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Almtraet. A model of an associative network of spiking 
neurons with stationary states, globally locked oscilla- 
tions, and weakly locked oscillatory states is presented 
and analyzed. The network is close to biology in the 
following sense. First, the neurons spike and our model 
includes an absolute refractory period after each spike. 
Second, we consider a distribution of axonal delay 
times. Finally, we describe synaptic signal transmission 
by excitatory and inhibitory potentials (EPSP and 
IPSP) with a realistic shape, that is, through a response 
kernel. During retrieval of a pattern, all active neurons 
exhibit periodic spike bursts which may or may not be 
synchronized ('locked') into a coherent oscillation. We 
derive an analytical condition of locking and calculate 
the period of collective activity during oscillatory re- 
trieval. In a stationary retrieval state, the overlap as- 
sumes a constant value proportional to the mean firing 
rate of the neurons. It is argued that in a biological 
network an intermediate scenario of "weak locking' is 
most likely. 

1 Introduction 

Whereas associative retrieval of stationary patterns has 
attracted a lot of attention during the last ten years 
(Hopfield 1982, 1984; Amit et al. 1985; 1987; for a 
review see Amit 1989 and Domany et al. 1991), empha- 
sis has now shifted considerably to the problem of 
collective oscillations after evidence of coherent activity 
has been found in the cortex (Eckhorn et al. 1988; Gray 
and Singer 1989; Gray et al. 1989; Engel et al. 1991). 
This shift of interest is mainly due to the fact that 
synchronicity of firing might be used by the brain as a 
code to link features that belong to the same pattern 
and to separate them from the rest ( vonde r  Malsburg 
and Schneider 1986; Eckhorn et al. 1988). Coherence 
could thus solve two old questions of information 
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processing in the brain which are known as the prob- 
lems of feature-linking and pattern segmentation. 

In most network models of collective oscillations, 
the applications to image processing have been in the 
center of interest (Wang et al. 1990; Schillen and Krnig 
1991; Krnig and SchiUen 1991; Sompolinsky et al. 
1991; Schuster and Wagner 1990b; Horn et al. 1991) 
and the biology of the experimental systems has been 
incorporated at a rather crude phenomenological level. 
In particular, the basic unit in most model networks is 
a set of ad hoc differential equations for amplitudes or 
phases of the excitation of  an ensemble of neurons, i.e., 
one column (Wilson and Cowan 1972; Baird 1986; 
Wang et al. 1990; Krnig and Schillen 1991; Schuster 
and Wagner 1990a). This is to be contrasted with 
traditional associative networks where the basic unit is 
taken to describe the mean firing rate of a single neuron 
(Hopfield 1982, 1984). It is thus an interesting question 
how both approaches - the single neuron Ansatz used 
in associative networks and the ensemble Ansatz used 
in oscillation networks - can be combined. 

To unify the two approaches we return to biology 
and include some details of neuronal signal transmission 
which are usually neglected. We focus on a single spike 
as the important phenomenon and describe its genera- 
tion at the soma, transmission along the axon, and 
transfer across the synapse by plausible model assump- 
tions. Within this model, we derive exact conditions 
under which stationary or oscillatory activity occurs. 

In the present paper, we concentrate on general 
properties of a fully connected network during retrieval 
of a single pattern. To give a specific example, the 
system can be considered as a model of  a single column 
in the visual cortex, but such an interpretation is some- 
what arbitrary. Our aim is not a detailed description of 
a specific system but rather an explanation of general 
phenomena from a unifying point of  view. The general- 
ization of our model to a columnar structure with 
distance-dependent connectivity and the applications of 
our results to completion and separation of simulta- 
neously presented patterns is discussed in a companion 
paper (Ritz et al. 1993). A short account (van Hemmen 
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et al. 1992) of  our basic results has been given during the 
conference "Complex dynamics in neural networks" 
(Vietri, 17-21 June, 1991). 

There have been, of  course, several other models that 
focus on spikes and biological realism. Buhmann and 
Schulten (1986) and Horn  and Usher (1989) discuss 
associative networks of  spiking units similar to our model 
neuron but concentrate on stationary retrieval. Results 
on collective oscillations in large networks with spiking 
neurons are reported by Buhmann (1989), and by Hansel 
and Sompolinsky (1992), Kurrer  et al. (1990), and Horn 
et al. (1991). On the other hand, Bush and Douglas (1991) 
consider a cortical 'network' of  ten bursting pyramidal 
neurons and one basket cell and show in simulations with 
a set of  realistic neuronal parameters and connections that 
a burst synchronization is possible. A similar, but larger 
network of compartmental model neurons with local 
connectivity which is intended to describe an area of  the 
visual cortex is considered by Wilson and Bower (1990). 
A rather complex but interesting model that includes 
columnar organization of  a large number of neurons has 
been studied by Sporns et al. (1989, 1991); in particular, 
its application to the problem of  figure-ground segregation 
is discussed in detail. 

In all cases, however, the results are mainly based on 
computer simulations of  the respective model. In contrast 
to this, our model of  a 'biological' network is simple 
enough to allow analytical solutions which are exact in 
the limit of  a large number of  noiseless neurons and real- 
istic enough to provide insight in the behavior of  biological 
systems. Furthermore,  we are able to derive conditions 
for the existence and stability of  a collective oscillation 
and to determine its period. The analytical results can then 
be compared to computer simulations of  a finite, but large 
system at a finite noise level. The present network (Ritz 
1991) which is organized in two layers, i.e., inhibitory and 
'Hebbian'  neurons, is a generalization of  an earlier homo- 
geneous model (Gerstner and van Hemmen 1992a). 

In Sect. 2, we define the model network based on a 
simplified description of  neurobiological signal transmis- 
sion. In Sect. 3, we present an analytical solution of  the 
macroscopic network states in terms of  the dynamic 
evolution of  so-called overlaps. We calculate the retrieval 
overlap in a stationary state, the oscillation period of  an 
oscillatory state, and derive a condition of 'locking' into 
a collective oscillation. If  the locking condition is not 
fulfilled, weak locking may result. Section 4 is devoted 
to computer simulations of  a network consisting of  two 
layers of  4000 neurons. The simulations visualize typical 
network states in three different scenarios. Classification 
of  the network states yields a phase diagram in parameter 
space. We close with an extensive discussion of the 
capabilities and limitations of  our model. 

2 Definition of  the model network 

2.1 Basic model assumptions 

Before a network model can be defined, a couple of  
basic decisions concerning the desired level of descrip- 

tion and the treatment of  biological details have to be 
made. Some of  the most important and intriguing 
problems of  theoretical neurobiology concern the cod- 
ing procedure through which a biological system maps 
data from the outside world onto the network states. 
This includes the question whether the information 
concerning the environment is contained in the mean 
firing rates of the neurons or rather in complex tempo- 
ral spiking patterns. Or is it even the exact voltage trace 
and shape of  a single spike which is important? 
Furthermore, are there ensembles of neurons (e.g., 
columns) which are involved in the same information 
processing tasks, or should we take the spiking of each 
single neuron into account? It is our opinion that a 
model network should impose as few assumptions as 
possible concerning the above questions. We therefore 
take a single spiking neuron as the basic unit of our 
network. Averaging over time (to get the mean firing 
rate) or over space (to define the ensemble average or 
'global' activity) can then, if appropriate, be done at a 
later stage during the theoretical analysis of the net- 
w o r k -  but not beforehand. Averaging should not be 
an underlying assumption of  the model definitions 
either. 

It is, of  course, impossible to include all known 
details of  a specific neural system, e.g., the visual cortex 
of the cat, into a general artificial network. Our ap- 
proach neglects all details of  processes at the level of  
neurotransmitters and ion channels as well as the 
branching structure of  axons and dendritic trees. A 
microscopic Ansatz including these effects would yield 
the exact shape and velocity of  spikes moving along 
the axon to the synapses (Hodgkin and Huxley 1952; 
Ekeberg et al. 1991) and of  the postsynaptic potentials 
spreading over the dendritic tree (Rall 1964; Jack et al. 
1975; Abbott  1991). It is, however, our assumption that 
the exact shape of  the spikes and dendritic signals 
conveys no information in addition to that of  the 
spiking event itself which is already contained in much 
simpler models. It is thus convenient to adopt a more 
phenomenological approach and consider formal 
spikes that are generated by a threshold process and 
transmitted along the axon to the synapses. The signal 
arrives there after some delay A ax and evokes an excita- 
tory or inhibitory postsynaptic potential (EPSP or 
IPSP). The EPSP and IPSP which change on a time 
scale much longer than a single spike are modelled with 
a realistic time course. Finally, the postsynaptic contri- 
butions of all active neurons are added in a linear 
fashion and compared to the firing threshold so as to 
determine the firing probability during the next time 
step. 

As to the connection topology, it is known that the 
pyramidal neurons make both long-ranged and short- 
ranged connections whereas inhibition is primarily 
local. Here we take the point of  view of  a theoretician 
and model the extreme and most transparent case, 
i.e., full connectivity between pyramidal neurons and 
local inhibition by inhibitory partner neurons. An 
exact definition of the above ideas is given in the next 
subsection. 



2.2 Elements of  the network: Neurons and synapses 

A phenomenolog ica l  model  o f  a single neuron  i can  be 
built  on two measurab le  parameters ,  bo th  amenab le  to 
experiment ,  viz., the firing threshold 0 and the refractory 
t ime "Cre f. Since we do not  wan t  to describe the shape o f  
a single spike, we mode l  spikes by a fo rmal  var iable  
Si (t) = {0, 1 } and take a typical  spike width o f  1 ms  as 
the basic t ime step o f  our  model .  The  spiking dynamics  
o f  neuron  i is defined by the probabi l i ty  o f  firing dur ing 
o n e t i m e  step, given a m e m b r a n e  potent ia l  h;, 

Pr[Si(t + 1) = 1 I h,(t)] 

= (1/2){1 + tanh[fl(h,(t) - 0)]},  (1) 

where  fl is a p a r a m e t e r  tha t  takes care o f  the internal  
noise o f  a neuron.  The  m e m b r a n e  potent ia l  h/(t) con- 
sists o f  three componen t s  

hi(t) = hSyn(t) + h~Xt(t) + href(t), (2) 

where h~Yn(t) is the sum o f  the synapt ic  inputs  f rom all 
o ther  neurons  in the ne twork  (see below), h~Xt(t) is 
some external  input,  and  hFf(t) is a fo rmal  cont r ibut ion  
to describe the refractoriness o f  the neuron.  I f  we take 

h[ef(t) = { ;  R for t F <<" t <<" tF + Zref 
otherwise (3) 

and  R >> 1, then firing is prevented  dur ing a t ime zr~f 
after  emission o f  a spike at  t = tF. In  all s imulat ions we 
take the absolute  refractory t ime %~f equal  to 1 ms, a 
value tha t  is c o m m o n l y  repor ted  (see any  t ex tbook  on 
neurobiology,  e.g., Kutt ter  et al. 1984). This  choice o f  
z~f limits the m a x i m u m  spiking f requency to 500 Hz  
which is a reasonable  value during shor t  activity bursts.  
Relat ive refractoriness and  adap ta t ion  are excluded in 
our  present  model ,  but  the Ansa tz  (3) for  hr~f(t) can be 
generalized easily so as to include bo th  effects (Gers tne r  
and  van  H e m m e n  1992a). 

A single neuron,  separa ted  f rom the rest o f  the 
ne twork  [hTY"(t)= 0] and driven by a cons tan t  input  
h~Xt(t) = 7, has  the inpu t /ou tpu t  characterist ics shown 
in Fig. l a. The  g raph  exhibits the typical s igmoidal  
dependence  o f  the mean  firing rate f =  nF/T ( number  o f  
spikes dur ing a measuremen t  interval  T) u p o n  the input  
7- With  a s imple a rgumen t  based on the spiking p roba-  
bility per  t ime step ( l )  and  the dura t ion  o f  absolute  
refractoriness (3) it can be shown (Gers tne r  and van  
H e m m e n  1992a) tha t  f (~)  = Pe (Y)/[ 1 + ZrefP F (y)] where 
Pe(~) is the firing probabi l i ty  for  the potent ia l  h; = 7. 
This  is the funct ion that  is p lot ted in Fig. la .  The  set o f  
p a r a m e t e r s  (z~f = 1 ms, 0 = 0.12, fl = 15) is the same as 
in the s imulat ions o f  a ne twork  o f  neurons  in Sect. 4. 
The  m a x i m u m  spiking rate of  a single neuron  equipped 
with these pa ramete r s  is 500 Hz.  If, however ,  the model  
neuron  is combined  with an inhibi tory pa r tne r  neu- 
r o n -  as in the ne twork  in t roduced b e l o w -  then the 
m e a n  firing rate at  high input  levels is reduced to less 
than  150 H z  (Fig. lb).  Let  us therefore turn now to the 
s tructure o f  the network.  

The  neurons  are connected in a scheme o f  N ele- 
ments  (Fig. 2), each element  consisting o f  a ' H e b b i a n '  
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Fig. 1 .  a G a i n  f u n c t i o n  o f  a s i n g l e  n e u r o n  a s  p r e d i c t e d  b y  t h e  m o d e l .  

The mean firing rate (y-axis) displays a sigmoid dependence upon the 
applied input (x-axis, arbitrary units). All parameters (noise fl = 15, 
threshold 0 = 0.12, refractory time z~f = 1 ms) are the same as used 
later on during the simulations of a large network of model neurons; 
of. Figs. 6-8. b Gain function of the very same neuron, after it has 
been connected to an inhibitory partner neuron (circles: fl = 15; solid 
line: fl = oo). The mean firing rate of the neuron pair is much lower 
than that of a single neuron. Note the different scale in = and b. The 
intersection of the gain function with the dashed lines yields the 
stationary mean firing rate at different input levels, if the neuron pair 
is part of a large network; see Sect. 3.2 for details 

neuron  ( top  layer) and an inhibi tory pa r tne r  neuron  
( b o t t o m  layer). The  ' H e b b i a n '  neurons  fo rm a fully 
connected ne twork  which is able to store q pa t te rns  by  
adjust ing the synapt ic  weights according to a ' H e b b i a n '  
learning rule ( H e b b  1949; Herz  et al. 1988). A pa t te rn  
# is defined as a set o f  r a n d o m  variables  ~f (1 ~< # <~ q) 
and  (1 <~ i ~ N )  which are dis tr ibuted stochastical ly 
with m e a n  activity a, i.e., ~f  = + 1 with probabi l i ty  
(1 + a)/2. A m o r e  realistic set o f  e lementary  pa t te rns  is 
to be considered by Ritz et al. (1993). Learning  the 
pat terns  yields the synapt ic  efficacies Jo of  signal t rans-  
mission f rom neuron  j to neuron  i (van  H e m m e n  et al. 
1990), 

2 q 
J u - N ( l _ a 2  ) ~ e u ( ~ - a ) .  (4) 

# = 1  

The neurons  in the ne twork  communica t e  via the ex- 
change o f  spikes which are generated according to the 
threshold-fir ing process (1). I f  a neuron  j in the Heb-  
b ian  layer fires, the signal o f  the spike is t ransmi t ted  to 
all neurons  o f  the H e b b i a n  layer  as well as to the 
pa r tne r  neuron  in the inhibi tory layer. Let  us now 
analyze the effect on a neuron  i in the H e b b i a n  layer 
first (Fig. 2, inset top right). 

A pos tsynapt ic  neuron  i tha t  is connected to neuron  
j th rough  a synapse o f  efficacy Jo will receive the signal 
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Fig. 2. Network structure. The network consists of  two layers of  4000 
neurons (only 8 are shown) which communicate  via the exchange of  
spikes. The neurons in the top layer ( 'Hebbian '  neurons) are fully 
connected by Hebbian synapses Ju that store a fixed set of  patterns. 
Each 'Hebbian '  neuron is also connected to an inhibitory partner 
neuron (bottom). If  one of  the neurons fires, a spike is transmitted 
along the axon and,  after some delay, evokes an excitatory (EPSP) or 
inhibitory (IPSP) postsynaptic potential at the receiving neuron (inset 
top left and top right) 

of  the spiking of  neuron j only after some axonal 
transmission delay A ~x which is taken to vary stochasti- 
cally in a range of  A ~x n ~< A ~x -.~< ~m~x.A ax After this delay, 
an excitatory (or inhibitory) potential is induced across 
the membrane of  the postsynaptic neuron. Its time- 
course is described by a response function E(z). Its 
amplitude, however, is determined by the synaptic 
efficacy Jo (4). The response function E(z) of  an excita- 
tory synapse is simply the excitatory postsynaptic 
potential (EPSP) which has been determined experi- 
mentally (for  a review see, e.g. McCormick 1990). We 
approximate this function by a discrete version of the 
ct-function (Jack et al. 1975) 

E(t) = ( t / z~)  exp( - t / z~) ,  (5) 

which is shown in Fig. 3. 
Summing the contributions of  all neurons which 

send signals to neuron i yields the synaptic part of  the 
membrane potential (2), 

hsyn(t) = ~ Jo ~ e ( z )S j ( t  - z - d a~) + h~nh(t), (6) 
j = l  " c = O  

where hi."h(t) is the contribution of the inhibitory part- 
ner neuron of  neuron i. 

The inhibitory contribution can be determined as 
follows (Fig. 2, top left). I f  neuron i starts firing at time 
te, a couple of  spikes are transmitted to the inhibitory 
partner neuron where they e v o k e -  after a delay 6 ~ -  
an EPSP. This excites the inhibitory neuron to send a 
series of  spikes back to neuron i where they generate - 
after another delay 6 2 -  an inhibitory signal, i.e., an 
IPSP. The net effect is a strong inhibitory feedback to 
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Fig. 3. Excitatory (EPSP) and inhibitory (1PSP) postsynaptic poten- 
tial. If  a 'Hebbian '  neuron i fires at z = 0, a spike is transmitted to all 
other 'Hebbian '  neurons to which it is connected. There it evokes - 
after some transmission delay A ~ - an EPSP. At  the same time a 

signal is transmitted to the inhibitory partner neuron, which in turn 
sends a spike back so as to i n d u c e -  after a delay A ~h - -a  strong 
IPSP, cf. Fig. 2. The time course of  an  EPSP is modeled by the 
function E( t )=( t /z  2) exp(--t/z,) with L = 2 m s  (top). Inhibition is 
described by a sharp rise and an exponential decay with a time 
constant  zn = 6 ms (bottom) 

the active neuron i, r/(z), which sets in after a total delay 
of  A~ nh= 61 + 62, climbs within 2 ms to a saturation 
value r/max and decays exponentially with a time con- 
stant z, = 6 ms afterwards; see Fig. 3. The delay A ~nh is 
assumed to vary for different neurons in a range of 
A inh <- Ainh Ainh 

rnin " ~ - ~  i ~--max with equal probability. In view of  
the above considerations we obtain 

~max 

h~nh(t) = ~ r/(z)Si(t - z -- Aii~h). (7) 
" r ~ 0  

To include saturation effects at strong inhibition levels, 
we take the upper bound Zmax in (7) as a flexible limit 
and stop the summation after the first non-vanishing 
summation term. That is, inhibitory potentials which 
arise after a bursting episode of  neuron i do not add up 
linearly, but only the most recent contribution matters. 

3 Macroscopic  states  o f  the network: theory 

The network as defined in the preceding section com- 
bines the features of  association networks with the 
properties of  oscillation networks (see also Baird 1986 
and Buhmann 1989). In particular, we find retrieval 
states that have a macroscopic overlap with a single 
pattern. Depending on the time structure of  excitation 
and inhibition, the overlap is either stationary or oscil- 
latory. In contrast to most oscillation models where a 
neuron - or a whole set of neurons - is modelled by a 
mere nonlinear oscillator with some limit cycle, our 
model of  a spiking neuron allows to determine the 
period and stability of  a collective oscillation in terms 
of  biological parameters, notably, the shape of  EPSP 
and IPSP. This can be done in spite of  the fact that we 
have a distribution of  delay times A ~x and A ~.~h. 



The analysis of  a large network ( N ~  ~ )  in the 
low-noise limit (fl ~ ~ )  is done in three steps. First we 
derive the dynamic equation for the evolution of  the 
network states (Sect. 3.1). Then we calculate the over- 
lap in a stationary retrieval state (Sect. 3.2) and the 
oscillation period in an oscillatory retrieval state (Sect. 
3.3). Finally, we present a condition for locking of  
neuron activity into a collective oscillation (Sect. 3.4), a 
stability analysis. 

3. I Equation of  motion 

To simplify notation we introduce the overlap m,(t) as 
a measure of  the correlations in the firing pattern of  the 
neurons with pattern # 

2 iv 
m1'(t) - N(I  - a2) j~= l ( ~  - a)Sj . (8) 

Here a = ( ~ )  is the mean of  random pattern #. The 
overlap m~,(t) takes its maximum value 1, if all neurons 
i in the 'foreground' of  pattern /~ ( ~  = + 1) fire syn- 
chronously during one time step while all 'background'  
neurons j (~] = - 1) stay quiescent. It vanishes, if the 
firing of  'foreground' as well as 'background' neurons 
occurs stochastically and N is large (N--* oo). 

Substituting (4), (7), and (8) into Eq. (6) yields the 
postsynaptic potential 

hryn(t) = ~ r ~, s  x) 
# = 1  T = 0  

"~max 

+ E n(OS, ( t - - z - -a~nh)  �9 (9) 
~r=0 

At this point, it is convenient to group the neurons into 
ensembles of  those neurons that have identical 'proper- 
ties'. To this end we introduce sublattices (van Hemmen 
et al. 1986, 1988; van Hemmen and K~hn 1986) 

Z ( x ,  O ax, /~, e) = (i I ~ = x, A~ x = D ~x, 

h~h(t) = --r/, hr~f(t) = --O}, (10) 

that gather neurons with the same storage vector 
(r 1 <~/~ ~< q), with an identical axonal delay A ax, the 
same (momentary) inhibition strength h~h(t) and re- 
fractory field h~f(t) into a common class. I f  
p(x, D ~x, ~/, Q, t) is the portion of  neurons that belong at 
time t to the sublattice L(x, D "x, ~/, Q), then the overlap 
can be written (Herz et al. 1988, 1989) 

,d ~ x  r/max R 

m , ( t + l ) = [ N ( 1 - a 2 ) ] - a E  E E E 
x D a X = A ~ n r l = O Q = O  

x p(x, D "x, r/, O, t) x~ 

x {1 +tanh[fl(h(x, D aX, r/, 0, t) --0)]},  (11) 

with 

h(x, D "x, 17, O, t) = ~ x ~ ~ s - "c - D a~) 
# = 1  ~ = 0  

- -  r/ -- e + heXt(x) �9 (12) 

For  the sake of  simplicity we have assumed that the 
external signal depends on the storage vector x only. 
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Equations (11) and (12) describe the dynamic evo- 
lution of  the macroscopic network states and contain 
all possible solutions of  our model network. The deriva- 
tion of  these results is based on a time-dependent 
mean-field-theory which is exact in the case of  a finite 
number of  patterns in a large network ( N ~  ~ ) .  See 
Gerstner and van Hemmen (1992a) for details of  the 
derivation. 

Two basic types of  solution - stationary and oscil- 
latory ove r l aps -  may occur, which we study in the 
limit of  noiseless threshold neurons (fl ~ oo). Intermedi- 
ate between both cases is a regime of  weak locking 
which is discussed in Sect. 3.5. 

3.2 Stationary states 

As stationary state is defined by the condition 
mu(t) =- m~, for all patterns 1 ~< # ~< q. In this case (12) 
can be simplified 

q 

h ( x , D ~ , n , e , t ) =  ~ x ~ m ~ - t l - - e + h e X t ( x ) ,  (13) 
/ t = l  

where we have used the normalization condition 
~ =  0e(z) = 1. Equation (13) shows that the interaction 
of  neuron i e L(x, D "x, t/, Q) with all of  the 'Hebbian'  
neurons and the external signal yields a constant input 
h . . . .  t(x) = ~q= lx~'m~ + heXt(x). The only time-depen- 
dent part in the postsynaptic potential of  a neuron i 
belonging to L(x, D ~x, ~/, Q) stems from the interaction 
with its inhibitory partner neuron and its own refrac- 
tory field. The effect of  inhibition and refractoriness can 
be understood easily. 

If  hconst(x ) < 0, a neuron i ~ L(x, D "x, ~/, Q) stays 
quiescent and fires no spikes (nB = 0). If, however, 
h . . . .  t(x) > 0, then neuron i fires with maximum fre- 
quency and emits a burst of  spikes until the inhibitory 
feedback becomes strong enough to end the spiking. 
Only after another time r ~ when the inhibitory signal 
has declined sufficiently, i.e., ~/(z ~  1 ) <  0--hconst(X) 
and r/(~ ~ f> 0 - hconst(x), the firing can start again. 

This result can be used to simplify (11). Let us assume 
that the IPSP ~/(z) is a sharply rising function and blocks 
firing immediately when it sets in. Then a burst of  neuron 

inh when the i that has started at t = 0 is ended at t = A i 
inhibitory feedback due to the first spike arrives. This 
leaves the neuron time to fire a total of  nB(A~.nh~, , = 1 + 
Int[A ~h/(Zr~f + 1)] spikes where ( ~ f  + 1)-  l is the firing 
frequency during the burst and Int[.] denotes the integer 
part of  the term in square brackets. Thus spiking occurs 
at times ti = 0, (Zr~f+ 1) , '"  ' ,  [nB(A~ nh) -- 1)](Zr~r+ 1) 
and stops afterwards due to the inhibitory feedback. Only 
if the inhibition that is due to the last spike of  the burst 
has declined sufficiently the neuron can fire again and 
start the next burst. The bursting period TB is therefore 
given by 

TB(A~ nh) = [nB(A i,. ~ )  -- 1](z~f + 1) + z ~ . (14) 

We see that the result (14) only depends on the in- 
hibitory delay loop /t~nh - - ~  , SO is independent of  the ax- 
onal delays times A ~x. Instead of  a classification of  the 
neurons by sublattices L(x, D "x, ~/, Q) it is now more 
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convenient  to in t roduce new sublattices defined by 
L ( x ,  D inh) = {i I ~f = x, Ainhi : Dinh} �9 I f p ( x ,  D inh) is the 
por t ion  o f  neurons  belonging to L(x ,  D inh) we find for  
the over lap 

2 d~h ns (D i n h )  ~x ~ x'Up(x, D i n h )  - - .  (15) 
m# N( 1 -- a2) o i n h  = A imnh n T B (Di"h) 

The  quant i ty  [ns(Dinh)/TB(Dinh)] is the mean  firing rate 
o f  neurons  with an inhibi tory delay loop A ~ h =  D inh. 
This result, Eq. (15), is in accordance  with a much  
more  general t heo rem tha t  in a s ta t ionary  state o f  a 
fully connected ne twork  storing a finite number  of  
pa t terns  the mean firing rate of  the neurons  is the only 
impor t an t  quant i ty  (Ges tne r  and van H e m m e n  1992b). 

The Eqs. ( 1 3 ) - ( 1 5 )  al low a s t ra ight forward numer-  
ical solut ion for  the s ta t ionary  over lap  m, .  In  part icu- 
lar, it is possible to find the retrieval states m,  = mr~v as 
a funct ion o f  the external  signal heXt(x)= y(xV+ 1)/2. 
To  simplify the analysis,  we now consider t ime as a 
cont inuous  var iable  and calculate z0 f rom the exact 
threshold equa t ion  r/(z0) = 0 - ),. In  Fig. 4 the theoreti-  
cal predict ions for  a large and noiseless ne twork  are 
c o m p a r e d  with s imulat ion results o f  a ne twork  consist- 
ing o f  two layers o f  4000 neurons.  Whereas  at T = 0 the 
t ransi t ion is sharp  and  occurs exactly at V = 0.12 (open  
d iamonds) ,  it is smoothened  to a cont inuous  transit ion 
at  a finite noise level (fl = 15, filled circles). These 
results can be unders tood  with the help of  Fig. lb. 
According  to ( 1 3 ) - ( 1 5 ) ,  the s ta t ionary  retrieval overlap 
is given by m = f ( m  + ~) w h e r e f i s  the mean  firing rate 
[in kHz]  averaged  over  all pairs o f  neuron and in- 
hibi tory pa r tne r  neuron.  Thus  the intersection of  a 
typical gain funct ion o f  a neuron  pair  (Fig. lb,  solid 
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Fig. 4. Stationary retrieval (m) as a function of the external stimu- 
lus. Theoretical results of a large (N--* Go) and noiseless (fl--* oo) 
network are shown by the solid lines. Simulation results for a network 
of N = 4000 neuron pairs are plotted as open diamonds (fl = o~) and 
filled circles (fl = 15). If the external stimulus y is increased, the 
noiseless system passes a regime of bistability which ends at 
), = 0 = 0.12. There the overlap jumps to the upper branch (pattern 
retrieval). The hysteresis loop has been indicated by arrows. At finite 
temperature (,8 = 15) the transition to the retrieval state is continu- 
ous. These results can be understood with the aid of a graphical 
solution, indicated in Fig. lb, using the above gain function of a 
neuron pair 

line - noiseless; circles - fl = 15) with a straight  line of  
slope one (dashed)  yields the s ta t ionary  retrieval over- 
lap. The  external signal 7 shifts the dashed line parallel 
to the x-axis.  Using this graphical  construct ion we can 
explain the nature  o f  the solut ion in Fig. 4. In  the 
noiseless case we have the trivial solution for  small Y. 
With  increasing external signal, we suddenly obta in  a 
nonzero  firing rate, move  th rough  a regime o f  bistabil- 
ity, and then arrive at  a regime o f  large retrieval over lap 
only. In the case of  finite but  high enough tempera ture  
the gain funct ion does not  show a steep increase at  
threshold and the overlap comes up continually with 
the external input. 

The remaining difference in Fig. 4 between theory 
and simulat ion in the noiseless case is apar t  f rom 
finite-size effects also due to a small oscillation in the 
overlap.  The stat ionari ty condi t ion is thus a good ap- 
proximat ion ,  but  it is not  exactly fulfilled. Oscilla- 
t ions with a large ampl i tude are considered in the next 
subsection. 

3.3 Oscillatory states 

In addit ion to s ta t ionary retrieval states with constant  
over lap m, ( t )  - m6,v there are also collective oscillation 
states 

mu(t) = 6~vf(t + nTosc), n G 7/ (16) 

where Tosc is the per iod of  a collective oscillation. While 
f is a Tosc-periodic function, 7/ denotes  the integers. 

We have seen in the preceding p a r a g r a p h  that  neu- 
rons  with different delay loops A~ "n have a different 
intrinsic burst ing period inh TB(Ai ), if the neurons  are 
subject to a constant  input. The  above  Ansatz  (16) 
presupposes  that  a collective oscillation with a common 
period Tosc is nevertheless possible. In  other  words,  Eq. 
(16) implies ' locking '  o f  oscil latory elements with vari- 
able intrinsic frequencies. In this subsection we show 
that  these ' locked '  oscillations indeed exist. The  next 
subsection is devoted to the questions under  which 
condi t ion they are stable solutions o f  the system. 

In order  to check whether  oscil latory solutions are 
possible, we assume that  all neurons  in the foreground 
of  a specific pa t tern  ( ~  = 1) have fired regularly in a 
coherent  oscillation for  all t imes in the past  (t < 0). To  
be more  explicit, we assume that  there have been collec- 
tive bursts  at  times Te = -nTo~c where n G r~ denotes 
the positive integers and Tosr is the unknown  burst ing 
per iod which we are going to determine self-consis- 
tently. Despi te  the c o m m o n  per iod To~ groups  o f  neu- 
rons with different delay times will not  burs t  exactly at 
the same t ime since neurons  with short  delays start  a 
little too early in relation to the collective firing t ime Tr  
and neurons with long delays fire a little too late. We 
denote  the delay o f  the burs t  start  for  a neuron  with 
axonal  and inhibi tory delays (D inh, D a• compared  to 
the collective firing t ime Tr  by the quant i ty  
t~(D inh, Dax). I f  we now remember  f rom the preceding 
subsection that  each burs t  contains  na (A ~h) spikes fired 
with a frequency (Zref+ l) 1, then we can write the 
spiking times for  a neuron  i GL(Dinh, D ax) where 
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L(D inh, D ~') = {i zlinhi = Dinh, /1~ x ---- Dax} and ( ~  = 1) 
in the form 

ti = --nTo~c + f ( n  inh, D ax) -I- (k - 1)('Cref-[- 1), (17) 

where Tr = - - n T o ~  with n E N is the formal collective 
firing time, f(D inh, D ax) is the shift in the burst start of 
a neuron i e L(D inh, D~0, and k with 1 <<. k <<. n s ( D  i"h) 
denotes the k th spike in the burst. The origin of time is 
chosen in such a way that the next formal collective 
burst (n = 0) occurs at t = TF = 0. In the following we 
are going to determine the unknown quantities To~e and 
f(O inh, Dax). 

To simplify notation we define a summation of all 
past EPSP's 

n B 

~(Dinh; T, t) = ~ E E[t + n T - ( k  - 1)(Xr~f+ 1)]. 
n = l k = l  

(18) 

T and t are considered as free variables, whereas D ~"h is 
a parameter. The quantity g as a function of T can be 
used to determine the oscillation period To,r in the 
following way. Because of the regular firing in the past, 
viz. Eq. (17), the next bursting of a neuron 
i ~ L ( D  ~"h, D ax) is due at time f(D inh, D~X). This implies 
that the threshold condition h~Y"(t)+h~Xt(t)I>0 is 
fulfilled at time t = f ( D i " h ,  DaX), but not yet at 
t = f ( D  i"h, D ~x) - 1. If  we replace the inequality by an 
equality and insert the explicit expression for h,s.yn(t), we 
can write the threshold condition 

inh ax a ~  am~x 
0 =  E Y 

h n i n  _ a i n l a  D ~ x _ A a x  
~ 0  - - ~ n a m  - - o  - - - - r a i n  

• ~ O  ~ ;  T, f ( D  i~h, D ~x) - D ~x - f(Di,  nh, B~X)] 

"Jr" ~] { T  -- [nB(O inh) -- 1]('~re f "Jr" 1) -- D inh} -~ heXt(x) . 

(19) 

As before we take MXt(x)= 7 ( x ' +  1)/2. Simultaneous 
solution of (19) for all groups L(D inh, D "x) yields the 
oscillation period Tosr = Int[T + 1] and the shift in the 
bursts start f(D i"h, D~X). 

To simplify expression (19) we now assume that 
and r /vary only slowly during one time step and that 
differences in the delays D inh and D ~x are small and 
result also in a spread of firing times f ( D  i"h, D"X). In 
this case, ~ and r/can be taken continuous and differen- 
tiable. Expansion around the mean D inh and D ~x yields 
after some algebra the approximate formula 

0 ~ rl(T - -  2/)  inh) + ~(/~inh; T, _/~ax) + heXt(x) , (20) 

where/~i.h ~ [nn(/~i,h) _ 1](.Crcf + 1) has been used. This 
allows a solution for the oscillation period To~. 

Within the same approximation, the starting times 
of the bursts depend on the inhibitory delay through 

d 
dt t/(To~ 2/) inh) 

f(D inh, D "~) = 2 (Dinh _/~inh). 

d g(Bi. . ;  To,o, - B ax) 
dt 

(21) 

If  we assume realistic parameters for the shape of the 
EPSP, the response function E(z) shows a pronounced 
maximum followed by a fast decay. Then 
~(/~i,h; T, _Oax) can be approximated by 

~(/~i.h; T, _ / ~ x )  ~ r -/~aX)ns(/~i~h ) . (22) 

This allows a simple graphical interpretation of the 
above result; see Fig. 5. The firing period To,c is given 
by the intersection of the appropriately scaled and 
delayed graphs of ~/(z) and e(z); cf. Eq. (20). The spread 
of the starting times of  the bursts is determined by 
the slope of the graphs at the intersection point; 
see Eq. (21). 

In a reasonable oscillation scenario, we expect that 
the fast neurons with A i/nh </~inh come a bit too early 
(fit < 0) in relation to the collective firing, whereas slow 
neurons A ~h >/~i,h are a bit too late (f~ > 0). Equation 
(21) tells us that this is true only if dg /d t  has the same 
sign as dq /d t .  Since (d t l / d t ) (To~  - 2/) i"h) > 0, it follows 
that g must have a posi t ive  slope at the firing point. We 
will see in the following paragraph that this is also the 
condition of a stable oscillation. 

3.4 A condit ion o f  locking 

So far we have assumed that a coherent oscillation 
exists and - based on the assumption that the collective 
bursting has been stable for a long time in the past [cf. 
Eq. (17)] - w e  have calculated the period Tosc of the 
oscillation and the delay 8(D inh, D ax) of the burst's start 
for the various groups of  neurons. 

In this subsection, we derive a condition that must 
be fulfilled to ensure that an oscillation is indeed stable. 
To this end, we assume that one of  the neurons, let us 
say neuron j E L ( D  inh, D~X), is not perfectly in time with 
its group, but starts bursting a little too early or too 
late, in other words, its firing is shifted by a short time 
At.  The oscillation is stable, if the neuron is 'drawn 
back' into its group, i.e., if the time shift zTt is reduced 
during the next cycle. 

The synaptic part of the membrane potential has 
two contributions 

h~Yn(t) = h~ (t) + h~ (t). (23) 

The first term 

h~ (t) = V ~D inh- �9 l-~ ~t o , T, 6(D inh, D ~x) 

Do" D~' 

- -  D ax - 5(D~ nh, DgX)], (24) 

is induced by the signals of the other neurons in the net 
and is unchanged compared to the unperturbed system. 
The inhibitory term, however, it shifted due to the 
perturbation [cf. (19)]. 

h 7 (t) = q {t - [nB(D inh) -- 1](Tre f + 1) - -O inh -- A t} 

= h~(t  - A t ) ,  (25) 

where the subscript 0 indicates the unperturbed system. 
The next firing occurs at t o -  A't where to is the firing 
time of the unperturbed network. In the limit of contin- 
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uous time, the threshold condition is 

hj (to + At) + h~(t o + At - At) = 0 - -  h~ xt . (26) 

Expansion around t o and using the fact that 
hj(to) + hg(to) = 0 - h~Xt(t) yields 

3t  =~-~hg(to) -~hg(to) +-d~h~i(to) At .  (27) 

Since (dhg/dt)(to) > 0, a condition for locking is (dh~i / 
dt)(t0) > 0. In other words, a global oscillation is stable 
only if a burst starts while excitation is still growing. 

3.5 Weak locking 

Equation (27) gives a condition for a globally locked 
oscillation. But what happens if some of  the neurons, 
let us say all neurons in L ( D  inh, Dax) ,  do not fulfill (27)? 
I f  so, they will remain out of  phase, once they have 
dropped out of  the collective oscillation. This does not 
imply that the oscillation is destroyed completely. It is 
also possible that only a small group of  neurons with 
very long or very short axonal delay A ~x drop out of  
the collective oscillation whereas all other neurons re- 
main in an oscillatory state. In this case, the macro- 
scopic overlap is - as before - a T-periodic function of  
time, but not all neurons fire exactly T-periodic. Some 
of  the neurons (i.e., neurons in L(D inh, Dax)) occasion- 
ally slip through and 'miss' the collective firing. We call 
this a state of  weak locking. 

To find a lower bound of  the regime of  'weakly 
locked' solutions we can adopt an iterative approach. 
First, we calculate the globally locked solution, and 
determine the stability of  locking (27) for all neurons of 
all sublattices L ( D  inh, Dax) .  I f  (27) is not fulfilled for 
some neurons, we assume that they are completely out 
of  phase and g i v e -  on the a v e r a g e -  no contribution 
to the T-periodic Ansatz (16), providing only a station- 
ary background. Based on this assumption we repeat 
the procedure, calculate a new period, and check 
whether all remaining neurons are stably locked, and so 
on. I f  the iterative procedure converges to a state with 
'non-participating' neurons, then a 'weakly locked' so- 
lution is possible. This criterion, however, is only a 
necessary condition, since simulations show that the 
neurons which have dropped out of  the collective oscil- 
lation are not completely out of  phase, but only slip 
through occasionally. Due to the remaining oscillations 
in the overlap which acts as a periodic stimulus on 
those neurons, they have a tendency to spike in phase 
with the rest of  the network. Thus they are, in a true 
sense, weakly locked. 

The above arguments are valid in the noiseless case 
(T -- 0). The regimes of  stationary states, global oscilla- 
tions and weakly locked oscillatory states are deter- 
mined only by the width and position of  the 
distributions of  the delays -iAinh and A~ x. If  noise is 
added, each neuron fires stochastically, and the spikes 
may come a little too early or too late in comparison 
with the noiseless case. It is therefore to be expected 
that adding noise lowers the oscillation amplitude and 
drives the system from global oscillation to weak lock- 

ing or stationarity. Simulations of  a network at a finite 
noise level which show this behavior are presented in 
the next section. 

4 Macroscopic states of the network: Simulations 

In the preceding section we have shown that two basic 
types of  solution are possible: Oscillatory and station- 
ary retrieval of  patterns. Oscillatory solutions can be 
divided in globally and weakly locked oscillations. The 
theoretical arguments have demonstrated that it is the 
timing of  the EPSP in relation to the IPSP which 
determines the solution type. In this section, we test the 
validity of the theoretical results in simulations of  a 
network consisting of  two layers of  4000 neurons at a 
finite noise level (fl = 15) with q = 5 patterns and 
a = - 0 . 8 .  In passing we note that extensively many 
patterns (q = 200 in a system of  N = 4000) will do as 
well. The EPSP and IPSP are modelled with a biologi- 
cal shape as shown in Fig. 3. The delay in the inhibitory 
loop of a specific neuron pair is chosen once and for all 
from a block-shaped distribution that varies between 
/ t  mininh = 3 ms and _A maxirth ---~ 6 ms. The only remaining free 
parameter then is the duration of  the axonal transmis- 
sion delay d ~x. To test its influence we have considered 
three different scenarios: see Fig. 5. 

4.1 Three scenarios 

In all scenarios we start in a randomly chosen state of  
mean activity a. For  the first 200 ms no external signal 
is applied, then a weak signal is switched on and kept 
on a constant level of  hTXt(t) = V(~f + 1)/2 with 7 = 0.2, 
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Fig. 5. Relative position of  EPSP (solid line) and IPSP (long dashes) 
in three different scenarios. Scenario I: Short axonal delays between 0 
and 2 ms; mean v a l u e / ~ '  = 1 ms. Scenario II: medium axonal delays 
(8-10 m s , / ~  = 9 ms). Scenario III: long axonal delays (20-22 ms, 

- -  a x  / ~ / l = 2 1 m s ) .  The intersection of  El, m=nz~(T ~l, iil)+(~--O) 
with the function - ~ / ( z - 2 D  inh) yields the oscillation period in 
scenario I (T/~ = 27 ms) and scenario III (To~ = 23 ms); see text for 
details. In scenario III an oscillation is possible even after the external 
signal has been turned off (7 = 0, dashed line). Scenario II does not 
allow oscillatory solutions 
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Fig. 6. Response of a network to stimulation. Overlaps with a specific 
pattern are shown as a function of time for the three different 
scenarios. The pattern is supported by a weak external signal for a 
time between 200 and 800 time steps (ms) as indicated by the 
horizontal bar. Top: scenario I, oscillations occur only while an 
external stimulus is applied. Middle: scenario II, transient behaviour 
to a stationary retrieval state. Bottom: scenario III, oscillations re- 
main even after the stimulus has been turned off 

which is only slightly above threshold. After another 
600 ms the signal is switched off again. 

In scenario I (Fig. 6a), we have assumed that axonal 
delays A ?x are short and distributed in a range between 
0 and 2 ms with equal probability. With this delay 
distribution, an oscillation starts, if the signal is switched 
on, and it continues as long as the signal is active. It stops 
immediately after the signal is turned off. This is consis- 
tent with the theoretical results (19) and (27). 

In scenario II, the axonal delays are slightly longer, 
distributed in a range 8 ms ~< A? x ~< 10 ms. In this case, 
excitation is growing while inhibition is still dominant 
(see Fig. 5, curve 'II ') and an oscillation cannot be 
stable; cf. Eq. (27). This is confirmed in the simulation 
(Fig. 6b) where a constant overlap develops after initial- 
ization of  the signal. The magnitude of  the overlap is 
consistent with the theoretical result (15). I f  the signal is 
turned off, the overlap vanishes and the network returns 
to the quiescent state. 

All this is different in scenario III where we have long 
axonal delays (20 ms ~< A ~' ~< 22 ms). Figure 6c shows 
that a collective oscillation develops which is stable even 
after the signal has been turned off. We can understand 
this result by analyzing the graphical interpretation of  
(20), (22), and (27) as shown in Fig. 5. The intersection 
of  the graph of  - q ( ' 0  with the scaled version of  e(~) 
(curve 'III ') yields an oscillation period To~ ~ 23 ms that 

matches well with the simulation result, Fig. 6c. In both 
cases - with or without signal - a collective oscillation is 
stable, since bursts start while excitation is still growing; 
cf., Eq. (27). 

Scenarios I - I I I  are typical examples of  a network 
behaviour that varies continuously from stationarity to 
full locking. The transition between the different regimes 
can be seen in the 'phase diagram' (Fig. 7) where the 
amplitude of  the oscillation is shown by a scale of  grey 
values. Dark areas indicate large oscillations, white area 
negligible oscillations. Depending on the minimal dura- 
tion of  axonal transmission delays (y-axis) and the width 
of  their distribution (x-axis) the amplitude varies from 
below 0.1 (stationary) to above 0.3 (perfect locking). 
Whereas a broader distribution (larger x-values) always 
lowers the amplitude, a change in the y-values may switch 
the system from one regime to the next and either increase 
or decrease the amplitude, as discussed above. 

4.2 Interpretation 

The most interesting behaviour is seen in scenario I 
where the network oscillates only as long as the external 
signal is applied. I f  the signal is removed, the system 
returns to the stationary resting state. This behaviour in 
scenario I compares favorably to experiments in the 
visual cortex of  the cat where oscillations are seen only 
during stimulation. Otherwise a stationary background 
activity is found. 

Scenario I is also the most realistic one, at least for 
the cat. It is known that axonal delays within one area 
of  the cortex are rather short. Delay times distributed in 
a range between 0 and 2 ms seem to be a reasonable 
assumption (Kuffler et al. 1984). The other parameters 
(rise time of  EPSP z, ~ 3 ms, rise time of  IPSP ~ 2 ms, 
decay time % ~ 6 ms, inhibition loop delay 3 - 6  ms) are 
also taken in a biologically plausible range. With this set 
of parameters we find a period of  oscillation of  approx- 
imately 20-25 ms which is consistent with experiments 
where oscillations with 40-50 Hz have been found (Eck- 
horn et al. 1988; Gray and Singer 1989). 

The theoretical argument (Eq. 27) shows that the 
oscillation is only w~akly stable since (d/dt)h~(to) ,~ 0 for 
the 'fast' neurons. This may be a reason that in the noisy 
environment of  real systems oscillations are barely visi- 
ble (Pawelzik 1991). Simulations with scenario I within 
a more realistic neurobiological setting and at a higher 
noise level are presented in a companion paper. 

4.3 Spike raster 

In contrast to most other models of  oscillatory neural 
networks our approach yields not only global activities 
and time-averaged firing rates but also spike trains o f  
single neurons and their correlations. The full informa- 
tion on the network behaviour is contained in the spike 
raster which shows all spikes of  an arbitrary set of  
neurons in a time-resolved plot. A spike raster is thus 
equivalent to experimental multi-electrode-recordings 
where the activity of  several neurons is measured at the 
same time. The spike raster of  Fig. 8 shows the spikes 
of  10 neurons in scenarios I to III. All neurons from 
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Fig. 7. Phase diagram. The amplitude of an oscillation 
rno~ = (mm~x - m~, )  is plotted as a function of both minimal axonal 
delay d,~, (y-axis) and width of the delay distribution A~a x - A , ~ .  
(x-axis). Dark areas indicate a large-amplitude oscillation (mosc > 0.3), 
white areas indicate a stationary overlap (most<0.1) while gray- 
shaded areas define the region of weak locking (0.1 < mos ~ < 0.3). The 

�9 _ a x  a x  three scenarios lie along the line (x - A  max- d ~i, = 2 ms) parallel to 
the y-axis and are marked by black and white circles. Whereas for a 
sharp distribution of delay times (x = 0), the oscillation amplitude 
depends critically on the transmission delay, a broad distribution 
(x > 16) always leads to a stationary solution. Note that scenario I lies 
in a regime intermediate between strong oscillations and stationarity 
(grey-shaded area) 

which record ings  are  m a d e  are  numbered  and  p lo t ted  
a long  the y-ax is .  T ime  is p lo t t ed  in x -d i rec t ion  and  the 
spikes  o f  each neu ron  are  m a r k e d  as a do t  a long  a 
ho r i zon ta l  line para l l e l  to the x-axis .  Coheren t  act ivi ty  
can  then be visual ized as vert ical  co lumns  o f  dots;  see 
e.g., a t  t = 700 ms in scenar io  I (Fig .  8a) and  I I I  (Fig .  
8c). The  burs t  s t ruc ture  o f  any  single neuron  (e.g.,  burs ts  
o f  two o r  three  spikes)  is c lear ly visible i f  we fol low the 
spike do ts  a long  a ho r i zon ta l  line. A closer  look  at  the 
spike ras ter  o f  scenar io  I I I  reveals  that ,  while burs t ing  is 
g loba l ly  synchron ized  for  all active neurons ,  the burs t  
s tar t  o f  different  neurons  is no t  exact ly  at  the same time. 
N e u r o n s  wi th  a shor t  i nh ib i to ry  de lay  loop  (e.g.,  # 4 - 6 )  
s tar t  firing ear l ier  t han  those  wi th  a long de lay  loop  (e.g., 
# 3 and  7), as p red ic ted  by  (21). Both  groups ,  however ,  
' fas t '  neu rons  as well as ' s low '  neurons ,  have the same 
pe r iod  o f  g loba l  col lect ive osc i l la t ion  (To~ ,~ 23 ms). In  
scenar io  II ,  each neu ron  exhibi ts  burs t ing  activity,  but  
the burs ts  occur  s tochas t ica l ly  and  are  no t  synchronized.  
A n  in te rmedia te  case is shown in the spike ras ter  o f  
scenar io  I where  some o f  the neurons  (e.g. # 6 and  9) 
slip t h rough  the 'osc i l la t ion  maze '  occasional ly ,  tha t  is, 
are  'weakly locked" Never theless ,  g loba l  coherence  is still 
d o m i n a n t  as ind ica ted  by  the osci l la t ion o f  the over lap  
m. The  spike raster ,  however ,  enables  us to reveal  
add i t i ona l  i n fo rma t ion  tha t  is no t  obvious ,  i f  we look  at  
the over lap  only.  
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Fig. 8. Spike raster in the three scenarios. The upper curve in (a)-(c) 
shows a small protion of the overlap function of Fig. 6 with higher time 
resolution. The signal is active up to t = 800 ms and is turned off 
afterwards. The spike raster below shows the spikes of 10 active 
neurons. Neurons are numbered and plotted along the y-axis, time is 
plotted along the x-axis. Each spike of a neuron is marked by a dot. 
(a) In scenario I, coherent activity- visible as vertical columns of 
spikes - is dominant but some of the neurons (e.g., numbers 6 and 9) 
occasionally slip through: 'weak locking'. (b) In scenario II, all 
neurons burst asynchronously as is confirmed by the stationary 
overlap. (c) In scenario III, locking is perfect. Note that neurons with 
short delays (e.g., numbers 4-6) tend to come earlier than neurons 
with long delays (e.g., number 3 and 7), as predicted by the theory 

5 Discussion and conclusions 

We have inco rpora t ed  a couple  o f  of ten neglected bio-  
logical  detai ls  into fo rmal  associat ive ne tworks  and  
shown their  relevance.  In  par t icu lar ,  we have inc luded 
an abso lu te  re f rac tory  pe r iod  o f  the mode l  neuron,  a 
d i s t r ibu t ion  o f  axona l  t ransmiss ion  delays,  and ,  finally, 
a real is t ical ly shaped  pos t synap t i c  response  ( E P S P  and  
IPSP).  Our  biological  a p p r o a c h  al lows to mode l  net-  
work  behav iour  in more  detai l  and  reveals  the spiking 
behav iour  o f  single neurons  and  cor re la t ions  between 
different  neurons  as well as the g loba l  activities.  

W e  have shown tha t  a p a r t  f rom the quiescent  s tate 
a t  least  two basic types o f  so lu t ion  are  possible:  s ta t ion-  
a ry  and  osci l la tory  ret r ieval  o f  the learnt  pa t terns .  I t  
depends  on the exact  t iming o f  the EPSP in re la t ion  to 
the IPSP  whether  the system goes in to  an osc i l la tory  or  
s t a t ionary  retr ieval  state. In  the stationary state,  all 
neurons  in the ' f o r eg round '  o f  a pa t t e rn  are  active, bu t  
the act ivi ty  burs ts  o f  different neurons  are no t  synchro-  
nized. The  o v e r l a p -  which is a g lobal  measure  o f  the 
re t r ieval  qual i ty  o f  a p a t t e r n -  takes  a cons tan t  value 



proportional to the mean firing rate of  the neurons. 
Stationary retrieval occurs for medium delays in the 
axonal transmission (scenario II). 

For  short (scenario I) or long (scenario III) transmis- 
sion delays oscillatory retrieval is dominant. The period 
of  collective oscillations can be calculated, if transmission 
delays and the shape of  EPSP and IPSP are known. An 
important conclusion of  our analysis is that 'locking' of  
different neurons into a collective oscillation is possible 
only i f  the total excitatory potential is still growing at the 
time of  firing. I f  it is declining, the collective oscillation 
is unstable and the neurons go into an unsynchronized 
firing state. In view of the distribution of  axonal and 
inhibitory delays the occurrence of  locking might seem 
surprising. We could show both analytically and in the 
simulations of  scenario III that a collective oscillation 
with a common period is nevertheless possible. Our 
analysis also reveals that neurons with short delays spike 
always slightly earlier than those with long delays. 

In scenario I where the neurons have axonal delay 
times in a biologically plausible range, coherent oscilla- 
tions occur but locking is only weak. Neurons with short 
delays occasionally slip through and miss the collective 
firing times. It can thus be speculated that biological 
networks operate in a regime intermediate between strict 
locking and unsynchronized firing - in agreement with 
available biological data (Eckhorn et al. 1988; Kreiter 
and Singer 1992). 

Locking as well as the phase shift between fast and 
slow units are a much more general phenomenon and 
occur in many other circumstances (Yamaguchi and 
Shimizu 1984; Kuramoto and Nishikawa 1987). But 
while most other models of  collective oscillations are 
based on abstract differential equations, our approach is 
based on a specific model of neuronal signal transmis- 
sion. Despite the fact that many biological phenomena 
have been included in the description, an analytical 
solution of  our model in the limit of  a large and noiseless 
network is nevertheless possible. 

There are, of  course, a couple of biological details 
which are still neglected in our approach. As we have 
explained in Sect. 2.1, we disregard all microscopic 
phenomena on the level of  ion channels and the structure 
of  dendritic trees. Furthermore, we assume throughout 
the paper that dendritic summation is linear and we 
neglect all effects of adaptation and relative refractori- 
ness. It should be checked in future  work how an 
incorporation of  the above phenomena changes the 
network behaviour. Preliminary investigations suggest 
that it does not. 

In our model of  synaptic transmission, we have 
assumed that a mathematical description can be sepa- 
rated into two parts: A response function which models 
the time course of  the synaptic response and a synaptic 
efficacy factor which determines the amplitude of  the 
response. Experiments on hippocampal brain slices sug- 
gest that such a separation might be possible. Indeed, it 
is the amplitude of  the postsynaptic response which 
changes during long-term potentiation while the time 
course remains unaffected (e.g., Malinow and Miller 
1986; Larson and Lynch 1986) We have made no 
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attempt to model the electrical and chemical processes 
that lead to long-term-potentiation by correlation of  
pre-and postsynaptic activity (Hebb 1949; see Brown et 
al. 1989; Bindman et al. 1991 for a review on experi- 
ments, Herz et al. 1988; Lisman 1989; Kitajima and 
Hara  1990 on modeling). Instead, we have taken an 
effective Ansatz (4) of  'Hebbian'  efficacies for random 
patterns. This allows us to compare our  results with the 
retrieval properties of  traditional formal networks 
(Hopfield 1982). We do not claim, however, that the 
visual cortex is an association network that stores ran- 
dom patterns by the above rule (4). In fact this rule is 
rather implausible, since the 'Hebbian'  model neurons 
make excitatory as well as inhibitory connections. In 
principle, the inhibitory synapses in the 'Hebbian'  layer 
can be removed, if the threshold is adjusted at the same 
time. For  technical reasons, however, we prefer to take 
the rule (4), which makes analysis more transparent. 

On a more global level, the connection topology of  
our model may be criticised. The 'extreme locality' of  
inhibition by partner neurons is certainly not a realistic 
model of  biological systems. In the visual cortex of  the 
cat, for example, it is known that only a small fraction 
of  the neurons are inhibitory steUate cells and each cell 
makes local connections to a group of  excitatory cells. 
Simulations of  a more realistic model that preserves the 
characteristics of  the present one but  allows a reduced 
number of  inhibitory neurons and local connections to 
a group of  nearby 'Hebbian'  neurons show that the basic 
network behaviour is unchanged (Trefz 1991). In fact, it 
can be argued that the 'relaxed locality' condition tends 
to synchronize firing and to stabilize oscillations. Our 
approach of  'extreme locality' is thus not only the most 
transparent, but also the most difficult, in a sense the 
'worst '  case, if we aim at collective oscillations. Regard- 
ing the 'Hebbian'  neurons, we have taken the other 
extreme and assumed full connectivity. This would be a 
bad assumption, if we wanted to model the cortex as a 
whole, but as a model of  a single column or a very small 
area in the visual cortex of  a cat or monkey it is a fair 
approximation. In a companion paper (Ritz et al. 1993) 
we show how in a model of  a larger area of  the cortex 
a connection topology across several columns can be 
introduced by distance-dependent axonal delays. Such a 
more involved model allows to simulate complex net- 
work behaviour which can be compared with experimen- 
tal measurements on the cortex of  the cat, and thus to 
narrow the gap between theory and biology. 
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