaptation by setting Ja = 0 and c = 5 s−1.
While it is possible to theoretically approximate the stationary
interval distribution P0 by searching for a self-consistent rate
A0 as described in Ref. [38], here we use P0 from simulated
interspike intervals of each population. From the measured
P0(t) we derive A0 = 1/

∫ ∞
0 tP0(t)dt , S0(t) = ∫ ∞

t
P0(t ′)dt ′,

and ρ0(t) = P0(t)/S0(t).

APPENDIX B: DETAILED DERIVATION OF EQ. (3)

The aim is to find a dynamical equation for the population
activity

A(t) = 1

N

N∑
i=1

si(t) = lim
�t→0

n0(t)

N�t
, (B1)

where n0(t) is the total number of spikes in the interval
[t,t + �t]. More generally, we define nk(t), k ∈ Z, as the total
number of spikes in [t − k�t,t − (k − 1)�t], i.e., the activity
k time bins in the past. It is useful to consider furthermore
the total number of neurons that spiked in the time bin
[t − k�t,t − (k − 1)�t], k = 1,2, . . . but had no further spike
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(a)

(b)

FIG. 6. Illustration of negative correlations between δmk(t) and
δmk+1(t + �t). (a) Expected number of spikes from group k in bins
[t,t + �t] and [t + �t,t + 2�t]. (b) A large fluctuation of δmk(t)
leads to reduction of the number of available spikes mk+1(t + �t).
As a consequence, δmk+1(t + 1) tends to be small.

until time t . Let us denote this number by mk(t) (Fig. 6 and
Table I). The number of neurons that spike in [t,t + �t] and
had their last spike in the bin [t − k�t,t − (k − 1)�t] shall be
denoted by δmk(t). These neurons decrease the number mk(t)
of neurons from group k that had survived until time t + �t

in the next time step, i.e.,

δmk(t) = mk(t) − mk+1(t + �t), k = 1,2, . . . . (B2)

The total number of spikes at time t , n0(t), is the sum over all
possible last spike times, hence

n0(t) =
∞∑

k=1

δmk(t). (B3)

We will now express the activity n0(t) in terms of the past
activity Ht = {nk(t)}k=1,2,... , using the Gaussian approxima-
tion. This requires us to compute the mean and correlation
function of n0(t) given the past values nk(t), k = 1,2, . . . . In
the following, the averaging bracket 〈·〉 has to be understood as
the conditional average 〈·〉Ht

= 〈·〉{nk (t)}k=1,2,...
, i.e., we will omit

the conditioning subscript for simplicity. Although nk(t), the
total number of spikes in bin t − k�t , is fixed, the number
mk(t) of neurons that had their last spike in bin t − k�t

is variable. It is this variability that we will average over
(this corresponds to a statistical ensemble of populations

TABLE I. Definitions of symbols used in Appendix B.

n0(t) No. of neurons which spike in [t,t + �t]
nk(t) No. of neurons which spiked in

[t − k�t,t − (k − 1)�t]; nk(t) = n0(t − k�t)
mk(t) No. of neurons with last spike in

[t − k�t,t − (k − 1)�t]
δmk(t) No. of neurons with last spike in

[t − k�t,t − (k − 1)�t] and next spike in [t,t + �t]
ρ(t,t̂) Hazard function: rate at t given last spike at t̂

S(t,t̂) Survivor function: probability of no spike in [t̂ ,t]
P (t,t̂) Interspike-interval density: probability density

of next spike at t given last spike at t̂ ; P = ρS

that all have an identical history of population activity nk(t),
k = 1,2, . . . .).

Suppose we know the value mk(t) of the group of neurons
with their last spike in [t − k�t,t − (k − 1)�t]. Then the ex-
pected number of spikes from that group in the next interval is

〈δmk(t)〉mk(t) = ρ(t,t − k�t) �t mk(t), (B4)

where ρ(t,t̂) is the hazard function of the neurons
(instantaneous rate at time t given last spike at t̂), and 〈x〉y
denotes the expectation of x conditioned on y (in addition to
the overall condition of a fixed history Ht = {nk(t)}k=1,2,... ).
But since we do not know the exact value of mk(t) we need to
average

〈δmk(t)〉 = 〈〈δmk(t)〉mk(t)〉
= ρ(t,t − k�t)�t〈mk(t)〉, (B5)

where we have used (B4). We now use this result to calculate
the expected number of spikes in the interval [t,t + �t].
Averaging over (B3) yields

〈n0(t)〉 =
∞∑

k=1

ρ(t,t − k�t)�t〈mk(t)〉. (B6)

The average number of neurons that fired their last spike in
[t − k�t,t − (k − 1)�t] and survived up to t can be expressed
using the survival probability S(t,t̂) = exp ( − ∫ t

t̂
ρ(t ′,t̂)dt ′)

as follows:

〈mk(t)〉 = S(t,t − k�t)nk(t)

= S(t,t − k�t)n0(t − k�t). (B7)

We can now take the limit �t → 0 in (B6) and find

〈n0(t)〉
�t

→ N

∫ t

−∞
P (t,t̂)A(t̂)dt ′, �t → 0, (B8)

where P (t,t̂) = ρ(t,t̂)S(t,t̂) is the interspike-interval density.
Equation (B8) is equivalent to Eq. (1).

To obtain the correlation function we can write for q ∈ Z

〈n0(t)n0(t + q�t)〉 =
∞∑

k,l=1

〈δmk(t)δml(t + q�t)〉. (B9)

Here the spike numbers δmk(t) and δml(t + q�t) that refer
to different groups k and l − q are uncorrelated. Correlations
only arise for δmk(t) and δmk+q(t + q�t), i.e., spikes that
refer to the same group in the past. Thus,

〈n0(t)n0(t + q�t)〉 =
∞∑

k,l=1

〈δmk(t)〉〈δml(t + q�t)〉

+
∞∑

k=1

〈δmk(t)δmk+q(t + q�t)〉

−
∞∑

k=1

〈δmk(t)〉〈δmk+q(t + q�t)〉,

(B10)
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so the covariance is

〈�n0(t)�n0(t + q�t)〉

=
∞∑

k=1

〈δmk(t)δmk+q(t + q�t)〉

−
∞∑

k=1

〈δmk(t)〉〈δmk+q(t + q�t)〉, (B11)

where �n0(t) = n0(t) − 〈n0(t)〉. Therefore we need to com-
pute

〈δmk(t)δmk+q(t + q�t)〉. (B12)

To this end, let us consider the cases q = 0 and q > 0
separately.

For q = 0 and large N , the number of neurons that spike
in [t,t + �t] and had their last spike at t − k�t is a Pois-
son variable with mean and variance �t P (t, t − k�t) nk(t).
Thus (B12) becomes

〈[δmk(t)]2〉 = �t P (t, t − k�t) nk(t) + O(�t3). (B13)

For q > 0, we employ (B2) twice and obtain

〈δmk(t)δmk+q(t + q�t)〉
= 〈mk(t) mk+q(t + q�t)〉

− 〈mk+1(t + �t) mk+q(t + q�t)〉
− 〈mk(t) mk+q+1(t + (q + 1)�t)〉
+ 〈mk+1(t + �t) mk+q+1(t + (q + 1)�t)〉. (B14)

In order to evaluate each of these four correlators, we note
that the probability that a neuron from group k “survives”
until time t + q�t given that it survived until time t is S(t +
q�t,t − k�t)/S(t,t − k�t) according to Bayes’ law. Thus,
of the mk(t) neurons that survived until time t, on average

〈mk+q(t + q�t)〉mk(t) = S(t + q�t,t − k�t)

S(t,t − k�t)
mk(t) (B15)

also survive until t + q�t . Therefore, the correlator for 0 �
l < q can be written as

〈mk+l(t + l�q)mk+q(t + q�t)〉
= 〈mk+l(t + l�q)

〈
mk+q(t + q�t)〉mk+l (t+l�t)

〉
,

= S(t + q�t,t − k�t)

S(t + l�t,t − k�t)

〈
m2

k+l(t + l�t)
〉
.

Applying this result to (B14), we obtain

〈δmk(t)δmk+q(t + q�t)〉
= [S(t + (q + 1)�t,t − k�t) − S(t + q�t,t − k�t)]

×
( 〈[mk+1(t + �t)]2〉

S(t + �t,t − k�t)
− 〈[mk(t)]2〉

S(t,t − k�t)

)
. (B16)

How can we calculate the second moment of mk(t)? Recall
that mk(t) is the part of the nk(t) neurons firing in bin
t − k�t that survived until time t . Thus mk(t) can be regarded
as a binomially distributed random number with n = nk(t)
trials and survival probability p = S(t, t − k�t). This random
number has mean np and variance np(1 − p). Hence, the

second moment reads

〈[mk(t)]2〉 = 〈[mk(t) − 〈mk(t)〉]2〉 + 〈mk(t)〉2︸ ︷︷ ︸
O(�t2)

= nk(t)S(t, t − k�t)[1 − S(t, t − k�t)]

+O(�t2). (B17a)

Likewise,

〈[mk+1(t + �t)]2〉 = nk(t)S(t + �t,t − k�t)

×[1 − S(t + �t,t − k�t)] + O(�t2)

(B17b)

because nk+1(t + �t) = nk(t). Inserting (B17) into (B16) we
find

〈δmk(t)δmk+q(t + q�t)〉
= nk(t) �t2

×S(t + (q + 1)�t,t − k�t) − S(t + q�t,t − k�t)

�t

×S(t,t − k�t) − S(t + �t,t − k�t)

�t

= −P (t + q�t,t − k�t)P (t, t − k�t) nk(t) �t2. (B18)

Here we have identified the derivative d/dtS(t,t̂) = −P (t,t̂).
Note that this expression is of order O(�t3), whereas
〈δmk(t)〉〈δmk+q(t + q�t)〉 is of order O(�t4). So we can
neglect the second term on the right-hand side of Eq. (B11).

Putting it all together, we find

1

�t2
〈�n0(t)�n0(t ′ = t + q�t)〉

= 1

�t2

∞∑
k=1

〈δmk(t)δmk+q(t + q�t)〉

= 1

�t
δq,0

[ ∞∑
k=1

P (t, t − k�t)nk(t) + O(�t)

]

−
∞∑

k=1

P (t + q�t, t − k�t)P (t, t − k�t)nk(t)

−−−→
�t→0

Nδ(t − t ′)
∫ t

−∞
P (t,t ′′)A(t ′′)dt ′′

−N

∫ t

−∞
P (t,t ′′)P (t ′,t ′′)A(t ′′)dt ′′. (B19)

Thus, using (B8), we arrive at the final result,

A(t) =
∫ t

−∞
P (t,t ′)A(t ′)dt ′ + δA(t), (B20)

where δA(t) is Gaussian with conditional correlation function

〈δA(t)δA(t + τ )〉 = N−1δ(τ )
∫ ∞

−∞
P (t,t ′)A(t ′)dt ′

−N−1
∫ ∞

−∞
P (t + τ,t ′)P (t,t ′)A(t ′)dt ′

(B21)
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for τ � 0. In the latter expression we extended the limits of
integration to infinity, which is possible if we assume P (t,t ′) =
0 for t < t ′. Equation (B21) tells us that the noise correlation
function consists of two parts: a white (δ-correlated) part and
a negative correlation due to neural refractoriness. Intuitively,
since δmk(t) and δmk+1(t + �t) share the same number of
available neurons mk(t), a positive fluctuation of the number of
spikes in the bin t of the neurons of group k reduces the number
of neurons with last spike in bin k more than on average. Thus,
the number of neurons of group k that can still fire in time bin
t + �t is smaller than on average, which explains the negative
correlations (Fig. 6).

APPENDIX C: DETAILED DERIVATION OF EQ. (9)

We aim to linearize the population integral a(t) =∫ t

−∞ P (t,t̂)A(t̂)dt̂ , Eq. (1), around an equilibrium point A0,
with small fluctuations �A(t) = A(t) − A0 with a mean of
zero. To this end, let us first note that the hazard function
Eq. (7) then can be written as

ρ(t,t̂) = ceh0−ϑ0(t−t̂)e�h(t)−�ϑ(t,t̂) = ρ0(t − t̂)e�g(t,t̂). (C1)

Furthermore, recall that P (t,t̂) = −d/dtS(t,t̂), where S(t,t̂) =
exp ( − ∫ t

t̂
ρ(s,t̂)ds). Expanding to first order in �A

yields S(t,t̂) = S0(t − t̂) + �S(t,t̂) and P (t,t̂) = P0(t − t̂) −
d/dt�S(t,t̂), where S0(t) = exp ( − ∫ t

0 ρ0(t ′)dt ′) and P0(t) =
−d/dtS0(t) define the zeroth-order terms. Thus, the linearized
population integral reads

a(t) = A0 + (P0 ∗ �A)(t) − A0
d

dt

∫ t

−∞
�S(t,t̂) dt̂, (C2)

where we used the normalization of P0(t) and the boundary
condition �S(t,t) = 0.

The perturbation is given by

�S(t,t̂) =
∫ ∞

−∞

δS(t,t̂)

δ�g(s,t̂)

∣∣∣∣
�g=0

�g(s,t̂)ds.

The functional derivative at �g = 0 reads

δS(t,t̂)

δ�g(s,t̂)

∣∣∣∣
�g=0

= δ exp
( − ∫ t

t̂
ρ0(t ′ − t̂)e�g(t ′,t̂)dt ′

)
δ�g(s,t̂)

∣∣∣∣
�g=0

= −θ (t − s)θ (s − t̂)S0(t,t̂)ρ0(s − t̂).

We insert this expression to compute the integral in (C2),

−
∫ t

−∞
�S(t,t̂)dt̂

=
∫ t

−∞

∫ ∞

−∞
θ (s − t̂)θ (t − s)

×S0(t − t̂)ρ0(s − t̂︸︷︷︸
x(t̂)

)�g(s,t̂)dsdt̂

=
∫ ∞

−∞
θ (t − s)

∫ ∞

0
θ (x)S0(t − s + x)

×ρ0(x)�g(s,s − x)dxds

[8]=
∫ ∞

−∞
�g(s) θ (t − s)

∫ ∞

0
θ (x)S0(t − s + x)ρ0(x)dx︸ ︷︷ ︸

L(t−s)

ds .

In the last step, we have used the approximation Eq. (8),
�g(t,t̂) = �g(t) = [(κJs − γ ) ∗ �A](t), which has no de-
pendence on the time of the last spike. Hence (C2)
becomes

a(t) = A0 + (P0 ∗ �A)(t) + A0
d

dt
(L ∗ �g)(t). (C3)

This linearized equation for the mean activity is valid for
any small �A and �g in the past, also if due to finite size
fluctuations. Equations (C1)–(C3) generalize to additional
time-dependent inputs �I (t) by extending the definition of
�g to �g(t) = [(κJs − γ ) ∗ �A + κ ∗ �I ](t).

Furthermore, the noise correlation function Eq. (B21)
becomes, to leading order,

〈ξ (t + τ )ξ (t)〉 = δ(τ ) −
∫ t

−∞
P0(t + τ − t̂)P0(t − t̂)dt̂,

(C4)

with
√

A0/Nξ (t) = δA(t). Equations (C3) and (C4) are
equivalent to Eq. (9).
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