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Abstract In standard neural network models neurons are described in terms of
mean firing rates, viz., an analog signal. Most real neurons, however,
communicate by pulses, called action potentials or simply ‘spikes’. In
this chapter the main differences between spike coding and rate cod-
ing are described. The integrate-and-fire model is studied as a simple
model of a spiking neuron. Fast transients, synchrony, and coincidence
detection are discussed as examples where spike coding is relevant. A
description by spikes rather than rates has implications for learning
rules. We show the relation of a spike-time dependent learning rule to
standard Hebbian learning. Finally, learning rule and temporal coding
are illustrated using the example of a coincidence detecting neuron in
the barn owl auditory system.
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1. SPIKES AND RATES

In most chapters of this book, neuronal activity is described as a
rate. In a simple rate model the output νi of a neuron i is a nonlinear
transform of its input ui:

νi = g(ui) (1)

i
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Figure 12.1. Standard rate model neuron. The output rate νi is a nonlinear trans-
form g of the total input ui = wij νj with synaptic weights wij . The nonlinear function
g has a sigmoidal shape.

where
ui =

∑
j

wij νj + hext (2)

is the input which arises from other neurons and/or from external stim-
ulation. The weight wij is the coupling strength between neuron j and
neuron i. νi is called the firing rate of the neuron. But what is this
’rate’?

1.1. TEMPORAL AVERAGE - SPIKE COUNT

Most neurons in the cortex and in other areas of the brain commu-
nicate by short electrical pulses which are called ’action potentials’ or
simply ’spikes’. In experiments spikes can be recorded by an electrode
which is placed close to the soma or the axon of a neuron. Most neu-
rons in the cortex emit even in the absence of external stimulation some
action potentials. This is called the ‘spontaneous activity’. During spon-
taneous activity, the temporal sequence of action potentials (the ’spike
train’) is irregular. There are only few occasional spike events. If a
neuron in the visual cortex is stimulated by an appropriate input at the
retina, then the neuron emits more spikes. A simple concept of a rate is
the spike count in some time window:

νi =
number of spikes in T

T
. (3)

(3) defines a temporal average and is the first and most common defini-
tion of a rate. The gain function g(u) tells us that a weak stimulation
leads on the average only to a few spikes in a time window T whereas
strong stimulation excites more spikes; see Fig. 12.1.

The problem with (3) is that a code based on a temporal average
is intrinsically slow. In order to perform a sensible average, we should
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have at least 5 or 10 spikes inside the averaging period. Given the
typical rates of cortical neurons, the time window T should then be in
the order of 100-500 ms. If we estimate that the information flow in
the cortex involves at least five to ten processing steps, and if at each
step the neurons have to average over 200 ms to read the code of spikes
they receive, then processing would be slow - in fact much too slow to
account for the reaction times of the system. Humans can recognize
and classify complex scenes within 400-500 ms (Thorpe et al., 1996). In
a simple reaction time experiment, where images have been classified
into two groups (e.g. those that show an animal and those that do not),
responses are given by pressing or releasing a button. Since movement of
the finger alone takes about 200-300 ms, this leaves 200-300 ms to make
the decision and classify the visual scene. Moreover, EEG signals show
that the classification is in fact performed in less than 200 ms (Thorpe
et al., 1996). Such a short classification time is inconsistent with the
idea that each neuron in a sequence of processing steps needs to average
over 200 ms to read out the code. Thus, while spike count and temporal
average are useful tools for experimental data analysis, this can not be
the code used by the neurons.

1.2. SPATIAL AVERAGE - POPULATION
ACTIVITY

There is, however, a completely different definition of a rate which
relies on averaging over a group of identical or similar neurons. To
distinguish this definition from the first definition of a rate we will refer
to it as the population activity. It may also be called a population
rate. What is the idea? The visual cortex, for example, is organized in
columns of neurons with similar properties. In each short time interval
∆t, a certain fraction of the neurons in a column will be active. Let
us suppose we measure this fraction. The population rate A is found
by dividing this fraction by ∆t. This idea is illustrated in Figure 12.2
which shows the spike trains of several neurons. We count the number
of spikes of all neurons in a time interval ∆t, divide by the number of
neurons to get the fraction of active ones, and then divide by ∆t to get
a rate. The result is the population activity

A(t) =
1

∆t

total number of spikes in [t, t+ ∆t]

population size N
(4)

If the density of connections is fairly high, then a code based on popula-
tion rates is also a rather natural concept. Let us consider a column of
neurons in the visual cortex. A neuron in another area of cortex which
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Figure 12.2. Definitions of the firing rate as a temporal average for a single neuron
(a) or as a spatial average over a population of neurons (b). In (a) the spike count
n(T ) gives the number of action potentials in an interval T . Similarly ni(t; t+ ∆t) in
(b) is the number of spikes neuron i emits in the short interval between t and t+ ∆t.
If ∆t is sufficiently short, each neuron can emit at most one spike. Hence, ni = 1 if
neuron i fires and ni = 0 otherwise. Adapted from (Gerstner, 1998b).
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Figure 12.3. Examples of temporal coding schemes. a) The phase of spikes with
respect to some periodic background signal could carry information which is not
contained in the mean firing rate. b) The synchrony of groups of neurons could
signify special events. Adapted from (Gerstner, 1998b).

receives input from a hundred neurons of the column under considera-
tion, ‘measures’ the population activity of this column.

A rate defined by a population average avoids therefore the disadvan-
tage of a temporally averaged firing rate. In fact, we will see later in the
chapter that the population rate can respond rapidly to changes in the
input. The problem then is, how to arrive at a useful mathematical de-
scription of the population activity. The rate model (1) is by definition
a static equation. It can not capture the dynamics of the population
activity. A simple generalization of (1) would be a dynamic model of
the form

τ
dAi
dt

= −Ai + g

∑
j

wijAj

 . (5)

It is, however, not clear why (5) should give a correct description of the
dynamics of the population. The gain function g introduced in (1) is
defined in a static situation and for a single neuron. Moreover the time
constant τ has no obvious physiological meaning. Thus the question is:
What would be a correct description of the population activity?
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1.3. PULSE CODING - CORRELATIONS
AND SYNCHRONY

So far the discussion has focused on rate coding. But there are also
theoretical coding schemes which take the temporal structure of the
spike sequence generated by neurons more seriously. Two examples are
shown in Fig. 12.3. The first sketch is an illustration of phase coding.
Signals in the auditory nerve are found to occur preferentially with a
certain phase with respect to a sinusoidal sound stimulus. The audi-
tory system uses this phase information to localize the external sound
source (Carr and Konishi, 1990). Similarly, the phase of spikes in the
hippocampus contains information which is not contained in the firing
rate alone (J.O’Keefe and Recce, 1993).

Fig. 12.3b gives an illustration of coding by synchrony. The fact that
several neurons fire at the same time could signify that they encode the
same aspect of an external stimulus. This idea has some experimen-
tal support coming from recordings in the visual cortex (Eckhorn et al.,
1988; Engel et al., 1991; Gray and Singer, 1989). Exact temporal correla-
tions of spikes on a millisecond time scale could also contain information
which is not contained in the firing rate alone (Abeles, 1994).

If we do not want to exclude the possibility that temporal coding
plays a role, then we must take neuronal spike trains seriously and study
models which work on the level of spikes. A simple spiking neuron model
is the integrate-and-fire model, which will be studied in the next section.

2. INTEGRATE-AND-FIRE MODEL

A neuron is surrounded by its cell membrane. Ions may pass through
the membrane at pores or specific channels which may be open or closed.
A rather simple picture of the electrical properties of a cell is the follow-
ing.

Close to the inactive rest state the neuron is characterized by some
resistance R in parallel with some capacitance C. The factor RC = τm
defines the membrane time constant of the neuron. The voltage u will be
measured with respect to the neuronal resting potential. If the neuron
is stimulated by some current I, the voltage u rises according to

τm
du

dt
= −u(t) +R I(t) . (6)

In the absence of current (I = 0), the membrane potential would ap-
proach the resting potential u = 0. On the other hand, if there is a
strong current I > 0, the voltage u may reach some threshold value
ϑ. At this point an action potential is generated. During the action
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potential numerous ion channels in the membrane open and close. A
detailed model of these biochemical processes could explain the form of
the voltage pulse. In the integrate-and-fire model, however, the action
potential is not described explicitly. We simply record the firing time
t(f), which is defined by the threshold condition

u(t(f)) = ϑ . (7)

After firing the membrane potential is immediately reset to a value ureset.
Thus at t = t(f) + δ with δ > 0 we have a limit

lim
δ→0

u(t(f) + δ) = ureset (8)

Often it is assumed that the reset potential is the resting potential. In
this case we may set ureset = 0.

The current I(t) could be some driving current that a neurophysiol-
ogist applies artificially by an intracellular electrode. In a real cortical
network the driving current is the synaptic input which arises due to the
arrival of spikes from other neurons. Let us suppose that a spike of a

presynaptic neuron j which was fired at time t
(f)
j evokes some current

wij α(t−t(f)
j ) at the synapse connecting neuron j to neuron i. The factor

wij determines the amplitude of the current pulse and will be called the

synaptic efficacy. The function α(t − t(f)
j ) describes the time course of

the synaptic current. If neuron i receives input from several presynaptic
neurons j, the total input current to neuron i is

Ii =
∑
j

∑
t
(f)
j

wij α(t− t(f)
j ) (9)

where the sums run over all neurons 1 ≤ j ≤ N and over all firing times

t
(f)
j . We put (9) in (6):

τm
dui
dt

= −ui +R
∑
j

∑
t
(f)
j

wij α(t− t(f)
j ) . (10)

Eqs. (7) - (10) define the dynamics in a network of integrate-and-fire
neurons.

The sketch in Fig. 12.4 corresponds to a simplified situation where the

input current pulse α(t−t(f)
j ) is a simple square pulse. More realistically,

we may take an exponential pulse

α(s) =
1

τs
exp(−s/τs) (11)
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Figure 12.4. Integrate-and-fire model. A spike from neuron j which arrives at
a synapse to neuron i leads to a current input into the RC circuit (dashed circle)
which represents the electrical properties of the soma of i. The RC-circuit acts as a
leaky integrator. The result of current integration is the voltage response u(t− t

(f)
j ).

If several presynaptic pulses arrive in a short interval, then the total voltage may
surpass, at some time t

(f)
i the threshold value ϑ. In this case, an output pulse is

generated. At the same time, the circuit is shunted so that the voltage is reset to
zero.

where τs is a time constant which characterizes the open time of a synap-
tic channel. In a detailed model, we could change the form of α(s) so as
to include a rise time of the synaptic current, but we will not do so here.
In reality the amplitude of the current pulse should also depend on the
momentary membrane voltage, but this dependence will be neglected in
our presentation of the model.

3. SPIKE RESPONSE MODEL

Equations (6) - (10) define the dynamics of the integrate-and-fire
model. (6) and (10) are linear differential equation and can therefore
be easily integrated. Moreover, linearity implies that each term in the
sum on the right-hand-side of (10) can be integrated separately. The
total voltage is simply the sum of all components.

For the integration of (6) several different methods can be used. A
simple approach is based on the impulse response function uimp (also
called Greens function) of the equation. Since (6) is a first-order linear
differential equation with time constant τm, the response of the mem-
brane potential u to a short current pulse at t = 0 is of the form

uimp(t) ∝ e−t/τm (12)

for t > 0. If the current pulse deposits exactly one unit of charge on
the capacitance C, the proportionality factor is found to be 1/C. The
response to an arbitrary input current I(t) is given by the convolution
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of the input with the response function

u(t) =

∫ ∞
0

ds uimp(s) I(t− s)

=

∫ ∞
0

ds
1

C
e−s/τm I(t− s) (13)

We may check by differentiation that (12) is indeed a solution to the
differential equation (6).

The impulse response function (12) can be found by Laplace transform
of (6) or directly from the solution of the associated initial value problem.
It is instructive to recall that, as an alternative, the impulse response
can also be calculated via the integration of (6) with a unit step current
as input, i.e. I(t) = 0 for t ≤ 0 and I(t) = 1 for t > 0. The result is

ustep(t) = R
[
1− e−t/τm

]
(14)

where τm = RC. The derivative of the step response (14) yields the
impulse response function (12).

Let us now return to (12) and specify the input current I(t). Without
loss of generality we set C = 1. The voltage response to a synaptic

current pulse of the form α(t− t(f)
j ) is then

ε(t− t(f)
j ) =

∫ ∞
0

ds e−s/τm α(t− t(f)
j − s) . (15)

If α is a square pulse of amplitude 1/τm, the voltage response is roughly
of the form sketched in Fig. 12.4. Specifically, we find from (14)

ε(s) =

{
1− e−s/τm for s < ∆t[
1− e−∆t/τm

]
e−(s−∆t)/τm for s > ∆t

(16)

If α is the exponential pulse (11), then

ε(s) =
1

1− (τs/τm)

[
e−s/τm − e−s/τs

]
(17)

In the case of a vanishing synaptic time constant, lim τs → 0 the voltage
response is a simple exponential pulse

ε(s) = e−s/τm . (18)

On the other hand, in the special case where τm = τs = τ , we get

ε(s) =
s

τ
e−s/τ . (19)
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a) b)

Figure 12.5. The synaptic input current pulse α(s) = (1/τs) exp(−s/τs) shown
in (a) causes the postsynaptic potential ε(s) shown in (b). The time constants are
τs = 4 ms and τm = 10 ms.

A sketch of the voltage response ε(s) defined by (17) is given in Fig. 12.5
The voltage response to a synaptic input is called the postsynaptic po-
tential (PSP). For an excitatory synapse, it is called the EPSP, for an
inhibitory synapse the IPSP.

How can we include the reset in our integration of the model? The

reset at time t
(f)
i corresponds to an outgoing current pulse which removes

all charge from the capacitor. Since the charge just before firing is
Q = C ϑ, a pulse

Ireset(t) = −Qδ(t− t(f)
i ) (20)

yields a reset to zero. We now may use (12) to integrate the reset current.
The result is a voltage contribution

η(t− t(f)
i ) = η0 e

−(t−t(f)i )/τm (21)

where η0 = −ϑ. As mentioned before (6) is a linear differential equation.
The total voltage is therefore the sum of all individual terms. Thus

ui(t) =
∑
t
(f)
i

η(t− t(f)
i ) +

∑
j

∑
t
(f)
j

wij ε(t− t(f)
j ) . (22)

Firing times are as before given by the threshold condition

If ui(t) = ϑ then t = t
(f)
i (23)

Eqs. (22) and (23) define the Spike Response Model (SRM) (Gerstner,
1991; Gerstner et al., 1996b).

Each term in (22) has a simple interpretation. The function η(s)
describes the reset of the voltage after each spike. It is the response of
the neuron to a threshold crossing. Due to the reset, it is rather unlikely
that the neuron fires two spikes immediately one after the other. The
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Figure 12.6. Each input pulse causes an excitatory postsynaptic potential (EPSP)
ε(s). All EPSPs are added. If the threshold is reached the voltage is reset. The reset
corresponds to adding a negative kernel η(s).

reset leads therefore to ’refractoriness’. We may call η the refractory
potential.

The term ε(s) describes the response of the neuron to incoming spikes.
In biological terms it is the (excitatory or inhibitory) postsynaptic po-
tential (EPSP or IPSP). Since EPSPs can be measured in experiments,
the form of ε can be chosen so as to approximate as closely as possi-
ble experimental data. A graphical interpretation of the spike response
approach (22) is given in Fig. 12.6.

For the purpose of mathematical analysis, it is often convenient to ne-
glect the sum over all preceding spikes of neuron i and to keep only the
refractory potential of the most recent spike. Let us write t̂i for the last
spike of neuron i. This simplification has been called a short-term mem-
ory approximation (Gerstner et al., 1996b) or SRM0 (Gerstner, 2000b)

ui(t) = η(t− t̂i) +
∑
j

∑
t
(f)
j

wij ε(t− t(f)
j ) . (24)

Note that this approximation affects only the first sum on the right-hand

side of (22). The sum over the presynaptic pulses t
(f)
j remains.

As before, the next spike of neuron i occurs when ui(t) = ϑ. We may
put (24) in the threshold condition and move the term η(t − t̂) in (24)
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Figure 12.7. Neurons in a state of asynchronous firing. The upper part of the figure
shows the population activity in a network of 1000 neurons. In the lower part of the
figure, the spike trains of six randomly selected neurons are marked as sequences of
dots. Since neurons do not fire at the same time, the population average (over all 1000
neurons) yields an activity which is, apart from fluctuations, approximately constant.
Taken from (Gerstner, 1998a).

to the left-hand side. The result is

ϑ− η(t− t̂i) =
∑
j

∑
t
(f)
j

wij ε(t− t(f)
j ) . (25)

The left-hand side of (25) may be interpreted as a dynamic threshold
which is increased after each spike. The next spike occurs when the total
postsynaptic potential, defined by the right-hand side of (25) reaches
this dynamic threshold. In the following sections, we will use (25) to
discuss some of the results for networks of spiking neurons. We will
focus on those aspects where the difference to a naive rate model (1) is
most obvious. A more detailed treatment is given in (Gerstner, 2000b;
Gerstner, 1998a; Gerstner, 1998b; Gerstner et al., 1998).

4. RAPID TRANSIENTS

Let us suppose that we have a large and homogeneous network. All
neurons are identical and described by (24). In order to have spike trains
which are not completely regular we also add artificially some noise.
Since the network is large, we are interested not in the spikes of each
individual neuron, but rather in the population activity A(t) defined in
(4). Fig. 12.7 shows an example of a network state. The spike trains of
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six selected neurons are plotted (bottom). If we add the spikes of all the
1000 neurons in the population, we get the population activity (top).
The population activity looks noisy and fluctuates around a constant
mean.

The value of the activity A depends, of course, on the size of the
input. In Fig. 12.7 the input was constant. We may imagine that the
presynaptic spikes which drive the neuron arrive at a constant rate. Let
us now suppose that the input rate increases abruptly at time t = 100 ms.
How does the population activity respond to this change in the input?

The answer is given by Fig. 12.8. The population activity responds
quasi instantaneously to a step in the input. In fact it can be shown
that the form of the transient reflects directly the time course of the
postsynaptic potential ε(s) (Gerstner, 2000b; Gerstner, 1998a). Let us
write A(t) = A0 + ∆A(t) where A0 is the constant mean activity for t <
100 ms. Immediately after the switch at t0 = 100 ms we have (Gerstner,
1998a)

∆A(t) = a0 ε(t− t0) (26)

with some constant a0. For the simulation in Fig. 12.8, we have used
the ε defined in (18). The initial phase of the transient is therefore an
exponentially decaying pulse.

An equation of the form (1) or (4) can not describe such an instanta-
neous transition. Thus (4) is, in general, not a useful description of the
population rate. It can, however, be shown that the approximation is
good in the case of a population of neurons that is subject to white-noise
input of large amplitude (Gerstner, 2000b). To get a correct description
in the general case, we may use an integral equation which we motivate
now.

Given the last firing time t̂i of a neuron i and given the input which
arrives from other neurons we can always calculate the neuronal potential
ui(t) from (24). Given ui(t) we may calculate its next firing time from
the threshold condition. In the noisy case, we can not predict the exact
firing time, but only the probability that it fires around some time t.
Let us write

Pu(t|t̂) (27)

for the probability density that a neuron which has fired its last spike at
t̂ and which has a potential u(t′) for t′ > t̂ fires again at time t. In a large
population, the population activity is then (Gerstner, 1998a; Gerstner,
1995; Gerstner and van Hemmen, 1994)

A(t) =

∫ t

−∞
Pu(t|t̂)A(t̂) dt̂ . (28)
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Figure 12.8. Rapid switching. At t = 100 ms the input current was changed to a
higher value. The population activity responds immediately. Solid line: simulation
of a network of 1000 neurons. Dashed line: theory. Taken from (Gerstner, 2000a).

An analysis of the population activity (28) correctly predicts the rapid
transients (Gerstner, 1998a; Gerstner, 2000b). In fact, the dashed line
in Fig. 12.8 is the theoretical prediction which coincides nicely with the
simulation result.

Fast switching in networks of spiking neurons is a well-known effect
(Knight, 1972a; Knight, 1972b; Treves, 1992; Tsodyks and Sejnowski,
1995). It has important implications for potential coding schemes. First
it shows that signal transmission in cortical networks can be fast and is
not limited by the membrane time constant τm (Knight, 1972a; Knight,
1972b; Treves, 1993). Thus a firing rate in the sense of a population
activity is a useful concept and is in accordance with the reaction time
experiments of Thorpe et al. (Thorpe et al., 1996). A necessary condi-
tion for fast switching, is that the population is, just before the switch,
in a state of asynchronous firing. Second, it can be shown by an anal-
ysis of the population activity dynamics, that the asynchronous state
is unstable unless a sufficient amount of noise is present in the network
(Gerstner and van Hemmen, 1993; Abbott and van Vreeswijk, 1993).
Thus, noise is a necessary requirement for the functioning of the net-
work - which may explain why the spike trains of cortical neurons look
noisy.

5. PERFECT SYNCHRONY

If synchrony is important for neural coding, then we should study
conditions for synchrony in a network of mutually coupled neurons. In
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this section we will present the essence of an argument which is more
extensively discussed in (Gerstner et al., 1996b).

We study a homogeneous network of N identical neurons which are
mutually coupled with strength wij = w0/N where w0 is a constant. In
other words, the interaction is scaled with one over N so that the total
input to a neuron i is of order one even if the number of neurons is large
(N → ∞). Since we are interested in synchrony we suppose that all
neurons have fired simultaneously at t̂ = 0. When will the neurons fire
again?

Since all neurons are identical we expect that the next firing time
will also be synchronous. Let us calculate the period T between one
synchronous pulse and the next. We start from (25). Since all neurons

have fired synchronously at t = 0, we set t̂i = t
(f)
j = 0. The result is a

condition of the form
ϑ− η(t) = w0 ε(t) (29)

where ε(t) is a postsynaptic potential, e.g., equation (17). The graphical
solution of (29) is presented in Fig. 12.9. The first crossing point of the
ϑ− η(t) and w0 ε(t) defines the time T of the next synchronous pulse.

What happens if synchrony at t = 0 was not perfect? Let us assume
that one of the neurons is slightly late compared to the others; Fig. 12.9b.
It will receive the input w0ε(t) from the others, thus the right-hand side
of (29) is the same. The left-hand side, however is different since the
last firing was at δ0 instead of zero. The next firing time is at t = T + δ1

where δ1 is found from

ϑ− η(T + δ1 − δ0) = w0 ε(T + δ1) . (30)

Linearisation with respect to δ0 and δ1 yields:

δ1 < δ0 ⇐⇒ ε′(T ) > 0 . (31)

Thus the neuron which has been late is ‘pulled back’ into the synchro-
nized pulse of the others, if the postsynaptic potential ε is rising at the
moment of firing at T . (31) is a rather general condition for stable
synchrony (Gerstner et al., 1996b).

6. COINCIDENCE DETECTION

In a simple rate model, the temporal order of spikes does not mat-
ter. If two presynaptic neurons fire at 100 Hz each, then the total spike
arrival rate at the postsynaptic neuron i is 200 Hz which results in a
certain output rate νi = g(wi1ν1 + wi2ν2); see Eq. (1). For a spiking
neuron model, however, the degree of synchrony in the input matters;
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a)

b)

Figure 12.9. a) Perfect Synchrony. All neurons have fired at t̂ = 0. The next spike
occurs when the summed postsynaptic potential w0ε(t) reaches the dynamic threshold
ϑ− η(t). b) Stability of perfect synchrony. The last neuron is out of tune. The firing
time difference at t = 0 is δ0. One period later the firing time difference is reduced
(δ1 < δ0), since the threshold is reached at a point where w0ε(t) is rising. Adapted
from (Gerstner et al., 1996b).
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a) b)

Figure 12.10. Coincidence Detection. Each spike evokes a postsynaptic potential
EPSP denoted by ε. The sum of all ε terms yields the potential u(t). a) Spike trains
from two different presynaptic neurons are phase shifted with respect to each other.
The total potential u does not reach the threshold. There are no output spikes. b)
Spikes from two different presynaptic neurons arrive synchronously. The summed
EPSPs reach the threshold ϑ and cause the generation of an output spike. Schematic
figure; in most neurons the amplitude of the postsynaptic potential is smaller so that
two input spikes would not be sufficient to drive the neuron to threshold.

cf. Fig. 12.10. In Fig. 12.10a we have sketched the situation where in-
put spikes from two different neurons arrive phase shifted with respect
to each other. The threshold is not reached and no output spike oc-
curs. If the same number of input spikes arrives synchronously, then
output spikes occur. The neuron acts as a coincidence detector, viz. it
is sensitive to inputs which arrive within a short time window.

The above arguments are rather schematic and apply to a noise-free
neuron. We may wonder whether coincidence detection is still possible
if input is noisy. To answer this we have simulated an integrate-and-
fire neuron which receives stochastic input from N presynaptic neurons
j = 1, . . . , N . Each input spike evokes a jump of the membrane potential
by a fixed amount wij = 0.1. Afterwards the membrane potential decays
exponentially with time constant τm; cf. Eq. (18). At each synapse
spikes arrive with a time-dependent rate

ν(t) = ν0 [1 + k cos(2π f t) (32)

where f is the frequency of the modulation and k the modulation am-
plitude. For k = 0, input spikes arrive at a constant rate ν0; for k = 1
the rate is periodically modulated between zero and 2 ν0.

It can be shown that, in the absence of a threshold, the mean mem-
brane potential approaches a value of u0 ≈ ν0 τm

∑
j wij while the fluc-

tuations due to stochastic spike arrival cause membrane potential fluc-
tuations with amplitude σ ∝ ν0 τm

∑
j w

2
ij . Let us now take into ac-

count the firing threshold ϑ. If u0 < ϑ the neuron is said to be in the
sub-threshold regime; see e.g., (Abeles, 1991; Shadlen and Newsome,
1994; König et al., 1996; Troyer and Miller, 1997; Bugmann et al., 1997).



xviiiPLAUSIBLE NEURAL NETWORKS FOR BIOLOGICAL MODELING

a) b)

Figure 12.11. Coincidence Detection with noisy spike input. a) At 100 synapses
spikes arrive stochastically at a rate of ν0 = 70 Hz. The membrane potential u
fluctuates around a mean value of u0 = 0.7 and reaches threshold only occasionally
(mean firing rate 12 Hz). Spikes are marked by vertical lines. b) At 100 synapses spikes
arrive stochastically at a rate of ν(t) = ν0 [1 + cos(2π t/T ) with mean ν0 = 70 Hz and
periodic modulation with period T = 1 ms. Due to the modulation, the membrane
potential exhibits a periodic component and reaches threshold more frequently than
in a. (mean firing rate 18 Hz). Parameters: Integrate-and-fire model with τm = 1 ms,
ϑ = R = 1; each spike evokes an exponentially decaying postsynaptic potential (18).
Its amplitude is given by the synaptic coupling strength w = 0.1

In the sub-threshold regime, spikes are triggered by the fluctuations of
the membrane potential. In this regime the neuron is sensitive to the
timing of the input spikes and can function as a coincidence detection.
Sensitivity is highest if the mean membrane potential is about one or
two standard deviations below threshold, i.e. ϑ − 2σ ≤ u0 ≤ ϑ − σ
(Kempter et al., 1998; Plesser, 1999). Coincidence detection is used by
neurons in the auditory system and will be discussed below.

7. SPIKE-TIME DEPENDENT HEBBIAN
LEARNING

In standard Hebbian learning (Hebb, 1949), the synaptic weight wij
of a presynaptic neuron j to a postsynaptic neuron i is increased, if
presynaptic and postsynaptic neurons are ‘simultaneously active’. In
rate models where the activity of presynaptic and postsynaptic neurons
is defined by their rates νin

j and νout
i , respectively, the learning rule is

usually summarized as

τw
d

dt
wij = a0(wij) + ain

1 (wij) ν
in
j + aout

1 (wij) ν
out
i + acorr

2 (wij) ν
in
j ν

out
i

(33)
which can be seen as the first terms of an expansion of a general adap-
tation rule dwij/dt = F (wij ; ν

out
i , νout

i ) that uses only information that
is locally available at the synapses, i.e., the firing rates νin

j , νout
i and

the momentary value of the synaptic weight wij . The correlation term
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Figure 12.12. Time windows for synaptic plasticity. a) If the spikes of a presynaptic
neuron j and a postsynaptic neuron i coincide within a ‘learning window’, the synaptic
weight of the connection between the two neurons is changed. b) Simple coincidence
detection window. c) Asymmetric learning window that potentiates synapses where
the presynaptic spike arrives slightly before the postsynaptic one. d) Two-phase
learning window. A presynaptic spike arriving slightly before postsynaptic firing leads
to an increase (potentiation), a presynaptic spike that arrives after postsynaptic firing
leads to an decrease of the synaptic weight (depression).

acorr
2 (wij) is sensitive to the joint activity of pre- and postsynaptic neu-

rons. A correlation term acorr
2 (wij) > 0 is usually called Hebbian learning

in its narrow senses, whereas acorr
2 (wij) < 0 is called anti-Hebbian learn-

ing.
In spiking neurons, the notion of ‘simultaneously active’ that leads

to a term acorr
2 in Eq. (33), is less well defined. A simple notion would

be to define a time window of simultaneity (e.g., a few milliseconds)
and change weights whenever presynaptic and postsynaptic spikes occur
within the time span set by the time window; cf. Fig. 12.12b. There
is, however, no need that the time window be symmetric or rectangular.
More generally it could be asymmetric as in Fig. 12.12c or it could have
two phases as shown in Fig. 12.12d. Such generalized learning windows
have been postulated on theoretical grounds for spiking neuron models
(Gerstner et al., 1993; Gerstner et al., 1996a) as well as for rate models
(Herz et al., 1988; Herz et al., 1989; Abbott and Blum, 1996; Gerstner
and Abbott, 1997) and have recently found in experiments (Levy and
Stewart, 1983; Markram and Tsodyks, 1997; Zhang et al., 1998; Debanne
et al., 1998; q. Bi and Poo, 1999). What are potential advantages of such
a generalized learning window?

First, asymmetric Hebb rules like in Fig. 12.12c are a natural im-
plementation of the ‘causal’ notion in Hebbs original statement (Hebb,
1949) in that these rules strengthen the synapses with those presynaptic
neurons j that have potentially contributed to firing the postsynaptic
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neuron i; obviously only a neuron j that has fired slightly before the
postsynaptic spike can have an influence on the firing of this very spike.
Moreover, these asymmetric learning rules are useful for sequence learn-
ing (Herz et al., 1988; Herz et al., 1989; Gerstner et al., 1993; Minai
and Levy, 1993; Abbott and Blum, 1996; Gerstner and Abbott, 1997).
It is, for example, possible to store spatio-temporal spike patterns in a
network of spiking neurons (Gerstner et al., 1993).

With an asymmetric time window as in Fig. 12.12c, synaptic plastic-
ity can detect, enhance, and store temporal structure on the time scale
of the learning window. In the auditory system, for example, we need to
resolve temporal structure in the sub-millisecond range, but it is unlikely
that learning windows have a width that is less than a few milliseconds.
How is this then possible? The answer is given by a two-phase learning
window as in Fig. 12.12d. The combination of potentiation and inhibi-
tion leads to an effective competition between different synapses so that
synaptic growth at a connection wij is only possible at the expense of
decreasing the weight of other synapses (Gerstner et al., 1996a; Song
et al., 2000). Only those synapses that give the ‘correct’ timing are en-
hanced while all others are decreased. Such a mechanism is thought of
playing a role in tuning the delay lines in the barn owl auditory system
(Gerstner et al., 1996a).

To understand the competitiveness in a two-phase learning rule from a
mathematical point of view, it is useful to study an extension of Eq. (33)
to spike-based learning: (Gerstner et al., 1996a; Gerstner et al., 1998;
Kempter et al., 1999; Kistler and van Hemmen, 2000):

τw
d

dt
wij = a0 + ain Sin

j (t) + aout Sout
i (t) (34)

+Sin
j (t)

t∫
−∞

dt′W (t− t′)Sout
i (t′) + Sout

i (t)

t∫
−∞

dt′W (−t+ t′)Sin
j (t′) ,

where Sin
j (t) =

∑
f δ(t−t

(f)
j ) is the presynaptic spike train that arrives at

the synapse wij . The learning window W that we sketched in Fig. 12.12
plays the role of the correlation term acorr

2 in Eq. (33). In analogy to
Eq. (33), the coefficients a0, ain, aout, and the learning window W in
general depend on the current weight value wi. They may also depend
on other local variables such as the membrane potential or the calcium
concentration. Here we drop these dependencies and assume constant
coefficients. All terms have a direct biological interpretation. For exam-
ple the term ain Sin

j (t) implies that each presynaptic spike of neuron j
induces a weight change in the synapse wij independent of the presence
or absence of an output spike of the postsynaptic neuron j.
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For Poisson input and Poisson output the correlation term acorr
2 in

Eq. (33) can be identified with the integral over the learning window
W in Eq. (34) (Kempter et al., 1999). It is then easy to see that, for
certain combinations of parameters, the learning rule (34) leads to an
intrinsic stabilization of the output firing rate. For example a model
with a = aout = 0, ain = c > 0, and

∫∞
−∞W (s)ds = −1 in Eq. (34) leads,

for Poisson input, to an equivalent rate model of the form

τw
d

dt
wiji(t) = −[νout

i − c] νin
j . (35)

For constant input rates, learning stops after the output rate has ap-
proached the stable fixed point νout

i = c > 0. These arguments can be
made more precise in order to show that stabilization of output rates
occurs generically over a broad range of parameters and independent of
the neuron model under consideration (Kempter et al., 2000).

8. TEMPORAL CODING IN THE
AUDITORY SYSTEM

The most prominent example of temporal coding is probably found
in the auditory system of the barn owl (Carr and Konishi, 1990; Kon-
ishi, 1986; Konishi, 1993; Sullivan and Konishi, 1986). The barn owl
is capable of localizing external sound sources in the horizontal plane
with a precision of a few degrees of azimuthal angle. The localization
is achieved by measuring the interaural time difference, viz., the phase
difference between the sound waves in the left and right ear. A preci-
sion of 5 degrees of angle corresponds to a temporal precision of a few
microseconds (!) which must be resolved by the auditory system.

The basic idea of how this could work is sketched in Fig. 12.13. An ar-
ray of coincidence detection neurons receives input from both ears. The
spatial position of the neuron in the array is a mirror image of the posi-
tion of the sound source in the external world (Jeffress, 1948). A circuit
with these properties has indeed been found in the barn owl auditory
system (Carr and Konishi, 1990). Neurons in the nucleus laminaris of
the barn owl auditory system play the role of coincidence detectors. Neu-
rons in this nucleus are sensitive to the interaural time difference. The
phase of the sound wave at each ear is transmitted to the coincidence de-
tector neurons by phase locked spikes. The basic picture of coincidence
detection is therefore indeed the one of Fig. 12.10, except that not only
two but hundreds of spike trains arrive from the two ears - just as in
Fig. 12.11. If we adapt the parameters of the model of Fig. 12.11 to the
barn owl auditory system, we can check that the neuron can indeed act
as a coincidence detector and is indeed sensitive to the interaural time
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Figure 12.13. Jeffress model. Activity waves from both ears meet at an array of
coincidence detectors (circles).

difference of a stimulating tone (Gerstner et al., 1998; Gerstner et al.,
1996a; Kempter et al., 1998); cf. Fig. 12.14, bottom right.

An essential component of a model of coincidence detection in the
barn owl auditory system is an adaption or learning rule that controls
the timing of the transmission delays. Each coincidence detecting neuron
in the nucleus laminaris of the barn owl auditory system receives about
100 synapses from the left, and 100 synapses from the right ear. If
the transmission delays are different between synapses from the same
side, then spikes do not arrive synchronously even if they have been
generated at the cochlea in a perfectly synchronous fashion. In that case,
the activity wave that travels from the ear to the coincidence detectors
looses the information about the timing of the external stimulus.

In order to guarantee a nearly perfect timing of the transmission de-
lays, we can use the spike-time dependent learning rule discussed in the
previous section. Fig. 12.14 shows how the delay lines that arrive from
the two ears are selected. At the beginning we have about 600 con-
nections with broad distribution of delays between 1 and 4 milliseconds
(top left). For a simulation with a 5 kHz tone, a small delay difference
in the range of 0.2 millisecond will already completely destroy all tem-
poral information. The postsynaptic neuron can therefore not function
as a coincidence detector (top right). During learning some synapses are
strengthened, others are decreased (middle). After learning all synapses
have either the same delay or the delay differs by a full period (0.2 ms).
The output rate of the neuron (number of spikes in a time window of 500
ms) depends now clearly on the interaural time difference (ITD) between
the stimulus at the left and the stimulus at the right ear (bottom right).
The neuron acts as a coincidence detector and responds maximally at
ITD=0, i.e., if the spikes from the left and right ear arrive, on average,
simultaneously.

9. CONCLUSION

The auditory system is one of the specific examples where temporal
coding is a generally accepted principle. Related coding schemes could,
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Figure 12.14. Development of tuning to a 5kHz tone. The left column shows the
strength of synaptic efficacies wij of all synapses. Synapses are indexed according to
the delay ∆j of the corresponding transmission line and are plotted as wij = w(∆).
On the right, we show the output firing rate (ν) as a function of the interaural time
delay (ITD). Top. Before learning, there are 600 synapses (300 from each ear) with
different delays, chosen randomly from a Gaussian distribution with mean 2.5 ms and
variance 0.3 ms. All weights have unit value. The output rate shows no dependence
upon the ITD (right). Middle. During learning, some synapses are strengthened
others decreased. Those synapses which increase have delays that are similar or that
differ by multiples of the period T = 0.2 ms of the stimulating tone. Bottom. After
learning, only about 150 synapses (≈ 75 from each ear) survive. The output rate ν
shows the characteristic dependence upon the ITD as seen in experiments with adult
owls (Carr and Konishi, 1990). The neuron has the maximal response (ν = 200 Hz)
for ITD = 0, the stimulus used during the learning session of the model neuron. Taken
from (Gerstner et al., 1998).
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in principle, also hold in other areas of the brain. The final decision
of whether temporal codes are relevant in a given system or not must
come from experiments. If we do not want to bias model approaches
towards rate coding, then models on the level of spike events - like the
integrate-and-fire or the Spike Response Model – must be studied.

In many areas of the brain, rate coding might be sufficient – rate
coding, however, not interpreted as a temporal average but rather as a
population average. Rate coding in the sense of a population activity
is an important concept, since it allows fast temporal coding schemes.
Models of the population activity must be capable of describing these
fast signal transmission properties. A naive rate model of the form (1) or
(4) is unable to do this. To get an appropriate model of the population
activity, we must keep track of the spike dynamics. Thus, spikes are
important even if rate should be the coding principle.
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Debanne, D., Gähwiler, B., and Thompson, S. (1998). Long-term synap-
tic plasticity between pairs of individual CA3 pyramidal cells in rat
hippocampal slice cultures. J. Physiol., 507:237–247.

Eckhorn, R., Bauer, R., Jordan, W., Brosch, M., Kruse, W., Munk, M.,
and Reitboeck, H. J. (1988). Coherent oscillations: A mechanism of
feature linking in the visual cortex? Biol. Cybern., 60:121–130.

Engel, A. K., König, P., and Singer, W. (1991). Direct physiological
evidence for scene segmentation by temporal coding. Proc. Natl. Acad.
Sci. USA, 88:9136–9140.

Gerstner, W. (1991). Associative memory in a network of ’biological’
neurons. In Lippmann, R. P., Moody, J. E., and Touretzky, D. S.,
editors, Advances in Neural Information Processing Systems 3, pages
84–90, San Mateo CA. Morgan Kaufmann Publishers.

Gerstner, W. (1995). Time structure of the activity in neural network
models. Phys. Rev. E, 51(1):738–758.

xxv



xxvi PLAUSIBLE NEURAL NETWORKS FOR BIOLOGICAL MODELING

Gerstner, W. (1998a). Populations of spiking neurons. In Maass, W. and
Bishop, C. M., editors, Pulsed Neural Networks, chapter 10, pages
261–295. MIT-Press.

Gerstner, W. (1998b). Spiking neurons. In Maass, W. and Bishop, C. M.,
editors, Pulsed Neural Networks, chapter 1, pages 3–53. MIT-Press.

Gerstner, W. (2000a). Population dynamics for spiking neurons: fast
transients, asynchronous states and locking. Neural Computation, to
appear, 12:43–89.

Gerstner, W. (2000b). Population dynamics of spiking neurons: fast tran-
sients, asynchronous states and locking. Neural Computation, 12:43–
89.

Gerstner, W. and Abbott, L. F. (1997). Learning navigational maps
through potentiation and modulation of hippocampal place cells. Jour-
nal of Comput. Neurosci., 4:79–94.

Gerstner, W., Kempter, R., and van Hemmen, J. L. (1998). Hebbian
learning of pulse timing in the barn owl auditory system. In Maass,
W. and Bishop, C. M., editors, Pulsed Neural Networks, chapter 14,
pages 353–377. MIT-Press.

Gerstner, W., Kempter, R., van Hemmen, J. L., and Wagner, H. (1996a).
A neuronal learning rule for sub-millisecond temporal coding. Nature,
386:76–78.

Gerstner, W., Ritz, R., and van Hemmen, J. L. (1993). Why spikes?
Hebbian learning and retrieval of time–resolved excitation patterns.
Biol. Cybern., 69:503–515.

Gerstner, W. and van Hemmen, J. L. (1993). Coherence and incoherence
in a globally coupled ensemble of pulse emitting units. Phys. Rev.
Lett., 71(3):312–315.

Gerstner, W. and van Hemmen, J. L. (1994). Coding and information
processing in neural networks. In Domany, E., van Hemmen, J. L.,
and Schulten, K., editors, Models of neural networks II, pages 1–93,
New York. Springer-Verlag.

Gerstner, W., van Hemmen, J. L., and Cowan, J. D. (1996b). What
matters in neuronal locking. Neural Comput., 8:1653–1676.

Gray, C. M. and Singer, W. (1989). Stimulus-specific neuronal oscilla-
tions in orientation columns of cat visual cortex. Proc. Natl. Acad.
Sci. USA, 86:1698–1702.

Hebb, D. O. (1949). The organization of behavior. Wiley, New York.
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