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Surprise describes a range of phenomena from unexpected events to be-
havioral responses. We propose a novel measure of surprise and use it for
surprise-driven learning. Our surprise measure takes into account data
likelihood as well as the degree of commitment to a belief via the entropy
of the belief distribution. We find that surprise-minimizing learning
dynamically adjusts the balance between new and old information with-
out the need of knowledge about the temporal statistics of the environ-
ment. We apply our framework to a dynamic decision-making task and
a maze exploration task. Our surprise-minimizing framework is suitable
for learning in complex environments, even if the environment under-
goes gradual or sudden changes, and it could eventually provide a frame-
work to study the behavior of humans and animals as they encounter
surprising events.

1 Introduction

To guide their behavior, humans and animals rely on previously learned
knowledge about the world. Since the world is complex and models of the
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world are never perfect, the question arises whether we should trust our
internal world model that we have built from past data or readjust it when
we receive a new data sample. Since a single data sample is not reliable
in noisy environments, averaging over several data samples is normally a
good strategy. However, when an unpredictable structural change occurs
in the environment, the most recent data samples are the most informative
ones, and we should put more weight on recent data samples than on older
ones.

Indeed, both humans and animals adjust the relative contribution of old
and newly acquired data on learning (Pearce & Hall, 1980; Behrens, Wool-
rich, Waltan, & Rushworth, 2007; Krugel, Biele, Mohr, Li, & Heekeren, 2009;
Nassar et al., 2012) and rapidly adapt to changing environments (Pearce
& Hall, 1980; Wilson, Boumphrey, & Pearce, 1992; Holland, 1997). To cap-
ture this behavior, two qualitatively different modeling approaches have
been used. First, existing phenomenological models detect and respond to
sudden changes using (absolute) reward prediction errors (Pearce & Hall,
1980; Hayden, Heilbronner, Pearson, & Platt, 2011; Roesch, Esber, Li, Daw, &
Schoenbaumn, 2012), risk prediction errors (Preuschoff & Bossaerts, 2007;
Preuschoff, Quartz, & Bossaerts, 2008), uncertainty-based jump detection
(Nassar, Wilson, Heasly, & Gold, 2010; Payzan-Nestour & Bossaerts, 2011),
or multi-timescale reward estimator comparison (Iigaya, 2016). Typically in
these phenomenological models, a low-dimensional variable (related to the
specific experiment) is used to trigger a rebalancing between new and old
information.

Second, more principled statistical models involve either exact (Adams
& MacKay, 2007; Behrens et al., 2007; Kolossa, Fingscheidt, Wessel, & Kopp,
2013; Kolossa, Kopp, & Finscheidt, 2015; Meyniel, Maheu, & Dehaene,
2016) or approximate (Yu & Dayan, 2005; Mathys, Daunizeau, Friston, &
Stephan, 2011; Mathys et al., 2014; Gershman, Radulescu, Norman, & Niv,
2014) Bayesian updating of beliefs about the current model of the world.
In the context of approximate Bayesian inference in a model with hid-
den variables, minimization of the variational free energy (Friston, 2010)
reduces (a bound on) Shannon surprise (Shannon, 1948). These surprise-
reducing, uncertainty-resolving assimilation schemes generally assume
that the world is stationary and that random effects do not change with
time. To accommodate fluctuations in the mean or in uncertainty, it is usu-
ally necessary to invoke hierarchical generative models such as the hierar-
chical gaussian filter model (Mathys et al., 2011, 2014). The disadvantage of
complex models in a Bayesian framework is that model inversion, neces-
sary for inference, typically involves nontrivial integrals for which it is not
clear how the brain would compute these—even though Bayesian models
of the brain have been highly successful in explaining data (Ernst & Banks,
2002; Körding & Wolpert, 2004; Knill & Pouget, 2004; Ma, Beck, Latham, &
Pouget, 2006; Fiser, Berkes, Orban, & Lengyel, 2010; Berkes, Orban, Lengyel,
& Fiser, 2011; Kolossa et al., 2013).
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In this article, we introduce an alternative approach that does not call on
inversion of deep hierarchical models yet still provides a flexible scheme of
belief updating. In brief, the degree of belief updating is limited by an up-
per bound that is a monotonic function of surprise. This means that when
subjects are surprised and uncertain, they pay more attention to new infor-
mation and tip the balance in favor of new information relative to accumu-
lated evidence in prior beliefs. We demonstrate our approach theoretically
and in simulations.

Human surprise has attracted the attention of philosophers and exper-
imental psychologists (Hurley, Dennett, & Adams, 2011). Webster’s Dictio-
nary defines surprise as “an unexpected event, piece of information” or “the
feeling caused by something that is unexpected or unusual.” Note that “un-
expected” is different from “unlikely.” An event can occur with very low
probability without being unexpected: for example, you may park your car
at the shopping mall next to a green BMW X3 with a license plate contain-
ing the number 5 without being surprised, even though the specific event
is objectively very unlikely. But since you did not expect anything particu-
lar, this specific event was not unexpected. A pure likelihood-based defini-
tion of surprise, such as the Shannon information content (Shannon, 1948;
Tribus, 1961), cannot capture this aspect. Note that something can be un-
expected only if the subject is committed to a belief about what to expect
(Schmidhuber, 2003). As Hurley et al. (2011) wrote, “What surprises us is . . .
things we expected not to happen—because we expected something else to
happen instead.” In other words, surprise arises from a mismatch between
a strong opinion and a novel event, but this notion needs a more precise
mathematical formulation.

In practice, humans know when they are surprised (egocentric view),
indicating that there are specific physiological brain states corresponding
to surprise. Indeed, the state of surprise in other humans (observer view)
is detectable as startle responses (Kalat, 2016) manifesting in pupil dila-
tion (Hess & Polt, 1960; Preuschoff, t’Hart, & Einhauser, 2011) and tension
in the muscles (Kalat, 2016). Neurally, the P300 component of the event-
related potential (Squires, Wickens, Squires, & Donchin, 1976; Pineda, West-
erfield, Kronenberg, & Kubrin, 1997; Missionier, Ragot, Derousne, Guez,
& Renault, 1999) measured by electroencephalography (EEG) is associated
with the violation of expectation (Squires et al., 1976; Verleger, Jaskowski,
& Wauschkuhn, 1994; Kolossa et al., 2013, 2015; Meyniel et al., 2016). Fur-
thermore, fMRI brain signals are correlated with surprise (Vossel et al., 2014;
Iglesias et al., 2013). Finally, surprise drives attention (Itti & Baldi, 2009) and
influences the development of sensory representations (Fairhall, Lewen,
Bialek, & de Ruyter van Steveninck, 2001), as well as learning and memory
formation (Hasselmo, 1999; Wallenstein, Hasselmo, & Eichenbaum, 1998;
Ranganath & Rainer, 2003).

To implement our approach of surprise-based learning, we introduce
a novel definition of confidence-corrected surprise that incorporates, and
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extends, aspects of definitions of surprise that have been previously used
in psychological theories of attention (Itti & Baldi, 2009), brain theo-
ries (Friston & Kiebel, 2009; Friston, 2010; Brea, Senn, & Pfister, 2013;
Rezende & Gerstner, 2014), statistical models of information theory (Shan-
non, 1948), machine learning (Schmidhuber, 1991, 2010; Singh, Barto,
& Chentanez, 2004; Sun, Gomez, & Schmidhuber, 2011; Frank, Leitner,
Stollenga, Forster, & Schmidhuber, 2013), and active inference (Schmid-
huber, 1991; Storck, Hochreiter, & Schmidhuber, 1995; Sun et al., 2011;
Friston et al., 2015; Friston, Fitzgerald, Rigoli, Schwartenbeck, & Pezzulo,
2017). In models of artificial curiosity, surprise is linked to sudden in-
creases in learning progress (Schmidhuber, 1991), information gain (Storck
et al., 1995), cumulative information gain (Sun et al., 2011), or algorith-
mic information gain measured by compression progress (Schmidhuber,
2006, 2010). Planning to be surprised so as to maximize information gain
or epistemic value has been suggested as an optimal exploration tech-
nique in dynamic environments even in the absence of external reward
(Storck et al., 1995; Sun et al., 2011; Little & Sommer, 2013; Frank et al.,
2013; Joffily & Coricelli, 2013; Friston et al., 2015; Friston et al., 2017). In
the framework of intrinsically motivated reinforcement learning (Singh
et al., 2004; Oudeyer, Kaplan, & Hafner, 2007), researchers have defined
ad hoc features (Singh et al., 2004; Sutton et al., 2011; Silver et al., 2016)
or information-theoretic quantities (Mohamed & Rezende, 2015) that could
replace the reward-prediction-error of classical reinforcement learning by
a generalized model prediction error (Schmidhuber, 1991), which could be
surprise related. However, surprise is important not just for active infer-
ence but also in the passive mode where a human subject receives au-
ditory or visual stimuli (Squires et al., 1976; Kolossa et al., 2013, 2015;
Meyniel et al., 2016). In this article, we do not consider active inference
but limit our discussion to situations of passively perceiving a surprising
event.

As the first aim of this article, we introduce a definition of confidence-
corrected surprise that captures the notion of unexpectedness (as opposed
to low probability) of an event. As a second aim, we study how surprise
can influence learning. Similar to earlier theories (Schmidhuber, 2010; Fris-
ton et al., 2015, 2017) we study learning rules that minimize the surprise if
the same data point appears a second time, but in contrast to these earlier
theories, we start from our definition of confidence-corrected surprise as op-
posed to information gain measures (Schmidhuber, 2010) or a free-energy
bound on the Shannon surprise (Friston et al., 2017). We demonstrate in two
examples why surprising events increase the speed of learning and show
that surprise can be used as a trigger to balance new information against
old information. Before we turn to our definition of confidence-corrected
surprise, we review existing theories.
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2 Background: Theories of Surprise

A well-known saying states that when they listen to a joke, most people
laugh twice: the first time when they hear the joke and the second time
when they get it. This informal summary of observations (Hurley et al.,
2011) suggests two different reasons for laughter linked to two different
moments of surprise. The first moment of surprise occurs when we are puz-
zled: something seems to be wrong with our current interpretation of the
story or, more generally, our current model of the world. We refer to this as
“surprise in the sense of puzzlement” or, shorter, “puzzlement surprise.”
The second moment of surprise is when we understand the joke, when we
have been enlightened, and have been able to give a different interpretation
to the story or, more generally, an important update of our current model
of the world. We refer to this as “surprise in the sense of enlightenment”
or, shorter, “enlightenment surprise.” Surprise in the sense of enlighten-
ment also occurs when, after some hard work, we have understood an ele-
gant proof of a mathematical theorem or hear a convincing explanation of
a scientific discovery (Schmidhuber, 2010; Hurley et al., 2011; Friston et al.,
2017).

With these notions in mind, we review some important existing theories
of surprise (Shannon, 1948; Tribus, 1961; Baldi & Itti, 2010; Friston, 2010;
Schmidhuber, 2010; Palm, 2012). Existing concepts can be roughly classified
into two different categories.

First, the log likelihood of a single data point given a statistical model of
the world has been called Shannon surprise or information content (Shan-
non, 1948; Tribus, 1961; MacKay, 2003; Palm, 2012). Formally, Shannon sur-
prise is the information content of data point X calculated with the current
world model of the subject. Let us introduce θ for the parameters of the
(discrete or continuous) world model and θ∗ for the specific parameter set-
ting that has actually been used for generating the data. If the true causes of
the data X (namely, θ∗) are known, the information content −ln p(X|θ∗) for
a specific outcome X ∈ X is the negative log likelihood of this data point
(Tribus, 1961; Palm, 2012). In other words, the occurrence of a rare (i.e., un-
likely to occur) data sample X is surprising. As the information content re-
lates to the true probabilities p(X|θ∗) of samples in the real world, it is an
objective, model-independent measure of unlikeliness.

However, for an application to human surprise, we will always work
under the assumption that the true set of parameters θ∗, and thus the true
probability p(X|θ∗), is not known to the observer, such that it is difficult
to evaluate the exact information content of a data sample X. Let us de-
note by πn(θ ) our current belief (after having observed n data points) about
the relevance of parameter value θ and introduce p(X ) = ∫

θ
p(X|θ )πn(θ )dθ

as the probability of data sample X after marginalizing over all possible
model parameters. Note that the current belief πn(θ ) plays the role of a prior
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in statistics. The Shannon surprise is defined as the negative-log-marginal-
likelihood:

S = −ln p(X ) = − ln
∫

θ

p(X|θ )πn(θ )dθ. (2.1)

Therefore, in the context of theories based on Shannon-surprise, an unlikely
event becomes a surprising event. From our perspective, Shannon surprise
and variants thereof incorporate an important aspect of what we have in-
troduced as puzzlement surprise, but miss the influence of commitment
to a belief. Empowerment in agents defined via mutual information (Mo-
hamed & Rezende, 2015) or bounds on surprise in approximate Bayesian
inference after minimization of the variational free energy (Friston, 2010;
Joffily & Coricelli, 2013; Friston et al., 2017) fall roughly into the same class
of models quantifying Shannon surprise.

Second, in the context of Bayesian models, surprise has been defined via
the changes in model parameters during belief updating when assimilating
a new data point X = Xn+1 (Storck et al., 1995; Itti & Baldi, 2009; Baldi & Itti,
2010). The belief after observation of n data points is given by the distribu-
tion πn(θ ) where θ are model parameters. Bayesian surprise introduced by
Schmidhuber in the machine learning and active inference literature (Storck
et al., 1995) and by Itti in the psychological literature (Itti & Baldi, 2009; Baldi
& Itti, 2010) is defined as a KL divergence,

DKL[πn||πBayes
n+1 ], (2.2)

between the prior belief πn(θ ) and the posterior belief π
Bayes
n+1 (θ ) that is cal-

culated from the naive Bayes rule:

π
Bayes
n+1 (θ ) = p(X|θ )πn(θ )∫

θ
p(X|θ )πn(θ ) dθ

. (2.3)

Thus, in these theories, an event that causes a big change in the model of
the world (characterized by the belief πn(θ )) becomes a surprising event
(Schmidhuber, 1991). Optimization of (expected) free energy automatically
contains Bayesian surprise in the belief update step (Friston et al., 2017).
Surprise as successful progress in algorithmic compression of the agent’s
world model (Schmidhuber, 2006, 2010) is a non-Bayesian formulation of
a related idea. Such a world model potentially includes the full history of
all previous observations; making sense of observations then means find-
ing a compressed representation of past experiences such that their storage
take less memory space (Schmidhuber, 2006, 2010). In view of the paragraph
at the beginning of this section, Bayesian surprise, or compression suc-
cess, is a mathematical formulation of enlightenment surprise; it provides a
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quantitative measure of how much our understanding of the world has im-
proved after integrating data point Xn+1 into our model.

Aspects of both Shannon surprise and Bayesian surprise can also be
found in modern theories of approximate Bayesian inference. Variational
methods in machine learning and Bayesian modeling use the free energy,
which sets un upper bound on the Shannon surprise (MacKay, 2003; Fris-
ton, 2010; Joffily & Coricelli, 2013; Friston et al., 2017). To see where the
bound comes from, let us consider the true posterior πn(θ ) after having
seen the data sample Xn where θ refers to the hidden parameters, some-
times called sources or explanations of the data. More explicitly, the poste-
rior can be written as πn(θ ) = p(θ |Xn) = p(θ, Xn)/p(Xn), and we will exploit
these equivalent expressions in the next equation. Since the true sources θ

are hidden, it is in general difficult to calculate the exact posterior πn(θ )
of complex Bayesian models. In variational methods, the true posterior is
therefore approximated by another distribution qμ(θ ), which is easier to ma-
nipulate mathematically. The index μ refers to parameters of this auxiliary
distribution. To compare the auxiliary distribution with the (unknown) true
distribution, we consider the Kullback-Leibler divergence,

DKL[qμ||πn] = DKL[qμ||p(θ, Xn)/p(Xn)]

= DKL[qμ||p(θ, Xn)] − [−ln p(Xn)], (2.4)

where qμ is a function of the hidden parameters θ . Since the Kullback-
Leibler divergence involves an integration over θ , the result does not de-
pend on θ . The last term on the right-hand side is the Shannon surprise of
the nth data sample where p(Xn) = ∫

p(Xn|θ )π (θ )dθ is the likelihood of the
data point. In the context of Bayesian modeling, the surprise is also called
Bayesian model evidence (MacKay, 2003; Friston et al., 2015). The free en-
ergy of a single data point is defined as

F = DKL[qμ||p(θ, Xn)] (2.5)

and can be interpreted in many different ways (MacKay, 2003; Friston, 2010;
Joffily & Coricelli, 2013; Friston et al., 2015, 2017). Since the Kullback-Leibler
divergence on the left-hand side of equation 2.4 is always positive, the free
energy is an upper bound on the Shannon surprise. Therefore, the momen-
tary value of the free energy for a data point Xn is, like the Shannon surprise,
related to the puzzlement surprise.

Typically the parameters μ of the approximate distribution q have been
optimized such that, averaged over many data samples, the free energy is
as small as possible, which makes the bound on surprise as tight as possible.
If the value of μ is optimized iteratively by minimizing the free energy after
each new data sample, the resulting learning step will move the approxi-
mate model of the world characterized by qμ closer to the true posterior πn.
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This update step is therefore, just like Bayesian surprise, linked to the en-
lightenment surprise or epistemic value of the last data point (Friston et al.,
2015, 2017).

In the first part of the results, we introduce a new quantification of puz-
zlement surprise that includes the commitment to an opinion. We then use
this measure for surprise minimization but limit the update step by a bound
on the enlightenment surprise formulated as Bayesian surprise.

3 Results

In section 3.1, we introduce our notion of confidence-corrected surprise as a
measure of puzzlement surprise and apply it to a few examples. In section
3.2, we derive a learning rule from the principle of surprise minimization.
The subsequent sections apply this learning rule to two scenarios, starting
with a one-dimensional prediction task, followed by a maze exploration
corresponding to a parameter space with more than 200 dimensions. In con-
trast to the framework of active inference (Joffily & Coricelli, 2013; Friston
et al., 2015, 2017), both tasks are formulated in the framework of passive
observers driven by a stream of inputs.

3.1 Definition of Confidence-Corrected Surprise. We aim for a mea-
sure of puzzlement surprise that captures the notion of a mismatch between
an opinion (current world model) and a novel event (data point) and should
have the following properties:

1. The puzzlement surprise associated with an event depends not only
on the statistical probability of the event; it depends as well on the
agent’s commitment to her belief.

2. With the same level of commitment to a belief, surprise decreases
with the probability of an event.

3. For an event of a low probability, surprise increases with commit-
ment to the belief.

4. A surprising event will influence learning.

While the final point will be the topic of the section 3.2, we now present
a definition of puzzlement surprise and check properties (1) to (3) by way of
a few illustrative examples.

To mathematically formulate puzzlement surprise, we assume that a
subject receives data samples X from an environment that is complex, po-
tentially high-dimensional, only partially observable, stochastic, or chang-
ing over time. In contrast to an engineered environment where we might
know the overall layout of the world (e.g., a hierarchical Markov deci-
sion process) and learn the unknown parameters from data, we do not
want to assume that we have knowledge about the layout of the world.
Our world model may therefore be conceptually insufficient to capture
the intrinsic structure of the world and would therefore occasionally make
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wrong predictions even when we have observed large amounts of data. In
short, our model of the world is expected to be simplistic and wrong, but
since we know this, we should be ready to readapt the world model when
necessary.

In our framework, we construct the world model from many instances
of simple models, each one characterized by a parameter θ ∈ R

N. The prob-
ability of a data point X under model θ is p(X|θ ). In a neuronal imple-
mentation, we may imagine that different instantiations of the model (with
different parameter values θ ) are represented in parallel by different (po-
tentially overlapping) neuronal networks in the brain. If a new data point
X is provided as input to the sensory layer, a model with parameter θ re-
sponds with an activity p̂X (θ ) that we define to be proportional to p(X|θ ).
The distribution p̂X (θ ), evaluated for fixed input X as a function of θ , repre-
sents the naive response of the whole brain network (i.e., of all models) in a
setting where all the models are equally likely. Formally, p̂X (θ ) is the poste-
rior probability under a flat prior (see section 6.1). We refer to p̂X (θ ) as the
scaled likelihood of a naive observer. The scaled likelihood of a naive ob-
server will serve as a reference (null model) in our definition of puzzlement
surprise.

A given subject, however, will not consider all models as equally likely.
Based on the past observation of n data points, the subject has formed
an opinion that assigns to each model θ its relevance πn(θ ) for explain-
ing the world. The probability of the new data point X under the current
opinion is p(X ) = ∫

θ
p(X|θ )πn(θ )dθ , where πn(θ ) summarizes the current

opinion of the subject and the integral runs over all possible model instanti-
ations, be it a finite number or a continuum. In Bayesian modeling, the cur-
rent opinion πn(θ ) is taken as a prior for the interpretation of the next data
point.

However, for our definition of puzzlement surprise, we are not primar-
ily interested in the probability of a data point but rather in the degree of
commitment of the subject to a specific opinion. The commitment is defined
as the negative entropy of the current opinion:

Commitment = −H(πn) =
∫

θ

πn(θ ) ln πn(θ )dθ. (3.1)

In case the belief distribution is a gaussian with variance σ 2, the commit-
ment is identical to the precision defined as 1/σ 2 (MacKay, 2003; Mathys
et al., 2014) which is in turn related to the confidence of a subject when re-
porting her belief (Meyniel, Sigman, & Mainen, 2015; Meyniel & Dehaene,
2017). A subject with a high commitment to her opinion (low entropy or
high precision of belief distribution) will be viewed as a confident subject.

A definition of puzzlement surprise needs to measure the mismatch of a
perceived data point Xn+1 with the current opinion. The current opinion



Balancing New against Old Information 43

(after observation of n data samples X1, . . . , Xn) is characterized by the dis-
tribution πn(θ ). On the other hand, the observed data point X = Xn+1 would
lead in a naive observer to the scaled likelihood p̂X (θ ) already introduced.
We define the puzzlement surprise as the Kullback-Leibler divergence be-
tween these two distributions:

Scc(X;πn) = DKL[πn(θ )|| p̂X (θ )] =
∫

θ

πn(θ ) ln
πn(θ )
p̂X (θ )

dθ. (3.2)

We call Scc a confidence-corrected surprise because its definition in-
cludes the commitment to an opinion. Two aspects are important. First,
confidence-corrected surprise is a measure of the puzzlement; therefore, it
measures passive surprise and does not address the question of how the
observer should update her model. Second, confidence-corrected surprise
compares the current belief distribution always against the distribution of
a naive observer; therefore, and in contrast to Bayesian surprise and related
measures of enlightenment surprise, it does not compare the prior belief af-
ter n samples with the (posterior) belief after n + 1 samples, but rather the
prior belief after n samples with the posterior belief of the naive observer
(i.e., as if the new sample were the first one). Loosely speaking, whenever
we receive a new data point, we compare the current model against the null
model. To get acquainted with this unusual definition, let us look at a few
examples.

First, imagine that three colleagues (A, B, and C) wait for the outcome
of the selection of the next CEO. Four candidates are in the running. Sup-
pose that we have four models, θ1, . . . , θ4 where model θk means candi-
date X = k wins with probability (1 − ε) (with small ε) and the remaining
probability is equally distributed among the other candidates. Formally, the
model (or basis function) with parameter θk predicts outcome probabilities
p(X = k|θk) = 1 − ε, and p(X = k′|θk) = ε/3 for k′ �= k (see Figure 1A, right).

The current opinion {πA(θ ), πB(θ ), πC(θ )} of each colleague about the
four possible models corresponds to the histogram in Figure 1A (left). Col-
league A, who is usually well informed, has a weighting factor πA(θ1) =
0.75 for the first model because he thinks the first candidate is likely to
win. According to his opinion, the first candidate wins with probability
pA(X = 1) = ∑

k p(X = 1|θk)πA(θk), and he gives lower probabilities to the
other candidates (see the Figure 1A table). Colleague B has heard rumors
and favors the third candidate, while colleague C is uninformed as well as
uninterested in the outcome and gives the same probabilities to each can-
didate. Note that colleagues A and B have the same commitment to their
belief, H(πA) = H(πB), but the likelihood of candidates differs. The com-
mitment of colleague C is lower than that of A or B.

Evaluation of the confidence-corrected surprise measure indicates that
(see appendix A.1 for the exact calculations):
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Figure 1: Examples of surprise. (A) A committed person is more surprised than
an uncommitted one. Three colleagues A, B, and C have different beliefs (left)
about the models θ1, . . . , θ4 that determine the likelihood (right) that one of the
four candidates is chosen as the CEO. Colleague A puts a lot of weight on the
first model, indicating his preference for the first candidate (top left). The table
(bottom) indicates the likelihood of each candidate (columns) being chosen as
the CEO (after marginalization over all models) for each colleague (rows). If can-
didate 2 is selected (column highlighted by red color), subject C is less surprised
than subjects A and B because C is not committed to a specific opinion, although
the likelihood of candidate 2 being chosen is considered the same (0.25) for all
three colleagues. (B) Surprise occurs only if a committed belief is disturbed. The
first phrase of the goldfish joke transforms our belief about the meaning (θ ) of
tank from π0(θ ) (top) to π1(θ ) (middle). The second phrase then causes in a naive
observer a distribution p̂X2 (θ ) (bottom) that is very different from the last belief
π1(θ ) (middle); thus, the listener is surprised. (C) For a driver who just cares
about having a free parking place, finding a spot (empty red rectangle) next to
a BMW X3 with the number plate 7259 (blue cross sign) is not very surprising,
although it is very unlikely to occur.

1. If candidate 1 is selected, then A and B, despite having the same over-
all commitment to their belief, will be differently surprised due to
different probabilities of candidate 1 in their models.

2. If candidate 2 is selected, then A is more surprised than if candidate
1 is selected because in his model, candidate 2 is less probable.

3. If candidate 2 is selected, then A will be more surprised than C. Al-
though both colleagues assigned the same probability to this candi-
date, A’s level of commitment to his belief is larger, which leads to a
bigger surprise.
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Note that if we take Shannon surprise as a measure of puzzlement, A
and C will have the same amount of puzzlement surprise when candidate
2 is selected. This appears counterintuitive to us. Why should C be puz-
zled since he did not have a strong opinion in the first place? Note also
that in order to compare the Bayesian surprise of A and C so as to find out
that A is indeed more surprised than C, we would need to explicitly up-
date both belief models after the election—which is tedious and potentially
irrelevant since no future elections (with the same candidates) are on the
horizon.

Second, we look at the theory of jokes developed by philosophers and
cognitive psychologists (Hurley et al., 2011), which emphasizes that sur-
prise in a joke can work only if the listener is committed to an opinion.
Here is an example joke: “There are two goldfish in a tank. One turns to
the other and says: ‘You man the guns; I’ll drive.’” The reason that some
people find the joke funny is that “a perception of the world (manning the
guns and driving the tank) suddenly corrects our mistaken preconception
(tank as a liquid container)” (Hurley et al., 2011). Let us analyze the joke
in the framework of our measure of confidence-corrected surprise. A naive
English-speaking adult knows that tank can have two meanings: liquid con-
tainer or a military vehicle (see Figure 1B, top). In the context of our theory,
the two meanings correspond to two models—parameters θ1 and θ2, which
have equal prior probability (opinion π0). In the first sentence of the joke,
the word goldfish (data point X1) shifts the belief of the listener to a situa-
tion where he gives more weight to the liquid container. This becomes the
opinion π1 of the listener (see Figure 1B, middle). The opinion π1 has low
entropy, indicating a strong commitment. Now comes the second sentence,
with the words driving and guns, which we may consider as data point X2.
These words trigger in a naive English-speaking adult a distribution p̂X2 (θ )
(see Figure 1B, bottom) which favors the interpretation of tank as a military
vehicle. Since the Kullback-Leibler divergence between the distributions in
the second and third line is big, the listener is surprised. Similar conclusions
could be drawn by theories that capture the enlightenment surprise by a
change in belief (Storck et al., 1995; Itti & Baldi, 2009) or a progress in algo-
rithmic compression (Schmidhuber, 2006, 2010). The difference is that our
application of confidence-corrected surprise to a joke is meant to measure
only the initial puzzlement-surprise. At this stage, the theory developed in
this section does not make any statement about the moment when a listener
gets the joke. The theory focuses on the moment when the listener realizes
that something looks strange.

Third, let us return to the example of the green BMW X3 with a 5 in the
license plate, mentioned in section 1. The probability of finding this type
of car next to you in a shopping mall parking lot is extremely low (see
Figure 1C), yet you are not surprised. If it were the parking lot of a com-
pany where every morning you see a little red car on this very same park-
ing slot but today you see a green BMW, you might be surprised—quite
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independent of the details of the green car. The difference arises from the
degree of commitment.

The observations made in these examples can be mathematically formal-
ized as follows:

• Our measure of surprise as defined in equation 3.2 is a linear combi-
nation of Shannon surprise and Bayesian surprise (and two further
terms). Because it contains Shannon surprise as one of the terms, sur-
prise decreases with increasing likelihood of the data under the cur-
rent model (see section 6.2). This formal statement answers points 1
and 2 from the beginning of the section.

• Our measure of surprise as defined in equation 3.2 accounts for the
differences in surprise between two subjects that reflect the differ-
ences in commitment to their opinion. In particular, a less confident
individual (lower commitment to the current opinion) will generally
be less surprised than a confident individual who is strongly com-
mitted to her opinion (see section 6.2). This formal statement answers
point 3 from the beginning of the section.

• Our measure of surprise as defined in equation 3.2 can be computed
rapidly because it uses only the scaled data likelihood (defined as
the posterior of a naive observer given the new data point) and the
degree of commitment to the current opinion. In particular, evalua-
tion of surprise needs neither the lengthy evaluation of the posterior
under the current model nor an update of the model parameters—
in contrast to the Bayesian surprise model (Storck et al., 1995; Itti &
Baldi, 2009; Baldi & Itti, 2010) with which our surprise measure oth-
erwise shares important properties (see section 6.2). The question of
how surprise relates to learning is the topic of the next section.

We emphasize that our measure of surprise is not restricted to discrete
models but can also be formulated for models with continuous parameters
θ (see section 6 and Figure 2A). Our proposed measure of surprise is con-
sistent with formulations of Schopenhauer that link surprise to the “incon-
gruity between representation of perception” (in our framework, the scaled
likelihood response p̂X (θ ) to a data X) and abstract representations (in our
framework: the current opinion πn(θ ) formed from previous data points;
freely cited after Hurley et al., 2011).

3.2 Surprise Minimization: the SMiLe-Rule. Successful learning im-
plies an adaptation to the environment such that an event occurring for a
second time is perceived as less surprising than the first time. In the fol-
lowing, surprise minimization refers to a learning strategy that modifies the
internal model of the external world such that the unexpected observation
becomes less surprising if it happens again in the near future. For exam-
ple, successful compression of experiences after encountering a data sam-
ple X the first time may lead to enlightenment surprise via compression
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Figure 2: Confidence-corrected surprise and constraint surprise minimization.
(A) Impact of confidence on surprise. Top: Two distinct internal models (red
and blue), described by joint distributions p(x, θ ) (contour plots) over observ-
able data x and model parameters θ , may have the same marginal distribu-
tion p(x) = ∫

θ
p(x, θ )dθ (distributions along the x-axis coincide) but differ in the

marginal distribution πn(θ ) = ∫
x p(x, θ )dx (distributions along the θ -axis). Sur-

prise measures that are computed with respect to p(x) neglect the uncertainty as
measured by the entropy H(πn). Therefore, a given data sample X (green dot)
may be equally surprising in terms of the raw surprise Sraw (X ) (see equation
6.3) but results in higher confidence-corrected surprise Scc(X ) (see equation 3.2)
for the blue as compared to the red model, because πn in the red model is wider
(corresponding to a larger entropy) than in the blue model. Bottom: The scaled
likelihood p̂X (θ ) (magenta) is calculated by evaluating the conditional proba-
bility distribution functions p(x|θi) (specified by different color for each θi) at
x = X (intersection of dashed green line with colored curves). The confidence-
corrected surprise Scc(X ) is the KL divergence between p̂X (θ ) (bottom, magenta)
and πn(θ ) (top, red). (B) Solutions to the (constraint) optimization problem in
equation 3.5. The objective function, that is, the updated value of the surprise
Scc(X; q) (black) for a given data sample X, is a parabolic landscape over γ where
each γ corresponds to a unique belief distribution qγ . Its global minimum is at
γ = 1 (corresponding to q1 = p̂X), which is equivalent to discarding all previ-
ously observed samples. The boundary B constrains the range of γ and thus
the set of admissible belief distributions. At B = 0, no change is allowed, re-
sulting in γ = 0 with an updated belief equal to the current belief πn (green).
B ≥ Bmax = DKL[ p̂X ||πn] (red dashed line) implies that we allow updating the
belief to a distribution further away from the current belief than the sample it-
self so the optimal solution is the scaled likelihood p̂X or γ = 1 as for the uncon-
strained problem. For 0 < B < Bmax (blue dashed line) the objective function is
minimized by qγ in equation 3.6 that fulfills the constraint DKL[qγ ||πn] = B with
0 < γ < 1.
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progress, but for independent data samples, successful compression also
implies that there will be less compression progress when seeing it a sec-
ond time (Schmidhuber, 2006, 2010). Analogously, in variational Bayesian
models, minimization of the free energies lowers an upper bound on the
Shannon surprise so that the average surprise when encountering a data
sample a second time is reduced (MacKay, 2003; Friston, 2010). Here we
follow a similar surprise minimization strategy, except that we work with
a confidence-corrected surprise instead of Shannon surprise or compres-
sion success and we set a bound on the maximally allowed change in belief.
Surprise minimization is akin to, though more general than, reward predic-
tion error learning. Reward-based learning modifies the reward expectation
such that a recurring reward results in a smaller reward prediction error.
Similarly, surprise-minimization learning results in a smaller surprise for
recurring events (Schmidhuber, 2006; Friston et al., 2017).

To mathematically formulate learning through surprise minimization,
we define a learning rule L(X, πn) as a mapping from the current belief πn(θ )
to a new belief πn+1(θ ) = q(θ ) after receiving data sample X: q = L(X, πn).
The learning step after a single data sample will be called belief update.

We define the class L of plausible learning rules as the set of those learn-
ing rules L for which the surprise S (X; q) of a given data sample X under
the new belief q(θ ) is at most as surprising as the surprise S (X;πn) of that
data sample under the current belief πn(θ ):

L = {L : S (X; q) ≤ S (X;πn), q = L(X, πn),∀X ∈ X }. (3.3)

In other words, if the same data sample X occurs a second time right after
a belief update, it is perceived as less surprising than the first time.

After the belief update, we have a new belief πn+1 = q, and we may ask
how much the data X have affected the internal model. To answer this ques-
tion, we compare the surprise of data sample X under an arbitrary new
belief q with that under the previous belief:

�S (q;πn, X ) = S (X;πn) − S (X; q). (3.4)

First, since the update under a reasonable learning rule cannot lead to
an increase in surprise, we have �S (q;πn, X ) ≥ 0. Second, for an update
scheme with learning rule L, we can compare different data samples X and
X ′. A data sample X is considered more effective for a belief update than
X ′, if �S (q;πn, X ) > �S (q;πn, X ′). Note that definitions in equations 3.3
and 3.4 do not depend on our specific choice of surprise measure S . In
the following we choose S to be the confidence-corrected surprise Scc (see
equation 3.2).

The impact function �Scc(q;πn, X ); (see equation 3.4) for a given data
sample X is maximal if the update makes the new belief distribution q(θ )
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equal to the scaled likelihood p̂X (θ ). In this case, the confidence-corrected
surprise vanishes after the update. However, as the new distribution q = p̂X

does not depend on the current belief πn, it discards all previously learned
information. Therefore, it amounts to overfitting the new data point.

To avoid overfitting to the last data sample, we need a regularizer. In
order to limit our search to beliefs q that are not too different from the
current opinion πn, we consider only beliefs q that fulfill the constraint
DKL[q||πn] ≤ B with an upper bound B ≥ 0. The parameter B determines
how much we allow our belief to change after receiving a data sample X.
Note that the Kullback-Leibler divergence DKL[q||πn] is closely related to
the Bayes surprise in equation 2.2 except for a change of arguments. Thus,
our regularizer limits the maximally allowed Bayes’ surprise.

Maximizing the impact function �Scc(q;πn, X ) under the above bound
yields the following constraint optimization problem:

min
q:DKL[q||πn]≤B

Scc(X; q). (3.5)

Using the method of Lagrange multipliers, we find (see section 6.3) the so-
lution of the minimization problem in equation 3.5 to be

qγ (θ ) = p(X|θ )γ πn(θ )1−γ

Z(X; γ )
, (3.6)

where Z(X; γ ) = ∫
θ

p(X|θ )γ πn(θ )1−γ dθ is a normalizing factor and the pa-
rameter γ with 0 ≤ γ ≤ 1 is uniquely determined by the bound B. More pre-
cisely, γ is linked to B by a function γ = F(B) that increases monotonously
in the range for 0 ≤ γ < 1 (see appendix A.2 for the proof). Thus, once B
has been chosen, γ is no longer a free parameter and vice versa. Learning
is implemented by using the solution of equation 3.6 as the new opinion:
πn+1(θ ) = qγ (θ ).

Learning by updating according to equation 3.6 will be called the surprise
minimization learning (SMiLe), and we will refer to equation 3.6 as the SMiLe
rule. The update step of the SMiLe rule is reminiscent of Bayes’ rule except
for the parameter γ , which modulates the relative contribution of the like-
lihood p(X|θ ) and the current belief πn(θ ) to the new belief πn+1(θ ) = qγ (θ ).
Note that the SMiLe rule belongs to the class L of plausible learning rules
for all 0 ≤ γ ≤ 1.

Choosing γ in the range 0 ≤ γ ≤ 1 is equivalent to choosing a bound
B ≥ 0. To understand how the optimal solution in equation 3.6, and thus γ ,
relates to the boundary B, we illustrate its limiting cases (see Figure 2B)

1. B = 0 yields γ = 0 and the new belief q is identical to the current be-
lief πn. In other words, the new information is discarded.
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2. For B ≥ Bmax = DKL[p̂X ||πn], the solution is always the scaled like-
lihood p̂X (corresponding to γ = 1) because q = p̂X fulfills the con-
straint DKL[q||πn] ≤ B for any B ≥ Bmax and minimizes Scc(X; q)
among all possible belief distributions q. This is equivalent to the
unconstrained case and implies that all previous information is
discarded.

3. For 0 < B < Bmax the optimal solution is the new belief qγ , equation
(3.6), with 0 < γ < 1 satisfying DKL[qγ ||πn] = B. Moreover, B > B′ im-
plies γ > γ ′ (see Figure 2B and appendix A.2 for the proof).

While the SMiLe rule, equation 3.6, depends on a parameter γ that is
uniquely determined by the bound B, we have yet to indicate how to choose
B. Insights of hierarchical Bayesian models linked to human behavior sug-
gest that highly surprising data should result in larger belief shifts (Mathys
et al., 2014; Meyniel et al., 2015; Meyniel & Dehaene, 2017). Therefore, the
bound B should increase with the level of confidence-corrected surprise Scc.

The definition of an optimal (nonlinear) mapping from Scc to B (and thus
to γ ) would require further assumptions about how surprise is related to
the bound, and we will therefore not search for optimality. However, it is
instructive to study a few examples. For instance, if the nonlinear mapping
were a step function, the system would make a binary choice between either
keeping the old belief or relying on the last new data point. An extremely
slow increase would amount to largely ignoring the surprise and sticking
to the same old belief. Therefore, the sharpness of the transition in the map-
ping function matters. The exact link between the bound and surprise is,
however, not crucial as long as B is monotonic in surprise in a reasonable
way.

In the following, we choose a simple monotonic function to link the
bound to the surprise. For each data sample X, we take

B(X ) = mScc(X;πn)
1 + mScc(X;πn)

Bmax(X ), (3.7)

where Bmax(X ) = DKL[p̂X ||πn]. Here, the monotonic function depends on
a subject-specific parameter m that describes an organism’s propensity to-
ward changing its belief. Note that in equation 3.7, m = 0 indicates that the
subject will never change her belief. As m increases, so does a subject’s will-
ingness to change her belief. We expect that differences in m from one sub-
ject to the next will eventually allow us to capture heterogeneity in belief
update strategies when fitting human behavior. Although m is inserted in
equation 3.7 to model subject dependence, one could also search for the best
m algorithmically in a given simulated environment or other computational
setting.

Note that biological correlates of surprise such as pupil dilation (Hess &
Polt, 1960; Preuschoff et al., 2011) or the activity of a neuromodulator (Yu
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& Dayan, 2005; Iglesias et al., 2013; Joffily & Coricelli, 2013; Vossel et al.,
2014) will normally saturate at some maximal value, consistent with our
choice of a saturating function in equation 3.7. The relation of our approach
to existing data and theory in neurosciences is elaborated in section 4.

3.3 Surprise-Modulated Belief Update. The surprise-modulated belief
update combines the confidence-corrected surprise, equation (3.2) and the
SMiLe rule, equation 3.6, to dynamically update our belief: after receiving a
new data point X, we evaluate the surprise Scc(X;πn), which sets the bound
B, equation 3.7, for our update and allows us to solve for γ . We then up-
date the belief, using the SMiLe rule, equation 3.6, with parameter γ (see
algorithm 1).

The parameter γ in the SMiLe rule controls the impact of a data sam-
ple X on belief update such that a bigger γ causes a larger impact. More
precisely, the impact function �Scc(q;πn, X ) in equation 3.4 with the SMiLe
rule, equation 3.6, as the update scheme is an increasing function of γ (see
appendix A.3 for the proof).
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We note that in classical models of perception and attention (Itti & Baldi,
2009; Baldi & Itti, 2010), Bayesian surprise has been defined as a measure of
belief change such as DKL[πn+1||πn] or its mirror form, DKL[πn||πn+1], where
πn+1 is calculated by Bayes’ formula, equation 2.3. The fact that Bayesian
surprise is known only after the belief has been changed makes it a slow
measure of surprise, likely to correspond to the moment of enlightenment
surprise. We emphasize that our model of confidence-corrected surprise is
“fast” in the sense that it can be evaluated before the beliefs are changed—
as it should be as a measure of puzzlement surprise. The update step itself,
however, is slow and can be linked to enlightenment surprise. Indeed, the
impact function �Scc(q;πn, X ) is given by (see appendix A.4 for derivation),

�Scc(q;πn, X ) = 1
γ

DKL[πn||q] +
(

1
γ

− 1
)

DKL[q||πn] ≥ 0, (3.8)

where q is the new belief calculated with the SMiLe rule, equation (3.6).
Thus, the impact function is closely linked to Bayesian surprise. Therefore, a
larger reduction in the puzzlement surprise causes a bigger change in belief
and therefore a larger enlightenment surprise. As an aside, we note that
theories of active inference choose the next action so as to maximize the
enlightenment surprise (Sun et al., 2011; Little & Sommer, 2013; Frank et al.,
2013; Joffily & Coricelli, 2013; Friston et al., 2015, 2017).

3.4 Simulations. We now look at two examples to illustrate the func-
tionality of our proposed surprise-modulated belief update algorithm 1.
The first is a simple, one-dimensional dynamic decision-making task that
has been used in behavioral studies (Behrens et al., 2007; Nassar et al., 2012)
of learning under uncertainty. While somewhat artificial as a task, it is ap-
pealing as it nicely isolates different forms of uncertainty. This allows us to
demonstrate the basic quantities and properties of our algorithm and show
how its flexibility allows it to capture a wide range of behaviors. The sec-
ond example is a multidimensional maze exploration task that we use to
demonstrate how our algorithm extends to and performs in more complex
and realistic experimental environments.

3.4.1 Gaussian Estimation. Task. In the one-dimensional dynamic
decision-making task, subjects are asked to estimate the mean of a dis-
tribution based on consecutively and independently drawn samples. At
each time step n, a data sample Xn is drawn from a normal distribution
N (μn, σ

2
x ) and the subject is asked to provide her current estimate μ̂n of

the mean of the distribution. Throughout the experiment, the mean may
change without warning (see Figure 3A). Changes occur with a hazard
rate of H = 0.066. In Figures 3C and 3D, the hazard rate H is varied. The
variance σ 2

x remains fixed.
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Figure 3: Gaussian mean estimation task. At each time step, a data sample Xn is
independently drawn from a normal distribution whose underlying mean may
change within the interval [−20, 20] at unpredictable change points. On aver-
age, the underlying mean remains unchanged for 15 time steps corresponding
to a hazard rate H = 0.066. The standard deviation of the distribution is fixed
to 4 and is assumed to be known to the subject. (A) Using a surprise-modulated
belief update (see algorithm 1), the estimated mean (blue) quickly approaches
the true mean (dashed red) given observed samples (black circles). A few se-
lected change points are indicated by green arrows. (B) The weight factor γ in
equation 3.10 (magenta) increases at the change points, resulting in higher in-
fluence of newly acquired data samples on the new value of the mean. (C) The
estimation error ε per time step versus the weight factor 0 ≤ γ ≤ 1 in the delta
rule method with constant γ for four different hazard rates. The minimum es-
timation error (for best fixed γ ) is achieved by a γ (points on the horizontal
axis) that decreases with the hazard rate, indicating that a bigger γ is preferred
in volatile environments. Error bars indicate standard deviation over all trials
and 50 episodes. (D) For all models, the average estimation error ε increases
with the hazard rate. Moreover, surprise-modulated belief update (SMiLe, dark
blue) outperforms the delta rule with the best fixed γ (best fixed γ , yellow).
The best fixed γ for each hazard rate corresponds to the learning rate that has
minimal estimation error (indicated by points on the horizontal axis in panel
C). Although the surprise-modulated SMiLe rule performs worse than the ap-
proximate Bayesian delta rule (Nassar et al., 2010) (App. Bayes, light blue), the
difference in the performance is not significant, except for the very small hazard
rate of 0.01.
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Model. We model the subject’s belief before the nth sample Xn is observed,
as the normal distribution N (μ̂n−1, σ

2
n−1) where μ̂n−1 is the estimated mean

and σ 2
n−1 determines how uncertain the subject is about her estimation. In

order to keep the scenario as simple as possible, we assume σ 2
0 = σ 2

x . Thus,
in terms of the confidence-corrected surprise defined in equation 3.2, the
unknown mean μ plays the role of the unknown parameter θ , and the belief
distribution is described as a gaussian centered on μ̂, which we interpret as
the most likely estimate of μ.

Results for the estimation task. We find that the updated value of the mean
μ̂n resulting from the surprise-modulated belief update (see algorithm 1) is
a weighted average of the current estimate of the mean μ̂n−1 and the new
sample Xn (see section 6.4 for derivation),

μ̂n = γ Xn + (1 − γ )μ̂n−1. (3.9)

The weight factor, which determines to what extent a new sample Xn

affects the new mean μ̂n, is determined by γ , which increases with the sur-
prise Scc(Xn) of that sample (see Figure 3B):

γ =
√

mScc(Xn)
1 + mScc(Xn)

, Scc(Xn) = (Xn − μ̂n−1)2

2σ 2
x

. (3.10)

Note that in this example, the confidence-corrected surprise measure is re-
lated to the normalized unsigned prediction error |Xn − μ̂n−1|/σx. This out-
come of our SMiLe update is consistent with recent approaches in reward
learning that suggest rewarding prediction errors scaled by standard devi-
ation or variance (Preuschoff & Bossaerts, 2007).

We can interpret the estimate μ̂ in equation 3.9 as an exponential filter
over past data points with a filter constant related to γ , in agreement with
Bayesian estimates of means in a world that switches at unknown times
(Yu & Cohen, 2008). However, in our model, the filter parameter γ is mod-
ulated by the confidence-corrected surprise, which increases suddenly in
response to the samples immediately after the change points. As a conse-
quence, surprising samples increase the influence of a new data sample
on the estimated mean (see Figure 3B). This result of the SMiLe rule for
confidence-corrected surprise therefore leads to a result that is similar in
spirit to updates in hierarchical gaussian filter models (Mathys et al., 2011,
2014) where the variance of the belief at the lower level is controlled by the
estimated mean at the next higher level. In these models, the update step
is variable and depends on the precision (inverse variance) of the beliefs
(Mathys et al., 2011, 2014). Thus, both approaches, the hierarchical gaussian
filter model and the SMiLe rule, lead to a delta rule for the estimated mean
with an adaptive update rate. The advantage of hierarchical gaussian filter
models is that they provide a systematic approach in a Bayesian modeling
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framework so as to track both mean and precision of the belief (Mathys
et al., 2011, 2014). The potential advantage of our confidence-corrected sur-
prise measure is that it allows a rapid evaluation of surprise that directy
modulates, via the SMiLe rule, the weighting factor γ , albeit in a less rigor-
ous framework.

We compared our surprise-modulated belief update, equations 3.9 and
3.10, with a delta rule, equation 3.9, with constant weighting factor γ . To
enable a fair comparison, we consider two situations: (1) we arbitrarily fix
γ at 0.5 or (2) for a given hazard rate H, we first search for the optimal value
of fixed γ so as to minimize the estimation error (see Figure 3C). We find that
our surprise-modulated belief update outperforms the delta rule with any
constant update rate (see Figure 3D). This clearly shows that an adaptive
update rate is preferable to a fixed update rate.

We also compared our proposed algorithm with a delta rule that approx-
imates the optimal Bayesian solution (Nassar et al., 2010). In the optimal
model, the subject knows a priori that the mean will change at unknown
points in time—that is, the subject makes use of a hierarchical statistical
model of the world. The algorithm proposed in Nassar et al. (2010) pro-
vides an efficient approximate solution to estimate the parameters of the
hierarchical model. In this algorithm, the subject increases the update rate
as a function of the probability of encountering a change point at a given
time step. This probability requires knowledge or online estimation of the
hazard rate, which indicates how frequently change points occur. Although
our surprise-modulated belief update does not outperform the approxi-
mate Bayesian delta rule, the difference in performance is, in most cases,
not significant (see Figure 3D). In other words, our method, which does not
require any information about the hazard rate, can almost reach the quality
of the optimal Bayesian solution, with significantly reduced computational
complexity. Note that the SMiLe rule is not designed for (almost) stationary
environments where no fundamental change in context occurs. Therefore,
in the case where the true mean is constant (low hazard rate), the SMiLe
rule results in increased volatility in estimation. This is why the difference
in performance of SMiLe and the optimized Bayesian delta rule becomes
more evident for smaller hazard rates than bigger ones (see Figure 3D).

3.4.2 Maze Exploration. Task. The maze exploration task is similar to tasks
used in behavioral neuroscience and robotics (Morris, Garrard, Rawlins, &
O’Keefe, 1982; Gillner & Mallot, 1998; Nelson, Grant, Galeotti, & Rhody,
2004; Sun et al., 2011; Rezende & Gerstner, 2014). There are two environ-
ments A and B, each composed of the same uniquely labeled (e.g., by col-
ors or cue cards) rooms. A and B differ only in the spatial arrangement
(topology) of rooms (see Figure 4). Neighboring rooms are connected and
accessible through doors. Initially the agent is placed into either A or B. At
each time step, a door of the current room opens and the agent moves into
the adjacent room, thus exploring the environment following a completely
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Figure 4: Maze exploration task. Environments A (left) and B (right) both con-
sist of 16 rooms but differ in topology. At each time step, one of the four avail-
able doors (up, down, right, left) in the current room (e.g., s = 6) is randomly
opened (with probability 0.25). While the learning agent is in environment A,
the environment may change to B with probability PA→B ≤ 0.1 in the next time
step of duration �t. Similarly, PB→A indicates the environment switches from
B to A. Therefore, as the agent starts moving out of state s = 6, depending on
the current environment and switch probabilities PA→B and PB→A, it will end
up in environment A (i.e., s′ ∈ {2, 10, 7, 5}) or B (i.e., s′ ∈ {10, 1, 3, 13}). The du-
ration of a stay in environment A is therefore exponentially distributed with
mean τA = �t/PA→B , where the parameter τA determines the timescale of sta-
bility in environment A; for larger τA, an agent has more time for adapting to A
after a change point. The expected fraction of time spent in total within environ-
ment A is equal to ψA = PB→A/(PB→A + PA→B ). Note that τA and ψA are two free
parameters that we can change to study how the agent performs in different
circumstances (e.g., see Figure 8).

random exploration strategy. After a random number of time steps, the en-
vironment is switched. The agent is not informed that a switch has occurred.
Once the environment is changed, the agent must quickly adapt to the new
environment. Note that this task differs from a reinforcement learning task
because the task at hand consists of just the exploration phase. In particular,
there is no reward involved in learning. Note that it also differs from active
inference or active exploration because the agent is just randomly moving
around to collect experiences. In particular, the agent does not choose an
action so as to maximize information gain or surprise reduction.

Model. We model the knowledge of the environment by a learning agent
that updates a set of parameters α(s, š) ≥ 1 used for describing its belief
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about state transitions from s ∈ {1, 2, . . . , 16} to š ∈ {1, 2, . . . , 16}\s, where 16
is the number of rooms. More precisely, an agent’s belief about how likely it
is to visit š, given the current state s, is modeled by a Dirichlet distribution
parameterized by a vector of parameters �α(s) ∈ R

15. The components of the
vector �α(s) are denoted as α(s, š). The 240 parameters α(s, š) summarize the
current belief of the agent about the model of the world. We emphasize that
the agent has a structurally incomplete model of the world since it does not
know that there are two different environments.

In order to see how well our proposed surprise-modulated belief up-
date algorithm performs in this task, we compare it with a naive Bayesian
learner and an online expectation-maximization (EM) algorithm in a hier-
archical world model (Mongillo & Deneve, 2008). While the naive Bayesian
model assumes that there is only a single stable, but stochastic, envi-
ronment, the hierarchical Bayesian model exploits the true architecture
of the hidden Markov model (HMM) corresponding to the task and ap-
proximates the optimal Bayesian solution using an EM algorithm (see
appendix A.5).

Results for the maze task. The surprise-modulated belief update (see al-
gorithm 1), with the Dirichlet distribution inserted, yields algorithm 2 for
the maze exploration task (see section 6.5 for derivation). Immediately af-
ter a transition from the current state s to the next state s′, the new belief qγ

obtained by the SMiLe rule, equation 3.6, is a Dirichlet distribution �αnew(s)
with components αnew(s, š) = γ (1 + [š = s′]) + (1 − γ )αold(s, š), that can be
written as a weighted average of the parameters of the current belief πn

(i.e., αold(s, š)) and those of the scaled likelihood p̂X (i.e., 1 + [š = s′]). Here,
[š = s′] indicates a number that is 1 if the condition in brackets is satisfied
and 0 otherwise. Similar update schemes for Dirichlet distributions during
foraging also appear in a Bayesian framework (Sun et al., 2011; Friston et al.,
2016, 2017).

Similar to the gaussian mean estimation task, surprise is initially high
and slowly decreases as the agent learns the topology of the environment
(see Figure 5A). When the environment is switched, the sudden increase in
the surprise signal (see Figure 5A) causes the parameter γ to increase (see
Figure 5B). This is equivalent to discounting previously learned information
and results in a quick adaptation to the new environment. To quantify the
adaptation to the new environment, we compare the state transition prob-
abilities of the current model with the true transition probabilities of the
two environments. We find that the estimation error of the state transition
probabilities in the new environment is quickly reduced after the switch
points (see Figure 5C). Following a change point, the model uncertainty U,
measured as the entropy of the current belief about the state transition prob-
abilities, increases, indicating that the current model of the topology is inac-
curate (see Figure 5D). The commitment to a belief, defined in equation 3.1
as the negative entropy of the belief distribution, therefore decreases when-
ever a switch point occurs. A few time steps later, the uncertainty U slowly
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decreases, indicating an increased confidence in what is learned in the new
environment and thus an increased commitment to the current model.

If we look more closely at the model parameters, we find that the
surprise-modulated belief update (see algorithm 2) enables the agent to ad-
just the estimated state transition probabilities. In Figure 6 we compare the
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Figure 5: Time series of relevant signals in the surprise-modulated belief up-
date, algorithm 2, applied to the maze exploration task. All curves have been
smoothed with an exponential moving average (EMA) with a decay constant
0.1. The plots are shown for 1100 time steps (horizontal axis) toward the end
of a simulation with 20,000 time steps. The agent visits environments A and B
equally often and spends on average 200 time steps in each environment be-
fore a switch occurs. Red bars indicate the time that the agent explores envi-
ronment A. Blue diamonds indicate 100 time steps after a change point from B
to A. (A) Confidence-corrected surprise Scc (see equation 3.2) (green) increases
at switch points and decreases (with fluctuations) until the next change point.
(B) The parameter γ (magenta) increases with the surprise at the change points
and causes the next data samples to be more effective on belief update than the
samples before the change point. (C) The estimation errors for the transition
matrix T̂, EA[t] = ||T̂[t] − TA||2 = 256−1 ∑

s,s′ [T̂[t](s, s′) − TA(s, s′)]2 (solid black)
and EB[t] = ||T̂[t] − TB||2 (solid yellow) while in environment A and B, respec-
tively, indicate a rapid adaptation to the new environment after the change
points. The dashed black and yellow lines correspond to the estimation errors
EA and EB , respectively, when the naive Baye’s rule (as a control experiment)
is used for belief update. The naive Bayes’ rule converges to a stationary so-
lution (no significant change in the estimation error after a switch of environ-
ment). (D) The model uncertainty (light blue) increases for a few time steps
following a change in the environment, an alert that the current model might be
wrong. It then starts decreasing as the agent becomes more certain in the new
environment.

estimated and the true transition probabilities 100 time steps after a switch.
Given that the environment is characterized by 64 different transitions (in a
space of 16 × 15 = 240 potential transitions), 100 time steps allow an agent
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Figure 6: True and estimated state transition probabilities in the maze explo-
ration task. The color intensity for each entry (s, s′) represents the probability
of transition from a current state s (row) to a next state s′ (column). (A) The
true state transition probability matrix TA(s, s′) in environment A. Each row
TA(s, :) has only four nonzero entries (small light brown squares) whose po-
sitions indicate the neighboring rooms of state s in environment A. Note that∑

š TA(s, š) = 1 ∀s. (B) The true state transition probability matrix TB (s, s′) for
the environment B, which has a different topology compared to A. (C) The es-
timated state transition probability matrix T̂A when the surprise-modulated al-
gorithm 2 is used for belief update. T̂A = K−1 ∑K

k=1 T̂[tk
B→A + 100] is calculated

by averaging the estimated transition matrix T̂[t] at 100 time steps after each
of K change points tk

B→A. Here, tk
B→A denotes the kth time that the environment

is changed from B to A and has remained unchanged for at least the next 100
time steps (relevant time points are indicated by blue diamonds in Figure 5).
The similarity between T̂A and TA indicates that algorithm 2 enables the agent
to quickly adapt to environment A once a switch from B to A occurs. (D) The
estimated transition matrix T̂B (similarly defined as T̂A but for environment B)
when algorithm 2 is used for belief update. Note its similarity to the true ma-
trix TB . (E, F) The estimated state transition probability matrices T̂A (top) and
T̂B (bottom) when the naive Bayesian method (as a control experiment) is used
for belief update. A Bayesian agent does not adapt well to the new environment
after a switch occurs because it learns a weighted average of true transition ma-
trices TA and TB , where the weight is proportional to the fraction of time spent
in each environment. Since both environments are visited equally in this exper-
iment, the estimated quantities approach (TA + TB )/2.

to explore only a fraction of the potential transitions. Nevertheless, 100 time
steps after a switch, the matrix of transition probabilities already resembles
that of the present environment (see Figures 6C and 6D).
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The surprise-modulated belief update is a method of quick learning.
How well does our SMiLe update rule perform relative to other existing
models? We compared it with two well-known models. First, we compared
it to a naive Bayesian learner that tries to estimate the 240 state transi-
tion probabilities using Bayes’ rule. Note that by construction, the naive
Bayesian learner is not aware of the switches between the environments.
Second, we compared it to a hierarchical statistical model that reflects the ar-
chitecture of the true world as in Figure 4. The task is to estimate the 2 × 240
state transitions in the two environments, as well as transition probabilities
between the environments pA→B and pB→A by an online EM algorithm.

For the naive Bayesian learner, we find that its behavior indicates a
steady increase in certainty, regardless of how surprising the samples are. In
other words, it is incapable of changing its belief after it has sufficiently ex-
plored the environments (see Figure 5C). The state transition probabilities
are estimated by averaging over the true parameters of both environments,
where the weight of averaging is determined by the fraction of time spent
in the corresponding environment (see Figures 6E and 6F).

The comparison of our surprise-modulated belief update with the on-
line EM algorithm (Mongillo & Deneve, 2008) for the hierarchical Bayesian
model associated with the changing environments provides several insights
(see Figure 7). First, after fewer than 1000 time steps, the estimation error
for environment A during short episodes in environment A drops below
EA = 0.002. The online EM algorithm takes 10 times longer to achieve the
same level of accuracy. While the solution of the SMiLe rule in the long run
is not as good as that of the online EM algorithm, our algorithm benefits
from a reduced computational complexity and simpler implementation.

To further investigate the ability of an agent to adapt to the new envi-
ronment after a switch, we analyzed performance as a function of two free
parameters that control the setting of the task: the fraction of time spent
in environment A and the average time spent in environment A before a
switch to B occurs. To do so, we calculate the average estimation error in
state transition probabilities 64 time steps after a switch occurs. We con-
sider only those switches after which the agent stays in that environment
for at least 64 time steps. Note that 64 is the minimum number of time steps
that is required to ensure that all possible transitions from 16 rooms to their
4 neighbors could occur. A smaller estimation error for a given pair of free
parameters indicates a faster adaptation to the new environment for that
setting.

We found that the surprise-modulated belief enables an agent to quickly
readjust its estimation of model parameters, even if the fraction of time
spent in an environment is relatively short. In that sense, it behaves sim-
ilarly to the approximate hierarchical Bayesian approach (online EM algo-
rithm). This is not, however, the case for a naive Bayesian learner whose
estimation error in each environment depends on the fraction of time spent
in the corresponding environment (see Figure 8).
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Figure 7: Comparison of surprise-modulated belief update with an online EM
algorithm for the hierarchical Bayesian model. (A) The estimation error EA (ver-
tical axis) of state transition probabilities within environment A versus time
(horizontal axis), for surprise-modulated belief update (black) and online EM
learner (blue). Bottom plots depict zooms during the early (left) and late (right)
phases of a simulation of 20,000 time steps. In the early phase of learning (bot-
tom left), the surprise-modulated belief update enables the agent to quickly
learn model parameters after a switch to environment A (indicated by red
bars). In the late phase of learning (right), however, the online EM algorithm
adapts to the new environment faster and more accurately than the surprise-
modulated belief update. (B) The inferred probability PA of being in environ-
ment A (blue, right vertical axis) used in the online EM algorithm and the
confidence-corrected surprise Scc (black, left vertical axis) used in the surprise-
modulated belief update.

The naive Bayesian learner suffers from low accuracy in estimation and
cannot adapt to environmental changes. A full hierarchical Bayesian model,
however, requires prior information about the task and is computation-
ally demanding. For example, the computational load of the hierarchical
Bayesian model increases with the number N of environments between
which switching occurs. The surprise-modulated belief update, however,
balances accuracy and computational complexity: computational complex-
ity remains, by construction, independent of the number of switched en-
vironments. In other words, since we accept from the beginning that our
model of the world will be approximate and structurally incomplete, the
model can perform reasonably well after having seen a small number of
data samples.

4 Discussion

For many decades, surprise has been an influential concept for research
in information theory (Shannon, 1948; Tribus, 1961), experimental neuro-
science of EEG signals (Squires et al., 1976) or pupil dilation (Hess & Polt,
1960), psychophysics of covert attention (Itti & Baldi, 2009; Baldi & Itti,
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Figure 8: The estimation error ε in the maze exploration task, as a function of
(1) the average time spent in environment A before a switch to environment B
(τA = �t/pA→B , vertical axis) and (2) the fraction of time spent in environmentA
(ψA = PB→A/(PB→A + PA→B ), horizontal axis). (A) The average estimation error
(of state transition probabilities), 64 time steps after a switch from B to A, when
surprise-modulated belief update (see algorithm 2) is used for learning. The
spread of blue (lower estimation error) illustrates that the surprise-modulated
belief update enables an agent to quickly adapt to the environment visited af-
ter a switch. For each pair (τA, ψA), the simulation is repeated for 20 episodes,
each consisting of 20,000 time steps. In each episode, a different rearrangement
of rooms for building environment B is used to make sure that the result is not
biased by a specific choice of this environment. (B) The average estimation er-
ror when the online EM algorithm is used for learning the hierarchical statisti-
cal model. (C) The average estimation error when the naive Bayesian learner is
used for belief update. The estimation error for this model is mainly determined
by the fraction of time spent in environment A (i.e., ψA). The estimation error
decreases with the time spent in environment A regardless of the timescale of
stability determined by τA.

2010), fMRI (Iglesias et al., 2013; Meyniel & Dehaene, 2017), machine learn-
ing (Storck et al., 1995; Schmidhuber, 1991, 2006, 2010), neuromodulation
(Yu & Dayan, 2005; Iglesias et al., 2013; Joffily & Coricelli, 2013; Vossel et al.,
2014), and Bayesian variational learning (Friston, 2010), to name just a few
examples. Moreover, surprise minimization is a well-known learning prin-
ciple for active inference in learning agents (Storck et al., 1995; Schmidhu-
ber, 2006; Friston et al., 2016, 2017), and linked to intrinsically generated
reward signals, analogous to reinforcement learning (Storck et al., 1995;
Frank et al., 2013; Schmidhuber, 2010; Singh et al., 2004; Sun et al., 2011;
Schultz, 2015). On the background of this rich tradition, the contributions
of this article are two-fold.

First, we introduced the notion of confidence-corrected surprise as a
quantification of immediate (i.e., low reaction time) puzzlement surprise.
Earlier quantifications of puzzlement surprise have measured the Shannon
surprise (also called information content or model evidence) (Tribus, 1961;
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MacKay, 2003) or approximated Shannon surprise by a free-energy bound
(MacKay, 2003; Friston, 2010). However, in our opinion, Shannon surprise
neglects the importance of the commitment to an opinion (also called preci-
sion in case of a gaussian belief distribution). In our framework, two agents
A and B with different world models may assign the same low probability
to a data point X—yet if A is more committed to his opinion than B, he will
be more surprised.

Second, for models that do not capture the complexity of the world, we
proposed a surprise-modulated update scheme for learning in nonstation-
ary environments derived from a heuristic approach toward surprise min-
imization. In this update scheme, sudden changes are identified by high
surprise and result in placing more weight on new information.
Our surprise-modulated learning rule is closely related to well-known
precision-based update schemes used in Kalman filters (Kalman, 1960) or
in iterative solutions of hierarchical Bayesian models (Mathys et al., 2011,
2014). But while the class of solvable Bayesian models is limited and typ-
ically involves nontrivial integrals, our approach avoids the specification
and inversion of complicated or hierarchical Bayesian models. In fact, de-
spite the obvious success of Bayesian models for understanding the brain
(Ernst & Banks, 2002; Körding & Wolpert, 2004; Knill & Pouget, 2004; Ma
et al., 2006; Beck et al., 2008; Fiser et al., 2010; Berkes et al., 2011; Kolossa
et al., 2013), we believe that the brain normally does not use the correct
hypothesis class (e.g., a multilevel hierarchical partially observable Marko-
vian process) and Bayes-optimal updates rules to capture dependencies in
the outside world or in a specific experimental design; rather, the brain may
develop incomplete models using an imperfect hypothesis class.

We discuss some of the above insights in more detail.

4.1 Puzzlement Surprise Is Rapid. We found it useful to distinguish
puzzlement surprise from enlightenment surprise. We conjecture that the
P300 component of the EEG, which is visible within less than 400 ms af-
ter the surprising stimulus (Squires et al., 1976), indicates puzzlement sur-
prise. Typically the P300 component has been correlated with violation of
expectation, with Shannon surprise, or with its free-energy bound (Squires
et al., 1976; Friston, 2005; Meyniel et al., 2016). One of the questions for the
future is whether confidence-corrected surprise correlates better with EEG
and fMRI data than Shannon surprise or its free-energy bound.

Our working hypothesis is that the brain evaluates puzzlement sur-
prise even before recognition, inference, or learning occurs. We thus need
to evaluate surprise before we update our belief so that puzzlement sur-
prise may control update rates. For the confidence-corrected surprise mea-
sure introduced in this article, a rapid evaluation (before an update of the
model occurs) is indeed possible. While an evaluation of enlightenment sur-
prise using measures of Bayesian surprise (Storck et al., 1995; Itti & Baldi,
2009) might also be rapid, it is, in our view, more difficult to imagine how
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Bayesian surprise could modulate update rates because Bayesian surprise
or compression surprise (Schmidhuber, 2006) are quantities that are avail-
able only after the update step.

In our view, the update step happens after the evaluation of puzzlement
surprise. In our model and completely analogous to free-energy models
(Friston, 2010), the update step in turn leads to minimization of future puz-
zlement surprise. The amount of belief change during one update step of
the SMiLe rule measures enlightenment surprise and can be quantified by
Bayesian surprise (Storck et al., 1995; Itti & Baldi, 2009; Baldi & Itti, 2010)
which is in turn linked to the reduction in (expected) free energy or epis-
temic value (Friston, 2010; Friston et al., 2017) and the progress in compres-
sion (Schmidhuber, 2006, 2010).

4.2 New versus Old Information. The performance of the proposed be-
lief update algorithm is primarily achieved by two features of the update
rule: (1) the algorithm adaptively increases the influence of new data on
the belief update as a function of how surprising the data were and (2) the
algorithm increases model uncertainty in the face of surprising data, thus
increasing the influence of new data on current and future belief updates.
The importance of the first point has been recognized and incorporated pre-
viously (Nassar et al., 2012; Pearce & Hall, 1980). The second point is auto-
matically incorporated in hierarchical gaussian filter models (Mathys et al.,
2011, 2014) but has often been omitted in previous simpler models. Essen-
tially, a surprising sample not only signals a potential change; it also signals
that our current model may be wrong, so that we should be less certain
about it. This increase in model uncertainty (decrease in commitment or
precision) implies discounting the influence of past information in current
and future belief updates.

Both humans and animals adaptively adjust the relative contribution of
old and newly acquired data on learning (Behrens et al., 2007; Nassar et al.,
2012; Krugel et al., 2009; Pearce & Hall, 1980) and rapidly adapt to chang-
ing environments (Pearce & Hall, 1980; Wilson et al., 1992; Holland, 1997). A
full (hierarchical) Bayesian approach is possible only if the subject is aware
of the correct (hierarchical) architecture of the generative model of the task,
(e.g., the timescale of change in the environment or the number of envi-
ronments between which switches occur). Calculating the probability of a
change point in a gaussian estimation task (Nassar et al., 2010), estimating
the volatility of the environment in a reversal learning task (Behrens et al.,
2007), and dynamically forgetting the past information with a controlled
time constant (Ruter, Marcille, Sprekeler, Gerstner, & Herzog, 2012) are all
examples of addressing learning in changing environments without explicit
knowledge of the full Bayesian model of the real world. While our proposed
surprise-based algorithm may not be theoretically optimal, it approximates
the optimal (hierarchical) Bayesian solution with minimal knowledge re-
garding the task or the environment.
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A corollary of point (2) is that the SMiLe rule guarantees that a small
model uncertainty remains even after a long stationary period. This remain-
ing uncertainty ensures that an organism can still detect a change even after
having spent an extensive amount of time in a given environment (see Fig-
ure 5C). It also means that the learning rate never falls to zero, so that recent
data samples are more important than old ones, even during a stationary
fully stochastic sequence, consistent with behavioral experiments (Squires
et al., 1976; Meyniel et al., 2016).

4.3 Potential Applications. Surprise as a violation of expectation can
be considered as a model prediction error (Squires et al., 1976; Yu & Dayan,
2005; Friston, 2005) that is more general than prediction errors used in
reward-based learning paradigms (O’Doherty et al., 2003, 2004; Schultz,
2010). Analogous to existing neuroscience studies with traditional surprise
measures (Squires et al., 1976; Friston, 2005; Yu & Dayan, 2005; Iglesias et al.,
2013; Joffily & Coricelli, 2013; Vossel et al., 2014; Meyniel et al., 2016; Meyniel
& Dehaene, 2017), confidence-corrected surprise can be used in EEG and
fMRI experiments to identify and model surprise-based responses within
and across subjects. Similar to prediction error estimation in hierarchical
gaussian filter models (Mathys et al., 2011; Iglesias et al., 2013), confidence-
corrected surprise can be estimated from behavioral data. At the group
level, individual subjects are characterized by different values of the pa-
rameter m while the effective learning rate for updating the model provides
a sample-by-sample measure to model responses to confidence-corrected
surprise across time and within subjects.

Moreover, it is in principle possible to fit γ to behavioral data without
computing surprise or to control γ by something other than surprise. In
general, replacing the full hierarchical Bayesian model update during a
learning task in a changing environment with the SMiLe rule simplifies
calculations, which should make the SMiLe-framework an attractive can-
didate for fitting relevant parameters to behavioral data.

Furthermore, both confidence-corrected surprise and the SMiLe rule
have wide-reaching implications outside the framework presented here. On
the one hand, our surprise measure can not only modulate learning but can
be used as a trigger signal for an algorithm that needs to choose between
several uncertain states or actions, as is the case in change point detection
(Nassar et al., 2010; Ruter et al., 2012; Wilson, Nassar, & Gold, 2013), mem-
ory and cluster formation (Gershman & Niv, 2015), exploration-exploitation
trade-off (Cohen, McClure, & Yu, 2007; Jepman & Nieuwenhuis, 2011), nov-
elty detection (Bishop, 1994; Knight, 1996), and network reset (Bouret &
Sara, 2005).

4.4 Neuromodulatory Signals and Surprise. There is ample evidence
for a neural substrate of surprise. Existing measures of expectation vi-
olations such as absolute and variance-scaled reward prediction errors
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(Schultz, 2015, 2016), unexpected uncertainty (Yu & Dayan, 2005), risk pre-
diction errors (Preuschoff et al., 2008), model prediction error in hierar-
chical models (Iglesias et al., 2013), emotional valance (Joffily & Coricelli,
2013), and Bayesian belief updating have been linked to different neuro-
modulatory systems. Among those, the noradrenergic system has emerged
as a prime candidate for signaling unexpected uncertainty: noradrenergic
neurons respond to unexpected changes such as the presence of a novel
stimulus, unexpected pairing of stimulus with a reinforcement during con-
ditioning, and reversal of the contingencies (Sara, Vankov, & Herve, 1994;
Vankov, Minvielle, & Sara, 1995; Aston-Jones, Rajkowski, & Kubiak, 1997;
Sara, 2009). The P300 component of the event-related potential (Squires
et al., 1976; Pineda et al., 1997; Missionier et al., 1999), which is associated
with novelty (Donchin, Ritter, & McCallum, 1978) and surprise (Verleger
et al., 1994), is modulated by noradrenaline. It also modulates pupil size
(Costa & Rudebeck, 2016) as a physiological response to surprise. The dy-
namics of the noradrenergic system are fast enough to quickly respond
to unexpected events (Rajkowski, Kubiak, & Aston-Jones, 1994; Clauton,
Rajkowski, Cohen, & Aston-Jones, 2004; Bouret & Sara, 2004), a functional
requirement for surprise to control learning; see (Sara, 2009; Bouret & Sara,
2005; Aston-Jones & Cohen, 2005) for a review. We predict that in exper-
iments with changing environments, the activity of noradrenaline should
exhibit a high correlation with the confidence-corrected surprise signal. It
is an empirical question to check whether the correlation with confidence-
corrected surprise is better or worse than that with competing surprise mea-
sures (Shannon, 1948; Storck et al., 1995; Schmidhuber, 2006; Itti & Baldi,
2009; Friston, 2010).

Furthermore acetylcholine (ACh) is a candidate neuromodulator for en-
coding expected uncertainty (Yu & Dayan, 2005) and thus is linked to the
model uncertainty (although it might also be linked to other forms of un-
certainty such as environmental stochasticity).

A variety of experimental findings are consistent with and can be ex-
plained by our definition of confidence-corrected surprise and the SMiLe
rule. It has been shown both theoretically (Yu & Dayan, 2005) and em-
pirically (Gu, 2002) that noradrenaline and ACh interact such that ACh
sets a threshold for noradrenaline to indicate fundamental changes in the
environment (Yu & Dayan, 2005). This is consistent with our hypothesis
that if an agent is uncertain about its current model of the world, un-
expected events are perceived as less surprising than when the agent is
almost certain about the model (which is the key idea behind the
confidence-corrected surprise). The impairment of adaptation to contex-
tual changes due to noradrenaline depletion (Sara, 1998) can be explained
by the incapability of subjects to respond to surprising events signaled
by noradrenaline. The absence or suppression of ACh (low model uncer-
tainty) implies little or no variability of the environment so that even small
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prediction error signals are perceived as surprising (Jones & Higgins, 1995),
consistent with the excessive activation of noradrenergic system in such
situations.

Moreover, there is empirical evidence that noradrenaline and ACh both
affect synaptic plasticity in the cortex and the hippocampus (Bear & Singer,
1986; Gu, 2002), suppress cortical processing (Kimura, Fukuda, & Tsumoto,
1999; Kobayashi et al., 2000), and facilitate information processing from tha-
lamus to the cerebral cortex (Hasselmo, Wyble, & Wallenstein, 1996; Gil,
Connors, & Amitai, 1997; Hsie, Cruikshank, & Metherate, 2000). This is
consistent with our theory that surprise balances the influence of newly ac-
quired data (thalamocortical pathway) and old information (corticocortical
pathway) during belief update.

In our view, the activity of a single neuromodulator, or a combination
of several neuromodulators, conveys the amount of puzzlement surprise
to many areas of the brain, where it regulates the learning rate of those
synapses that have been involved in representing the recent stimuli (Fré-
maux & Gerstner, 2016). This view has been illustrated, for example, for
networks of stochastically spiking neurons in the context of free-energy
minimization, where the learning rate was modulated by an amount pro-
portional to free-energy minus expected free energy (Rezende & Gerstner,
2014; Brea et al., 2013). In this article, we showed the modulation of learning
rate by confidence-corrected surprise, albeit in a more abstract, nonspiking
model.

5 Conclusion

In summary, we have proposed confidence-corrected surprise as a measure
of puzzlement surprise and a surprise-modulated belief update algorithm
that can be used for modeling how humans and animals learn in chang-
ing environments. The belief updating step gives, similar to compression
progress (Schmidhuber, 2006, 2010) or Bayesian surprise (Storck et al., 1995;
Itti & Baldi, 2009) or parameter update in free-energy minimization (Fris-
ton, 2010), an interpretation of enlightenment surprise.

Our results suggest that the SMiLe rule in an imperfect world model can
approximate an optimal hierarchical Bayesian learner (e.g., Mathys et al.,
2011, 2014; Mongillo & Deneve, 2008), with significantly reduced computa-
tional complexity. Our model of confidence-corrected surprise provides a
framework for future work, including computational studies, so as to find
out how the proposed model can be neurally implemented; neurobiologi-
cal studies, so as to unravel the interaction between different neural circuits
that are functionally involved in learning under surprise; and behavioral
studies with human subjects, so as to correlate confidence-corrected sur-
prise with EEG or pupil size.
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6 Mathematical Methods

In this section we provide mathematical explanations for statements made
in the section 3. Long and detailed calculations have been moved to the
appendix.

6.1 The Scaled Likelihood is the Posterior Belief under a Flat Prior.
Assume that all model parameters θ stay in some bounded convex interval
of volume A. The volume A can be arbitrarily large. Given a data sample
X, the posterior belief p f lat (θ |X ) about the model parameters θ (derived by
Bayes’ rule) under the assumption of a flat prior π̂0(θ ) = 1/A is

p f lat (θ |X ) = p(X|θ )π̂0(θ )∫
θ

p(X|θ )π̂0(θ ) dθ
= p(X|θ )∫

θ
p(X|θ ) dθ

= p(X|θ )
||pX || = p̂X (θ ),

(6.1)

where ||pX || = ∫
θ

p(X|θ )dθ is a data-dependent constant. Therefore, the
scaled likelihood p̂X (θ ) is the posterior under a flat prior. Note that the result
is independent of the volume of A so that we can take the limit of A → ∞.

6.2 Confidence-Corrected Surprise Increases with Shannon Surprise
and Bayesian Surprise. In this section, we show that confidence-corrected
surprise can be written as a sum of terms that include Shannon surprise,
Bayesian surprise, and commitment. Two corollaries will be that a commit-
ted subject is more surprised than an uncommited one (if the data have the
same probability for both subjects) and that (for the same level of commit-
ment) the surprise decreases with the probability of the data.

The confidence-corrected surprise in equation 3.2 can be expressed as

Scc(X;πn) = −
∫

θ

πn(θ ) ln p(X|θ )dθ + ln ||pX || − H(πn), (6.2)

where ||pX || is a data-dependent constant defined in equation 6.1 and H(πn)
denotes the entropy of the current belief (cf. equation 3.1). Let us call the
first term − ∫

θ
πn(θ ) ln p(X|θ ) in equation 6.2 the raw surprise Sraw(X;πn) of

a data sample X:

Sraw(X;πn) = −
∫

θ

πn(θ ) ln p(X|θ ) dθ. (6.3)

We now show that the raw surprise Sraw(X;πn) in equation 6.3 increases
with the Shannon surprise and the Bayesian surprise.

In the following, small numbers above an equals sign refer to equations
in the text. The raw surprise Sraw(X;πn) in equation 6.3 can be rewritten
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as a linear combination of both Bayesian surprise and Shannon surprise
because

Sraw(X;πn)
(6.3)= −

∫
θ

πn(θ ) ln p(X|θ ) dθ

(2.3)= −
∫

θ

πn(θ ) ln
[

π
Bayes
n+1 (θ )

(∫
θ

p(X|θ )πn(θ ) dθ
)

πn(θ )

]
dθ

= DKL[πn||πBayes
n+1 ] −ln

[ ∫
θ

p(X|θ )πn(θ ) dθ

]
, (6.4)

where the first term DKL[πn||πBayes
n+1 ] stands for the Bayesian surprise and the

second term −ln
[ ∫

θ
p(X|θ )πn(θ ) dθ

]
stands for the Shannon surprise.

Note that for the calculation, we introduced a hypothetical belief π
Bayes
n+1

that would correspond to an update step under Bayes’ rule—even though
we do not actually perform such an update step. This notation was intro-
duced just to highlight that the raw surprise Sraw(X;πn) in equation 6.4 com-
bines the puzzlement surprise of Shannon (information content) and the
enlightenment surprise defined as Bayesian surprise after Bayesian belief
updating. We emphasize again that π

Bayes
n+1 refers to the update step under a

naive Bayes’ rule, but this is not the rule that we apply in our surprise-based
learning scheme.

As an aside we note the formal similarity of equation 6.4 with the for-
malism of free energy in equation 2.4. In both cases, the Shannon sur-
prise (model evidence) is additively combined with a Kullback-Leibler
divergence.

Corollary 1. Less probable data lead to a larger surprise Scc. Our proposed
confidence-corrected surprise measure Scc(X;πn) in equation 3.2 inherits
the property of the Shannon surprise from the raw surprise Sraw(X;πn) in
equation 6.4. In particular, for a fixed opinion πn and for the same value of
||pX ||, a data point of lower probability leads to a larger surprise than one
of higher probability.

Corollary 2. Committed subjects are more surprised than uncommitted ones.
The value of the confidence-corrected surprise, equation 6.2, depends
on a subject’s commitment to her belief. The commitment to the cur-
rent model of the world is represented by the negative entropy—H(πn) =∫
θ
πn(θ ) ln πn(θ )dθ . Equation 6.2 shows that the confidence-corrected sur-

prise decreases with entropy, which is equivalent to an increase with
commitment. Therefore, given the same probability of the data point un-
der two different world models, the subject with a stronger commitment
(smaller entropy) is more surprised than the subject with a weaker commit-
ment (higher entropy) (see the example of Figure 1). Intuitively, if we are
uncertain about what to expect (because we have not yet learned the struc-
ture of the world), receiving a data sample that occurs with low probability
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under the present model is less surprising than a low-probability sample in
a situation when we are almost certain about the world (see Figure 2A).

6.3 Derivation of the SMiLe Rule. We note that the KL divergence
DKL[a||b] is convex with respect to the first argument a. Therefore, both the
objective function Scc(X; q) in equation 3.2 and the constraint DKL[q||πn] ≤ B
in the optimization problem in equation 3.5 are convex with respect to q,
which ensures the existence of the optimal solution.

We solve the constraint optimization by introducing a nonnegative La-
grange multiplier λ−1 ≥ 0 and a Lagrangian

L(q, λ) = Scc(X; q) − 1
λ

(B − DKL[q||πn])

(6.2)=
〈
−ln p(X|θ ) + ln q(θ ) + 1

λ
ln

q(θ )
πn(θ )

〉
q
− B

λ
+ ln ||p||, (6.5)

where 〈.〉q denotes the average with respect to q. Similar to standard ap-
proaches used in support vector machines (Schölkopf & Smola, 2002), the
LagrangianL defined in equation 6.5 must be minimized with respect to the
primal variable q and maximized with respect to the dual variable λ (i.e., a
saddle point must be found). Therefore the constraint problem in equation
3.5 can be expressed as

arg min
q

max
λ≥0

L(q, λ). (6.6)

By taking the derivative of L with respect to q and setting it equal to zero,

∂L

∂q
= −ln p(X|θ ) + [

1 + ln q(θ )
] + 1

λ

[
1 + ln

q(θ )
πn(θ )

]
= 0, (6.7)

we find that the Lagrangian in equation 6.5 is minimized by the SMiLe rule,
equation 3.6, that is, q(θ ) ∝ p(X|θ )γ πn(θ )1−γ , where γ is determined by the
Lagrange multiplier λ:

0 ≤ γ = λ

λ + 1
≤ 1. (6.8)

Note that the constant Z(X; γ ) in equation 3.6 follows from normaliza-
tion of q(θ ) to integral one.

6.4 The SMiLe Rule for Beliefs Described by a Gaussian Distribution.
Suppose we have drawn n − 1 samples X1, . . . , Xn−1 from a gaussian distri-
bution of known variance σ 2

x but unknown mean. Our empirical estimate
of the current mean after n − 1 samples is denoted by μ̂n−1.
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Assume that the current belief about the mean μ is a normal distribu-
tion: πn−1(μ) ∼ N (μ̂n−1, σ

2
n−1). Since the likelihood of receiving a new sam-

ple Xn is also normal, p(Xn|μ) ∼ N (μ, σ 2
x ), the updated belief obtained by

the SMiLe rule, equation 3.6, is

qγ (μ) ∝ exp
(

− (Xn − μ)2

2(σ ′
x)2

)
exp

(
− (μ − μ̂n−1)2

2(σ ′
n−1)2

)
, (6.9)

where (σ ′
x)2 = σ 2

x /γ and (σ ′
n−1)2 = σ 2

n−1/(1 − γ ). Because the product of two
gaussians is a gaussian, we arrive at a distribution qγ ∼ N (μ̂n, σ

2
n ) with the

mean μ̂n = wnXn + (1 − wn)μ̂n−1

(
with wn = (σ ′

n−1 )2

(σ ′
x )2+(σ ′

n−1 )2

)
, and the variance

σ 2
n =

(
1

(σ ′
x )2 + 1

(σ ′
n−1 )2

)−1
(MacKay, 2003). Assuming σ 2

n−1 = σ 2
x , we find σ 2

n =
σ 2

x , and wn = γ . Thus, if the variance of the belief distribution is initialized
at σ 2

0 = σ 2
x , it will always stay at this value. Moreover, we can evaluate the

confidence-corrected surprise to be

Scc(Xn;πn−1) = DKL[N (μ̂n−1, σ
2
n−1)||N (Xn, σ

2
x )] = (Xn − μ̂n−1)2

2σ 2
x

,

(6.10)

where we have used (assuming again σ 2
x = σ 2

n−1),

DKL[N (a1, b2
1)||N (a2, b2

2)] = (a1 − a2)2

2b2
2

+ 1
2

(
b2

1

b2
2

− 1 − ln
b2

1

b2
2

)
. (6.11)

6.5 The SMiLe Rule for Beliefs Described by a Dirichlet Distribution.
Assume that the current belief about the probability of transition from state
s ∈ {1, 2, . . . , D} to all D − 1 possible next states š ∈ {1, 2, . . . , D}\s is de-
scribed by a Dirichlet distribution πn(θs) ∝ š θ (s, š)α(s,š)−1 parameterized
by αs = α(s, :). Here, θs = θ (s, :) denotes a vector of random variable θ (s, š)
that determines the probability of transition from s to š with properties
0 ≤ θ (s, š) ≤ 1 and

∑
š θ (s, š) = 1. The likelihood function for an occurred

transition X : s → s′ is p(X|θs) = θ (s, s′) = š θ (s, š)[š=s′], where [.] denotes
the Iverson bracket (that is equal to 1 if the condition inside the bracket is
correct and 0 otherwise). Therefore, the updated belief qγ (θs) obtained by
the SMiLe rule, equation 3.6,

qγ (θs) ∝
(
š θ (s, š)[š=s′]

)γ

.
(
š θ (s, š)α(s,š)−1

)1−γ

∝ š θ (s, š)β(s,š)−1,

(6.12)
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is again a Dirichlet distribution parameterized by β(s, š) = (1 − γ )α(s, š) +
γ (1 + [š = s′]).

The probability T̂[t](s, s′) of transition from s to s′ at time step t is esti-
mated by T̂[t](s, s′) = α[t](s,s′ )−1+ε∑

š(α[t](s,š)−1+ε) , where α[t](s, š) denotes the updated
model parameter at time step t. Here, ε > 0 is a very small number, which
prevents the denominator from being zero.

Appendix

A.1 Calculation of Surprise for the Example of CEO Election. If can-
didate 1 is selected, the surprise of colleague B, Scc(X = 1;πB) is bigger
than the surprise of colleague A, Scc(X = 1;πA). Both colleagues are equally
committed to their beliefs, but the outcome “candidate 1” is less likely for
colleague B than A. The evaluation of confidence-corrected surprise yields

Scc(X = 1;πB) − Scc(X = 1;πA)

=
∑

k

πB(θk) ln
πB(θk)

p̂X=1(θk)
−

∑
k

πA(θk) ln
πA(θk)

p̂X=1(θk)

=
∑

k

(
πA(θk) − πB(θk)

)
ln p̂X=1(θk), (A.1)

which yields 0.75 ln (1−ε)
ε/3 > 0 once we insert the numbers. Therefore, B is

more surprised than A.
For colleague A, surprise of the outcome “candidate 2,” Scc(X = 2;πA),

is bigger than the surprise of outcome “candidate 1” (his favorite), Scc(X =
1;πA) because the second candidate is less likely to win in his opinion (see
point 2 at the beginning of section 3.1):

Scc(X = 2;πA) − Scc(X = 1;πA) =
∑

k

πA(θk) ln
p̂X=1(θk)
p̂X=2(θk)

, (A.2)

which yields 0.5 ln 1−ε
ε/3 > 0.

More important, however, if the second candidate wins, the surprise of
colleague A is bigger than that of colleague C, even though both have as-
signed the same low probability to the second candidate. The evaluation of
surprise yields

Scc(X = 2;πA) − Scc(X = 2;πC) =
∑

k

(
πC(θk) − πA(θk)

)
ln p̂X=2(θk)

− H(πA) + H(πC). (A.3)
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The terms with the ln in equation A.3 add up to zero, so that we just need
to evaluate the entropies, which yields a difference of 0.75 ln 3 > 0. In other
words, since colleague A is more committed to his opinion than colleague
C, that is, H(πC) > H(πA), colleague A will be more surprised (see point 3
in section 3.1).

A.2 A Bound B > B′ Implies γ > γ ′ in the SMiLe Rule. For 0 < B <

Bmax the solution of the optimization problem in equation 3.5 is the updated
belief qγ , equation 3.6, with 0 < γ < 1 satisfying DKL[qγ ||πn] = B. In order
to prove that B > B′ implies γ > γ ′, we need to show that DKL[qγ ||πn] is an
increasing function of γ . We therefore evaluate its derivative with respect
to γ .

As a first step, we calculate the derivative of qγ (θ ), equation 3.6, with
respect to γ :

∂

∂γ
qγ (θ ) = qγ (θ )

(
ln

p(X|θ )
πn(θ )

−
〈
ln

p(X|θ )
πn(θ )

〉
qγ

)
. (A.4)

We use this result together with

∫
θ

∂

∂γ
qγ (θ ) dθ = 0. (A.5)

to calculate the derivative of DKL[qγ ||πn] with respect to γ :

∂

∂γ
DKL[qγ ||πn]

=
∫

θ

(
ln

qγ (θ )
πn(θ )

+ 1
)

∂

∂γ

[
qγ (θ )

]
dθ

(A.4)= γ

∫
θ

(
ln

p(X|θ )
πn(θ )

) (
ln

p(X|θ )
πn(θ )

−
〈
ln

p(X|θ )
πn(θ )

〉
qγ

)
qγ (θ ) dθ

= γ

⎛
⎝〈(

ln
p(X|θ )
πn(θ )

)2
〉

qγ

−
(〈

ln
p(X|θ )
πn(θ )

〉
qγ

)2
⎞
⎠ ≥ 0. (A.6)

This finishes the proof of our claim.

A.3 The Impact Function �Scc(q;πn, X ) Increases with the Parameter
γ in the SMiLe Rule. To prove the statement above, we need to show that
the impact function �Scc(q;πn, X ) in equation 3.4, where the SMiLe rule,
equation 3.6, is used for belief update (i.e., when q = qγ ), increases with the
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parameter γ . We therefore consider the derivative

∂

∂γ
�Scc(qγ ;πn, X ) =

∫
θ

(
ln

p(X|θ )
qγ (θ )

− 1
)

∂

∂γ

[
qγ (θ )

]
dθ. (A.7)

We now use equations 3.6, A.5, and A.4 and find

∂

∂γ
�Scc(qγ ;πn, X ) = (1 − γ )

⎡
⎣〈(

ln
p(X|θ )
πn(θ )

)2
〉

qγ

−
(〈

ln
p(X|θ )
πn(θ )

〉
qγ

)2
⎤
⎦ ,

(A.8)

which is always nonnegative.

A.4 A Larger Reduction in the Surprise Implies a Bigger Change in
Belief. The minimal value of the Lagrangian L(q, λ) in equation 6.5 that is
achieved by the updated belief qγ in equation 3.6, obtained by the SMiLe
rule, is equal to

L(qγ , λ)
(6.5)=

〈
−ln p(X|θ ) + ln qγ (θ ) + 1

λ
ln

qγ (θ )
πn(θ )

〉
qγ

=C︷ ︸︸ ︷
−B

λ
+ ln ||p||

= − 1
γ

ln Z(X; γ ) + C, (A.9)

where we used the SMiLe rule, equation 3.6, and the equality 1
γ

= 1 + 1
λ

,
from equation 6.7. If the optimal solution qγ is approximated by any other
potential next belief q, then its corresponding functional value L(q, λ) dif-
fers from its minimal value L(qγ , λ) in proportion to the KL divergence
DKL[q||qγ ]. This is because

L(q, λ) − L(qγ , λ)
(6.5),(A.3)=

〈
−ln p(X|θ ) + ln q(θ ) + 1

λ
ln

q(θ )
πn(θ )

〉
q

+ 1
γ

ln Z(X; γ )

= 1
γ

〈
ln

q(θ )γ (1+ 1
λ

)Z(X; γ )

p(X|θ )γ πn(θ )
γ

λ

〉
q

= 1
γ

DKL[q||qγ ]. (A.10)
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Replacing q with πn in equation yields the impact function �Scc(q;πn, X )
in equation 3.4:

�Scc(q;πn, X )
(6.5)= L(πn, λ) + 1

λ
B − L(qγ , λ) − 1

λ
(B − DKL[qγ ||πn])

(A.10)= 1
γ

DKL[πn||qγ ] + 1
λ

DKL[qγ ||πn] ≥ 0, (A.11)

where 1/λ = 1 − 1/γ and qγ is the updated belief under the SMiLe rule:
πn+1 = qγ . Therefore, the reduction in the surprise upon a second exposure
to the same data sample is related to the belief changes DKL[πn||πn+1] and
DKL[πn+1||πn]. The equality in equation A.11 holds if and only if there is no
change in the current belief, that is, if qγ = πn+1 = πn. This happens only if
γ = 0, which is equivalent to neglecting the new data point when updating
the belief.

A.5 The Online EM Algorithm for the Maze-Exploration Task. The
online EM algorithm, presented in Mongillo and Deneve (2008), is an esti-
mation algorithm for the unknown parameters of a hidden Markov model
(HMM). For the maze exploration task we adapted the method presented
in Mongillo and Deneve (2008) such that the transition probability to a new
room also depends on the previously visited room (and not just the current
environment). The HMM of the maze exploration task consists of two sets
of unknown parameters: (1) a set P = [Pi j]2×2 of (unknown) switch proba-
bilities from environment i to j (where we use 1 for environment A and 2
for environment B), and (2) a set T = [Tjss′ ]2×16×16 of state transition proba-
bilities, where Tjss′ denotes the probability of transition from state s to state
s′ within environment j. The set of all unknown parameters is denoted by
θ ≡ (P, T).

At each time step t, we estimate the probability qt
l = P(Et = l|s0→t ) of

being in environment Et = l ∈ {1, 2}, given all previous state transitions
s0→t = {s0, s1, . . . , st}. The probability qt

l can be recursively calculated by

q̂t
l =

∑
m

q̂t−1
m γ t

ml, (A.12)

where γ t
ml = P(s′=st |s=st−1,Et=l)P(Et=l|Et−1=m)

P(s′=st |s0→(t−1) )
belongs to a set of auxiliary vari-

ables � = [γlh]2×2 that are calculated by the last estimate θ̂ t−1 of the model
parameters:

γ t
lh =

P̂t−1
lh T̂t−1

hst−1st∑
m,n q̂t−1

m P̂t−1
mn T̂t−1

nst−1st

. (A.13)
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Then, using these auxiliary variables γlh, a set � = [φ̂i, j,s,s′,h]2×2×16×16×2 of
parameters is recursively updated:

φ̂t
i, j,s,s′,h =

∑
l

γ t
lh

[
(1 − η)φ̂t−1

i, j,s,s′,l + ηq̂t−1
l �

lhst−1st
i jss′

]
, (A.14)

where �
lhst−1st
i jss′ = δ(i − l)δ( j − h)δ(s − st−1)δ(s′ − st ), δ(.) is the Kronecker

delta (i.e., 1 when its argument is zero and 0 otherwise), and η is the learning
rate.

Finally, the model parameters are updated by

P̂t
i j =

∑
s,s′,h φ̂t

i jss′h∑
j,s,s′,h φ̂t

i jss′h

; T̂t
jss′ =

∑
i,h φ̂t

i jss′h∑
i,s′,h φ̂t

i jss′h

. (A.15)

We emphasize that in order for the online EM algorithm to work prop-
erly, some technical considerations must be respected. For instance, at the
beginning of learning, only the online estimation of � must be updated
(without updating the model parameters θ ), so that the estimation error for
the first 2000 time steps of our simulation (see Figure 7A, blue) remains
fixed. Moreover, we found that the online EM algorithm works well only
if it is correctly initialized. To make our comparison fair, we assumed the
agent “believes in” frequent transitions between environments by initial-
izing the probabilities P̂0

i j that describe the switch between environment A
and B to be very close to true ones. Without such an assumption, the online
EM takes even more time than what we reported here to learn the maze ex-
ploration task. The actual initialization values were P̂0

12 = P̂0
21 = 0.1, while

the true values were P12 = P21 = 0.005.
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