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Abstract  
Memory engrams in mice brains are potentially related to groups of concept cells in human 
brains. A single concept cell in human hippocampus responds, for example, not only to 
different images of the same object or person, but also to its name written down in 
characters. Importantly, a single mental concept (object or person) is represented by several 
concept cells and each concept cell can respond to more than one concept. Computational 
work shows how mental concepts can be embedded in recurrent artificial neural networks 
as memory engrams and how neurons that are shared between different engrams can lead 
to associations between concepts. Therefore observations at the level of neurons can be 
linked to cognitive notions of memory recall and association chains between memory items. 
 



 

Vocabulary box  
 
 
Association    -  Spontaneous transition between different mental concepts, or in 
the case of auto-associative memory, between different aspects of the same mental 
concept. 
Assembly        - A set of neurons participating in an memory engram with relatively 
strong connectivity amongst themselves form an assembly, also called Hebbian assembly. 
Activity pattern - A configuration of neurons firing at high rate embedded in a sea of 
neurons firing at low rate. 
Attractor network       - Biological or artificial neural networks with properties such that  the 
network activity converges to certain preferred activity patterns. 
Concept   -  an object such as a person, a place, or an animal with individuality. 
Example:  concepts are “my mother”, “the Sidney Opera house”, and “my dog Max”, not the 
generic classes such as “mothers = women who have one or more children”, “famous 
buildings”, and “dogs”. 
Concept cell   - A single neuron, often in hippocampus or more generally the 
Medium Temporal Lobe, that responds to the retrieval of a mental concept, independently 
of the specifics of sensory input  
Memory engram  - A set of cells that responds to a specific memory item. In this 
chapter we consider an assembly of concept cells as equivalent to an engram. 
Hopfield model - The Hopfield network is an example of an attractor network where 
engrams correspond to memory items represented by preferred activity patterns. 
Memory recall or concept retrieval  -  high activity in assembly of concept cells. 
Overlap of engrams  -  fraction of concept cells shared across engrams. 
Shared neuron  - A neuron that participates in two or more  different engrams. 
Similarity measure, 𝒎𝝁  -  measure of the correlation between the current state of 
activity of the memory network and the state of memory recall of a specific concept. 
Sparse activity               - Fraction of neurons in a given brain area that are active during the 
activation of one engram or one memory item 
 

𝝃𝒊
𝟑 =1 -  neuron i is part of engram number 3. 

 
 

 

 

 

 

 

 

 

 

 

 



Introduction: Associations and Auto-associations in memory  
Humans can memorize thousands of concepts, where the term ‘concept’ is taken in a broad 
sense encompassing facts (‘who is the president of the United States?’), objects of daily life  
(‘imagine a spoon!’), naming of food items (‘this is a banana’),  meanings of words, episodes 
of life, persons, family relations, or the layout of your home town  To check whether your 
discussion partner remembers a ‘concept’, you may want to give a cue, for example by 
asking a question, providing a keyword, or showing a picture. 
In computational research, the recall of memories of concepts has been formalized and 
categorized as either “associative” or “auto-associative” memory. To understand the idea of  
of “auto-associative” memory, let us consider the example of Fig. 1A, where we see an 
animal partially hidden behind a tree. We can easily guess that the hidden animal is a horse, 
even if the visual information is incomplete. Whenever we are able to recall the full memory 
of a concept starting from a piece of partial information on the same concept we speak of 
“auto-associative” memory recall. A rough black-and-white drawing of an apple may enable 
you to think of the taste and color of an apple and thus helps you to recall the rich concept 
of “apple” from partial information. 
In contrast to auto-associative memory, associative memory (also called association 
memory) links two separate concepts. The example of Fig. 2B shows Laurel's famous comic 
character and reminds us of his equally famous comedy partner Hardy. Even though Laurel 
and Hardy are separate persons and, hence, separate concepts, their repeated and 
simultaneous appearances on TV have, for most fans of their TV comedies, consolidated the 
association between the two actors.  
 

 
Figure 1 A) Example of auto-associative memory recall. B) Example of associative or episodic memory recall. 

Associations are not restricted to concepts of the same type such as two persons. If you 
visited a famous place together with a good friend, a picture of that place will remind you of 
the friend. The personally experienced event (the trip in this example) acts as the glue that 
associates two otherwise unrelated concepts (the friend and the place). This type of learned 
association, if related to personal experience, is also called “episodic” memory.  Note that, 
typically, before the trip you could already recognize your friend and had seen pictures of 
the famous place as separate entities, implying that the memory of the individual concepts 
was already stored somewhere in your brain; the association between the two concepts 
was built later. Associative (across mental concepts) and auto-associative (within mental 
concepts) memory work in parallel and possibly collaborate for concept recall.  

 

Concept cells 
Memory engrams can be induced in the hippocampal formation of mice by appropriate 
experimental stimulation paradigms (see Chapters xx and xx of this edited book).  In a 
typical experiment, a memory engram is the ensemble of neurons (”assembly”) that 



respond selectively to a concept, such as a specific cage or stimulus. While obtaining 
experimental data in the human brain has ethical and practical limitations, a stream of 
experimental results hints at a mechanism in the human Medium Temporal Lobe (MTL) that 
is analogous to the formation of engrams in mice. 
Experimentalists found neurons in the human MTL which selectively and consistently 
respond to stimuli representing specific individuals or places [1–3].  The experiments were 
conducted in patients suffering from severe treatment-resistant epilepsy, requiring surgical 
intervention. To determine the location of the epileptic focus in relation to crucial brain 
areas like those responsible for speech or motor control, electrophysiological recordings are 
conducted while the patient engages in various tasks. Unlike neurons in the visual cortex 
that respond specifically to visual stimuli, single neurons in the medial temporal lobe of the 
human cortex, particularly in the hippocampus, exhibit broader responsiveness to a range of 
stimuli associated with the same mental concept. For instance, a neuron may respond to 
both the written word "Sydney Opera" and a picture of the Sydney Opera House (Fig. 2A). 
This finding allows us to interpret such neurons as being part of an assembly that encodes 
the mental concept of "Sydney Opera". Other neurons in the same area may respond to the 
“Tower of Pisa” and yet others to a famous actor. These neurons have been named 
"concept cells” [1]. 
 

Coding for single concepts 
Each mental concept is believed to be represented by a group of concept cells [1-3] which 
have been hypothesized to form a memory engram [43]. The group of concept cells 
simultaneously increase their firing rates when one of the stimuli that trigger concept recall 
is presented. The estimated fraction, γ, of MTL neurons involved in representing a given 
concept is approximately γ = 0.23% [4]. Assuming that each memory item is represented by 
the activation of a fixed, yet random, subset of active neurons, a single concept is expected 
to activate γN neurons, while two arbitrary concepts are expected to share γ2N cells, where 
N represents the total number of neurons in the relevant brain regions. Suppose that the 
total number of MTL neurons is N= 200’000. Then the concept of “Sidney Opera” would be 
represented by an engram containing 460 neurons.  Similarly, the “Tower of Pisa” would 
also be represented by a different engram of 460 neurons. Since the “Sidney Opera” has no 
relation to the “Tower of Pisa”, we expect from purely statistical arguments that at most 
one or two neurons are part of both engrams. 
 

Association between concepts 
It is possible to measure the fraction of neurons that respond to more than one concept. It 
was found that unrelated concepts share less than 1% of neurons, whereas assemblies 
representing previously associated concepts share approximately 4–5% of neurons [6] (Fig. 
2B and 3). Moreover, during the process of building associations between pairs of concepts, 
individual neurons can become responsive to concepts to which they did not respond 
initially [5]. This suggests that an increased proportion of shared neurons facilitates the 
association between concepts [6–8]. 
 



 
Figure 2 A) Recordings from a concept cell selective to the Sydney Opera House. Taken from [1]. B) Probability of pair 

response of concept cells. Adapted from [6]. 

 
Figure 3 Schematic representation of the neural representation of two concepts in the human MTL. 

 

Fundamental questions 
In the presence of shared neurons, the activation of one engram (a place, in the initial 
example) may trigger the activation of another engram (such as a friend). This raises three 
fundamental issues which we address in this computational chapter:   
 
First, for the brain to function effectively as a memory network, it must retain the ability to 
recall the two associated concepts separately (e.g., recalling the place without necessarily 
thinking of the friend). However, if the concepts share too many neurons, it becomes 
increasingly likely that the two concepts cannot be distinguished and instead merge into a 
broader engram counting a larger number of neurons. In the section “How can shared 
concept cells encode associations?” we address the following question: What is the 
maximum allowable fraction, cmax, of neurons shared between two assemblies before the 
possibility of separate memory recall breaks down?  
 
Second, if mental concepts  are related to engram cells, then associations between concepts 
should cause activation patterns of engrams cells, but how? The activation of a first  concept 
can enhance the recall of a second, associated, concept that activates in parallel to the first 
one; or it may trigger a sequential activation of first, second, and potentially more concepts 
in the form of an association chain   (as observed in free memory recall tasks [9–12]). If 
these transitions from one concept to the next are caused by neurons that are shared 
between engrams, we must pose a second question: is there a minimum fraction of shared 
neurons, cmin, required to facilitate a reliable activation of the associated concepts? 
 



 

Neuronal assemblies as memory engrams 
Memory engrams are mathematically linked to neural assemblies which play a central role 
in the network algorithm for memory retrieval that we will discuss in the 
section “Generalised Hopfield model”. Neuronal assemblies [45] are sub-networks of 
strongly connected neurons that represent an abstract concept.  The assembly as a 
subgroup of strongly connected neurons has been an influential theoretical notion, 
introduced by Donald Hebb [45]. Moreover, Hebb suggested that the strong connections 
within the assembly could be the consequence of synaptic plasticity [45]. Finding real 
assemblies in the brain is technically challenging since neurons belonging to an assembly do 
not have to be neighbors but can be widely distributed across one, or even several, brain 
areas. If we define an assembly as a group of neurons that (i) respond simultaneously to a 
group of stimuli related to each other and (ii) have strong connectivity amongst themselves, 
then the second condition is hard to assess experimentally whereas the first condition has 
an obvious link to memory engrams. 
 
The concept cells described above are primary candidates of neurons forming memory 
assemblies. We hypothesize that the simultaneous activation of concept cells by stimuli 
related to the concept is the result of strong recurrent connectivity within the assembly. 
Moreover, the fact that some, but not all, of the neurons show responses that persist after 
the end of the stimulus presentation [1, 5-7, 28] is an indirect indication that information is 
held in some form of working memory and could be a sign of strong interconnectivity. In this 
chapter, we link the Hebbian notion of neural “assembly” with the notion of “engram”: We 
assume that the set of neurons participating in an engram form a Hebbian assembly and 
have relatively strong connectivity amongst themselves. Furthermore, we assume that the 
groups of concept cells participating in the same concept are the human equivalent of 
memory engrams in mice. However, it is worth emphasizing that, as of today, these are 
hypotheses and we cannot exclude other explanations. 
 

Modeling memory networks 

Attractor networks 
“Attractor neural networks” have been widely used to model memory systems in recurrent 
neuronal networks such as the CA3 area of the hippocampus [13–17]. In attractor networks, 
each memory item is encoded as a memory engram [18, 19] consisting of a fixed random 
subset of neurons. The joint activity of a large fraction of neurons that are part of the same 
engram represents the memory item and indicates that the memorized ‘concept’ is recalled. 
 
An attractor network is a recurrent dynamical network, that evolves toward a stable state, 
called a “fixed point” of the network dynamics. In computational neuroscience, attractor 
networks are built such that the memory engrams are the fixed points of the network 
dynamics. If a stimulus activates a subset of neurons within an engram, the interactions of 
neurons within the network activate other neurons of the same engram and suppress the 
activity of other neurons that are not part of the engram. These interactions assure that the 
memory network has the auto-associative property introduced at the beginning of this 
chapter: the full concept is recalled (a large fraction of engram neurons are active together) 



triggered by partial information (the initial cue that stimulated a subset of neurons).  From a 
birds-eye perspective, the network activity is ‘attracted’ toward a state of memory recall. 
 

Bio-plausibility of Attractor Memory Networks 
Animal studies have provided evidence of attractor dynamics in the CA3 area of the 
hippocampus [20, 21]. Since concept cells have been found in the human hippocampus and 
its surroundings [1-3], attractor dynamics in the hippocampus is a likely candidate to 
describe the activity of concept cells in humans - or engram cells in mice. 

Attractor memory networks exhibit two key functional properties: (i) the ability to retrieve 
memories when presented with partial cues and (ii) the capacity to sustain activity even 
after the stimulus is no longer present. Traditionally, the analysis of attractor networks using 
the replica [35] or cavity methods [36,37] has drawn criticism due to the unrealistic 
assumption of symmetric connections. However, the approach presented in this chapter is 
based on dynamic systems arguments [38] and enables a straightforward generalization to 
the case of asymmetric connectivity. Moreover, in the original model of Hopfield [25] each 
memory engram involved fifty percent of neurons whereas in the human hippocampus, the 
fraction g of neurons involved in a single memory engram is at most 1 percent (‘sparse’ 
engrams) [4,6]. This number is estimated indirectly from the probability that an 
experimentalist would find a neuron responding to a, say, famous person known to the 
patient if an electrode is placed randomly in a given brain area, knowing the number of 
presented stimuli and the number of neurons from which the experimentalist recorded [4, 
6]. Modern attractor network theory does not rely on symmetric connectivity and is 
characterized by sparse [17] memory engrams and random [34] connectivity. Therefore, 
modern attractor networks have emerged as promising models for understanding biological 
memory.  

Generalized Hopfield model 
We work with an attractor neural network, made of N neurons, which has stored P memory 
engrams. Each engram μ (with μ =1, …, P), is represented by a string of random binary 

variables 𝜉𝑖
𝜇

∈ {0,1}.  

For example, 𝜉𝑖
3=1 and  𝜉𝑖

4=1 indicate that neuron i is part of both memory engram 3 and 

4; similarly,  𝜉𝑗
3=0 and  𝜉𝑗

4=1 indicates that neuron j is not part of the memory engram 3, 

but part of engram 4 (Figure 4B - redraw the figure with less math). 
 
The state of each neuron i is characterized by its firing rate ri (with i = 1, . . ., N).  The change 
dri/dt of the firing rate of neuron i is driven by the total input hi 

Equation 1 

𝜏
𝑑𝑟𝑖

𝑑𝑡
=  −𝑟𝑖 +  𝜙(ℎ𝑖), 

where 𝜙(ℎ𝑖) = 𝑟𝑚𝑎𝑥/{1 +  𝑒𝑥𝑝[−𝑏(ℎ −  ℎ0)]}  is frequency-current (f-I) curve, (also called transfer 
function), characterized by the firing threshold h0, the maximal steepness b, and the 
maximal firing rate rmax.  
The total input driving the neuron i is 



Equation 2 

ℎ𝑖(𝑡) =  ∑ 𝑤𝑖𝑗𝑟𝑗(𝑡) + 𝐼𝑖(𝑡)

𝑁

𝑗=1

. 

where the synaptic weights 𝑤𝑖𝑗  which can be interpreted as the strength of signal 

transmission from neuron j to neuron i is related to the amplitude of the (excitatory or 
inhibitory) postsynaptic current.  
We assume the learning process has already happened in the past so we consider the 

weights as fixed. The engrams 𝜉𝑖
𝜇

  are encoded in synaptic weights 𝑤𝑖𝑗  as follows: the basic 

idea is that two neurons i and j that participate in the same engram (e.g., engram 4) have 
strong excitatory connections, in both directions; moreover, if neuron i participates in 
engram 3, but neuron j does not, then the connections between the two neurons are 
weakly inhibitory. However, since the connection from neuron j to neuron i cannot be both 
excitatory and inhibitory at the same time, we take the average by summing over the 
contributions of all engrams 
Equation 3 

𝑤𝑖𝑗 = 𝐴 ∑(𝜉𝑖
𝜇

− 𝛾)(𝜉𝑗
𝜇

− 𝛾)

𝑃

𝜇=1

 

Here, the constant A can be interpreted as a normalization factor for averaging and 
γ=0.0023 is the fraction of neurons that participate in a given engram in MTL [4].  If the sum 
on the right-hand side of Eq. (3) is positive, then neuron j has an excitatory connection to 
neuron i. The set of weights defined in Equation 3, is called the Hopfield-Tsodyks 
connectivity [17, 24] for sparse engrams. By default, we assume that two unrelated 
concepts (e.g., Sidney Opera and Tower of Pisa) share only a small number of neurons that 
correspond to the statistical expectation, i.e., the memory engrams are statistically 
independent. 

 
 

     Figure 4 A) Memory recall in a generalized Hopfield network. B) Schematics of the memory engrams as represented 

into the generalized Hopfield model. 



Mathematical analysis, as well as simulations of the model, show that with the connections 
defined in Equation (3) and the firing rate changes defined in Equation (1), the network has 
(at least) P stable stationary states where each state corresponds to a configuration where 
nearly all neurons that should be active in engram μ are indeed active and all others are 
inactive. Since these configurations are stable states, the network dynamics are ‘attracted’ 
towards these special configurations - and these states correspond exactly to the retrieval 
of a stored concept. In the stationary state where engram μ is retrieved, neuronal firing 

rates have a fixed value ri which is high if 𝜉𝑖
𝜇

= 1  and low if 𝜉𝑖
𝜇

= 0. Attraction means that 

when the configurations of firing rates across the network are similar to one of the stored 
memories μ, then the attractor dynamics drive the network to recall memory μ, by showing 
persistent activity of all those neurons that belong to the assembly of concept μ.  
Importantly, it is possible to measure how close (or how far) is the network state is to 
retrieve one of the stored engrams, μ, thanks to the similarity measures 𝑚𝜇: 
Equation 4 

𝑚𝜇(𝑡) =  
𝐴 

𝑟𝑚𝑎𝑥
∑ (𝜉𝑖

𝜇
− 𝛾)𝑟𝑖(𝑡)𝑁

𝑖=1 . 

The similarity measures the correlation between the firing rates {rj(t)}, with j=1,. . ., N,  and 

the stored engrams 𝜉𝑖
𝜇

 such that if memory concept μ is retrieved, then mμ ~ 1 (schematics 

in Fig 4A), and, if no memory is recalled (resting state), then mμ ~ 0 for all μ. The similarity 

of the network activity with a stored memory changes over time as the network state, given 
by the firing rates 𝑟𝑖(𝑡) of the individual neurons, changes. 
 

Theory, computer simulations, and low-dimensional factors 
To answer the fundamental questions above, we consider a memory network with P 
memories stored and then focus on memory 1 and 2. By default their engram share neurons 
at chance level (memory 1 and 2 are not associated); alternatively, to implement 
associations between the two memories we also consider the case that the fraction of 
shared neurons is above chance.  While the network dynamics can also be analyzed 
mathematically [43] we focus here on computer simulations, which can be done at two 
different levels of detail. 
 
First, at the detailed level, we explicitly simulate a network of N neurons. This involves 
integrating numerically for each neuron the Equations (1) and (2) and (3).  In other words, 
each neuron and each synaptic connection is modeled explicitly.   
Second, at a coarser level, we use a common trick from the literature called the mean-field 
approach [13-17]. Such an approach assumes that the network is very large and that 
neurons belonging to the same memory engram behave similarly. It is then possible to fully 
describe the network dynamics using the similarity measures mμ. Each similarity measure 
mμ can be viewed as a single, network-wide variable that captures the global state of the 
network in terms of its similarity with memory μ. Since we are only interested in the 
retrieval of concepts μ = 1 and 2, we can assume the similarity of the present network state 
with other memories μ > 2 to be close to zero: we will refer to these non-activated 
memories as “background engrams”. Under these assumptions, it is possible to derive 
dynamical mean-field equations that fully describe the network dynamics through the 
similarity variables m1 and m2. The details of such derivation are beyond the aim of this 
chapter and we refer to other texts to deepen the topic [34-39], however, we will illustrate 



the main results of this theoretical approach in what follows. The main take-home message 
is that the mean-field approach allows one to predict the collective behavior of a very large 
network using only a few equations and without the need to implement the dynamics of 
every single neuron in the network. The spirit of the mean-field approach is similar to that 
of identifying ‘factors’ [47] or low-dimensional neural manifolds [48]  in experimental data. 
 

How can shared concept cells encode associations? 
As suggested in the subsection “Association between concepts'', the creation of episodic 
associations between different concepts (such as a person and a place) might be caused by 
common neurons shared across the corresponding memory engrams [5]. Drawing 
inspiration from these experiments, we artificially introduce shared neurons in the 
generalized Hopfield model to create pairwise associations between multiple concepts. We 
refer to "overlapping engrams'' when the number of shared concept cells exceeds the 
expected number of γ2N cells shared by chance (see Fig. 5). We check by computer 
simulations whether increasing the overlap between two engrams causes a measurable 
increase in association performance. 
 

 

 
Figure 5 Schematic representation of memory engrams 

Let us imagine gradually increasing the fraction of shared neurons between the memory 
engrams 1 and 2 .  At the lowest end, the two memories are not associated, since cell 
assemblies 1 and 2 share only a small fraction of neurons corresponding to chance level. It is 
well known, that in this case, each memory engram generates a separate attractive fixed 



point of the network dynamics [17], indicating that the two corresponding concepts can be 
retrieved separately. However, experimental data reports that, for associated concepts, the 
fraction of shared neurons c * 4–5% [6] is much larger than chance level γ ~0.23%. Let’s now 
consider the case in which memory 1 and 2 share more neurons than by chance, i.e, the 
fraction c of shared neurons is larger than γ.  In the upper limit case of a large fraction of 
shared neurons c close to 1, the two memory engrams share all neurons, and it is clearly 
impossible to retrieve one memory without the other. In other words, the two memories 
are indistinguishable so that there are no longer two memories, but only a single, larger 
one. 
 

 
Figure 6 Overlapping concepts can be retrieved separately and jointly (adapted from [43]). 

Computer simulations of a network of N = 10000 interacting neurons indicate that, if one of 
two engrams that share concept cells is stimulated for 120ms, then the similarity of the 
network activity with this engram increases to a value close to one, indicating that the 
memory has been recalled (Fig 6C middle) while the second memory is only weakly 
activated quantified by a small, but non-zero similarity. However, if the fraction of shared 
neurons is above a maximally allowed fraction cmax, then the second memory always gets 
activated even before it is stimulated (Fig 6C bottom) indicating that associations are so 
strong that the two concepts have been merged. Hence, the fraction of neurons shared 
between two engrams should be above chance but remain relatively low so as to guarantee 
that concepts (e.g. your friend and ‘Sidney Opera’) can remain separated if needed, but can 
also be recalled jointly if so desired.  
 

Association chains  
The notion of common neurons shared among memory engrams has also been proposed as 
the foundation for recalling a list of memorized words. In earlier research [9–12, 26], 
Romani and Tsodyks analyzed human behavioral experiments, during which the subjects 
had some time to memorize a list of words and then to freely recall as many words as 
possible (Fig.7). They noticed that the subjects doing better at the task were those who 
associated the words in the list in small groups and they seemed to recall the words 



following those personal associations. The same scientists also proposed a computational 
explanation [9-12] of the experimental results, using a generalized Hopfield model similar to 
that introduced above, but with two additional components that we now add to our model.  
Firstly, we introduce global inhibitory feedback that is periodically modulated in strength 
mimicking hippocampal oscillatory activity. These oscillations serve as a clock signal, 
triggering transitions between overlapping concepts. Secondly, we introduce an adaptation 
current, θi(t), to each neuron i, preventing the network state from immediately reverting to 
the previous concept. With this expanded model, the network state transitions from one 
concept to the next (Fig 8A). These transitions are repeated, but eventually, the network 
state returns to one of the previously retrieved memories, resulting in a cyclic pattern [9] 
(Fig 8A).  
  
In network simulations where concepts are represented by sparse memory engrams (γ = 
0.2%), we allow a subgroup of p = 2, 4, or 16 memory engrams to share a fraction c = 20% of 
neurons. As the number of shared concept cells is identical across all concept pairs within 
the same subgroup, the order of recalled concepts is dependent on the initial condition. 
When the subgroup of overlapping engrams is small (p = 2 or 4), all memory items are 
successfully retrieved. However, in the case of a larger group of overlapping engrams (p = 
16), the cycle closes once a subgroup of the overlapping memory engrams has been recalled 
(Fig 8B).   

  
Figure 7 Memory recall task. 

The previous studies [9–12, 26] have assumed that memory engrams have a substantial 
fraction (γ = 10%) of active neurons, allowing transitions to rely on the chance-based 
number of shared units. However, considering the much lower sparsity value in the MTL (γ = 
0.23%), it is natural to question whether the number of neurons shared by chance (c = γ) is 
sufficient to induce a sequence of memory retrievals. The simulations from [43] 
demonstrate that this is not the case (Fig 8C). In a memory network with a realistic level of 
sparsity (γ ~ 0.2%), associations between memory engrams require a fraction of shared 
neurons above  chance level for the successful retrieval of concept chains. 

The same conclusions are confirmed and reinforced by the mean-field approach. With the 
theoretical approach, it is possible to determine the lower bound of the fraction of shared 
neurons, denoted as c0min, corresponding to the minimum overlap between two engrams 
that is required for a reliable transition. Importantly, with suitable choices of neuronal and 



network parameters, association chains can be achieved for the values of γ and c as 
observed in the human MTL. This suggests that, in principle, associations can be 
implemented as sequences of transitions if the number of shared neurons exceeds cmin. 

 

 
Figure 8 Chain of associations requires shared concepts cells Adapted from [43]. 

In summary, overlaps between memory engrams are necessary to encode associations. 
More precisely, the fraction of concept cells shared across concepts must significantly exceed 
chance level, to account for the phenomenon of free memory recall as a chain of 
associations in recurrent networks like the CA3 region of the human brain. Notably, in these 
networks, each memory engram is represented by only a small fraction of neurons.  
 

Conclusions 
This chapter bridges experimental observations and theories from four distinct fields: (1) 
experimental investigations of concept cells in the human MTL, (2) empirical studies on 
memory engrams in mice, (3) the theory of association chains for free memory recall, and 
(4) the classic theory of attractor neural networks. Our theory assumes that concepts are 
represented by the activation of sparse subgroups of neurons participating in the same 
engram. If engrams represent the memorized concepts, then associations between 
concepts can be implemented by an increased fraction of concept cells shared across 
engrams. This increased fraction must surpass the chance level but remain below a certain 
maximal threshold to enable reliable encoding of associations. Experimental evidence 
indicates a 4-5% overlap between memory engrams in the human MTL [6] - and these 
numbers lie in the range of values that are supported by simulations of association chains 
[43].  
 



Association chains could form the basis of a “stream of thought” where the direction of 
transitions from one concept to the next is based on learned associations. In large networks 
with sparse coding levels (γ ~ 0.23%), neurons shared by chance are not enough to reliably 
induce the retrieval of a chain of concepts. Sequential memory retrieval is possible only for 
overlaps larger than chance, potentially representing associations learned during real-life 
episodes. Potentially, the fraction of shared concept cells could increase due to Hebbian 
learning if two concepts repeatedly occur simultanesoulsy. However, the existence of a 
maximal fraction of shared neurons highlights the need for Hebbian learning to operate in 
conjunction with an intrinsic control mechanism to prevent the undesired merging of 
distinct concepts. 
 
Overall, our computational approach shows that the creation and retrieval of memory 
engrams is amenable to mathematical analysis. Here we focused on the challenges and 
advantages of overlapping memory engrams - and for this we had to rely on data from 
human MTL, but future experiments in mice might bring further evidence on how 
overlapping engrams can build or reinforce associations between memory concepts. 
 

Other applications of Hopfield and generalized Hopfield networks 
 

Other areas: ITC 
The area CA3 of the hippocampus is not the only one that can be modeled with attractor 
neural networks. Indeed, this model was first introduced with the intention of modeling 
cortical areas. The Inferior Temporal Cortex (ITC) has often been taken as an example area 
to be modeled with generalized Hopfield networks. [15-21, 25, 46] 
The Inferotemporal Cortex (IT) is a region of the brain that plays a crucial role in processing 
visual stimuli related to objects within our field of vision. It is responsible for extracting 
complex visual features and attributes, enabling us to recognize and identify objects. 
One of the key functions of the IT cortex is its involvement in memory and memory recall 
processes. Once we have seen and processed an object, the IT cortex stores representations 
of its visual features and characteristics as memory engrams. These memory engrams are 
subsequently utilized during memory recall to recognize and identify the object when 
encountered again. 
We can represent the objects memorized in the ITC as attractor states within the network. 
Each attractor state corresponds to a particular object or category, and when the network is 
presented with a visual input, it undergoes dynamics that converge to the nearest attractor 
state, thus recognizing the object in the input. 
 

Non-binary engrams 
Above we have considered the so-called “binary” memory engrams, where a neuron either 
participates in the memory engram or it does not. This is a modeling simplification, but 
experimental results do not exclude other types of memory engrams. Indeed, in the concept 
cells experiments a neuron [1, 5-7, 28] is considered to be a concept cell if its firing rate is 
deviating of at least 3 or 5 (depending on the experiment) standard deviations from the 
firing rate distribution of all other recorded neurons during the stimulus presentation. This 
means that the criterion of assigning concept cells is binary but not necessary the concept 
cells responds, which might follow a different distribution.  



It is possible to define the generalized Hopfield model for non-binary firing rate engrams, for 
example in [24] they proposed a model for Gaussian firing rate engrams. In this case 
retrieving a memory means that the neurons’ firing rate follows the same Gaussian 
distribution of the equivalent memory engram. 
 

Spiking Hebbian networks 
So far, we have considered the firing rate of neurons as the only relevant parameter of the 
neuron. This is an approximation, but ideally, we would like to achieve the same type of 
memory neural network with more realistic spiking neurons [41, 42, 49]. 
Moreover, in the generalized Hopfield model, synaptic weights can be both positive and 
negative, allowing for bidirectional signaling. However, experimental observations have 
revealed a phenomenon known as Dale's law. According to Dale's law, all connections 
originating from the same presynaptic neuron have the same sign, either excitatory or 
inhibitory. This empirical finding has led to the primary classification of neurons into two 
categories: excitatory neurons, which promote the firing of postsynaptic neurons, and 
inhibitory neurons, which suppress or inhibit the firing of postsynaptic neurons.  
It is possible to create a more detailed and realistic computational spiking neuron model in 
which Dale’s law is respected, yet it preserves the same dynamical behavior of a generalized 
Hopfield network. An example of such a spiking neural network is presented in Fig. 10, 
where excitatory and inhibitory neurons have been separated. In a neural network scenario, 
there exists a population of excitatory neurons that interact with two distinct populations of 
inhibitory neurons. The encoding of memory engrams occurs through the formation of 
Hebbian assemblies within the excitatory population. All neurons in the network follow an 
integrate-and-fire behavior. 
According to theoretical predictions, the first inhibitory population is expected to be 
activated to a degree where the gain function (as shown in the left inset) exhibits an 
approximately linear response. This linear activation range ensures effective regulation of 
excitatory neuron activity and helps maintain a stable network state. 
On the other hand, the activation of the second inhibitory population occurs when the total 
input to the network surpasses a specific threshold value (as depicted in the right inset). 
This threshold-based activation mechanism serves as a control mechanism to prevent 
excessive excitation or maintain the stability of the network by suppressing neuronal firing 
when necessary. 
Overall, this architecture and activation scheme involving excitatory and inhibitory 
populations contribute to the dynamic regulation of neural activity and play a crucial role in 
shaping the network's behavior and information processing capabilities. 
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