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An integral equation describing the time evolution of the population ac-
tivity in a homogeneous pool of spiking neurons of the integrate-and-fire
type is discussed. It is analytically shown that transients from a state of
incoherent firing can be immediate. The stability of incoherent firing is
analyzed in terms of the noise level and transmission delay, and a bifurca-
tion diagram is derived. The response of a population of noisy integrate-
and-fire neurons to an input current of small amplitude is calculated and
characterized by a linear filter L. The stability of perfectly synchronized
“locked” solutions is analyzed.

1 Introduction

In many areas of the brain, neurons are organized in populations of units
with similar properties. The most prominent examples are probably col-
umns in the somatosensory and visual cortex (Hubel & Wiesel, 1962; Mount-
castle, 1957) and pools of motor neurons (Kandel & Schwartz, 1991). In such
a situation, we may want to describe the mean activity of the neuronal pop-
ulation rather than the spiking of individual neurons. In a population of
N neurons, we can formally determine the proportion of active neurons by
counting the number of spikes nact(t; t+1t) in a small time interval1t and
dividing by N. Division by 1t yields the activity

A(t) = lim1t→0
1
1t

nact(t; t+1t)
N

. (1.1)

Although equation 1.1 has units of a rate, the concept of a population
average is quite distinct from the definition of a firing rate via a temporal
average. Temporal averaging over many spikes of a single neuron is a con-
cept that works well if the input is constant or changes on a time scale that
is slow with respect to the size of the temporal averaging window. Sensory
input in a real-world scenario, however, is never constant. Moreover, re-
action times are often short, which indicates that neurons do not have the
time for temporal averaging (Thorpe, Fize, & Marlot, 1996). The popula-
tion activity, on the other hand, may react quickly to changes in the input
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Figure 1: Population of neurons (schematic). All neurons receive the same input
Iext(t) (left), which results in a time-dependent population activity A(t) (right).

(Knight, 1972a; Treves, 1992; Tsodyks & Sejnowski, 1995; van Vreeswijk &
Sompolinsky, 1996).

In this article we study the properties of a large and homogeneous popu-
lation of spiking neurons. All neurons are identical, receive the same input
Iext(t), and are mutually coupled by synapses of uniform strength (see Fig-
ure 1). Can we write down a dynamic equation in continuous time that
describes the evolution of the population activity? This problem comes up
in various models and has been studied by several researchers (Knight,
1972a; Wilson & Cowan, 1972, 1973; Amari, 1974; Gerstner & van Hemmen,
1992, 1993, 1994; Bauer & Pawelzik, 1993; Gerstner, 1995; Pinto, Brumberg,
Simons, & Ermentrout, 1996; Senn et al., 1996; Eggert & van Hemmen, 1997;
Pham, Pakdamen, Champagnat, & Vibert, 1998). A frequently adopted so-
lution is a differential equation (Wilson & Cowan, 1972),

τ
dA(t)

dt
= −A(t)+ g

(∫ ∞
0

ε(s)A(t− s) + ε̃(s)Iext(t− s) ds
)

(1.2)

where neurons are coupled to each other with a delay kernel ε and receive
external input (or input from other populations) filtered by a kernel ε̃; g(.) is
the transfer function of the population and τ is a time constant. Equation 1.2
is equivalent to the equations of graded-response neurons (Cowan, 1968;
Cohen & Grossberg, 1983; Hopfield, 1984).

Equation 1.2 introduces a time constant τ that is basically ad hoc. Wil-
son and Cowan (1972, 1973) have derived (1.2) from an integral equa-
tion,

A(t) =
[

1−
∫ δabs

0
A(t− s) ds

]
g
(∫ ∞

0
ε(s)A(t− s)

+ ε̃(s)Iext(t− s)ds
)
, (1.3)

which is valid for stochastic neurons with an absolute refractory period of
length δabs. The term in the square brackets accounts for the fact that neu-
rons that have fired between t − δabs and t are in the refractory state and



Population Dynamics of Spiking Neurons 45

cannot fire. g(.) is the neuronal transfer function. Wilson and Cowan sub-
sequently used a method of time-coarse graining to transform equation 1.3
into the differential equation 1.2. The time constant τ , which appears on
the left-hand side of equation 1.2, is related to the window of time-coarse
graining.

It has been argued that τ in equation 1.2 is the membrane time con-
stant of the neurons, an assertion that may be criticized since it holds for
slowly changing activities only (Wilson & Cowan, 1972, 1973; Abbott &
van Vreeswijk, 1993; Gerstner, 1995). The activity is, however, not always
slowly changing. It has been shown previously that the population activ-
ity can react quasi instantaneously to abrupt changes in the input (Treves,
1992; Tsodyks & Sejnowski, 1995; van Vreeswijk & Sompolinsky, 1996). Tran-
sients in networks of nonleaky integrate-and-fire neurons can be very short
(Hopfield & Herz, 1995). A population of leaky integrate-and-fire units can
follow a periodic drive up to very high frequencies (Knight, 1972a, 1972b).
Moreover, homogeneous networks may be in an oscillatory state where all
neurons fire at exactly the same time (Mirollo & Strogatz, 1990; Gerstner
& van Hemmen, 1993; Gerstner, van Hemmen, & Cowan, 1996; Somers &
Kopell, 1993; van Vreeswijk, Abbott, & Ermentrout, 1994; Hansel, Mato, &
Meunier, 1995; Terman & Wang, 1995). In this case, the population activity
changes rapidly between zero and a very high activity. Rapid transients
and perfectly synchronized oscillations are inconsistent with a differential
equation of the form 1.2.

In this article we analyze the population dynamics and derive a dynamic
equation that is exact in the limit of a large number of neurons. The relevant
equation is a generalization of the integral equations of Wilson and Cowan
(1972) and Knight (1972a) and has been discussed previously in Gerstner
and van Hemmen (1994) and Gerstner (1995). The dynamic properties of
the population activity can be analyzed directly on the level of the integral
equation; there is no need to transform it into a differential equation. The
population equation allows us to discuss the following four questions from
a unified point of view:

How does a population of neurons react to a fast change in the input? We show
that during the initial phase of the transient, the population activity reacts
instantaneously (Treves, 1992; Tsodyks & Sejnowski, 1995; van Vreeswijk
& Sompolinsky, 1996). Specifically, the initial phase of the transient reflects
directly the form ε̃ of the postsynaptic potential. The end of the transient,
on the other hand, can be rather slow and depends on the noise level and
the coupling. In the special case of noiseless uncoupled integrate-and-fire
neurons, a new periodic state is reached as soon as every neuron has fired
once.

What are the conditions for exact synchrony in the firing of all neurons? We
show that neurons are “locked” together if firing occurs while the input
potential is rising. The locking theorem in Gerstner et al. (1996) follows
naturally from the integral equation.
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What are the conditions to make the neurons fire in an optimally asynchronous
manner? We discuss why, without noise, asynchronous firing is almost al-
ways unstable (Abbott & van Vreeswijk, 1993; Gerstner & van Hemmen,
1993; Gerstner, 1995). We show that with a proper choice of the delays and a
sufficient amount of noise, the state of asynchronous firing can be stabilized
(Gerstner, 1995). A bifurcation diagram is determined in terms of the noise
level and the transmission delay.

What is the response of an asynchronously firing population to an arbitrary time-
dependent input current? We show that at least in the low-noise regime, the
population activity responds faithfully even to high-frequency components
of the input current (Knight, 1972a, 1972b). The cutoff frequency of the
system is therefore given by the time constant of the synaptic current rather
than by the membrane time constant. For some noise models, the cut-off
frequency in the high-noise regime is further reduced.

Theories of population activity have a fairly long history (Wilson and
Cowan, 1972, 1973; Knight, 1972a; Amari, 1974; Feldman & Cowan, 1975).
Some researchers have formulated population equations as maps in dis-
crete time for homogeneous (Gerstner and van Hemmen, 1992; Bauer &
Pawelzik, 1993) or inhomogeneous populations (Senn et al., 1996; Pham et
al., 1998). Others have formulated continuity equations for the probability
distribution of the membrane potential with the threshold as an absorbing
boundary (Abbott & van Vreeswijk, 1993; Treves, 1993; Brunel & Hakim,
1998; Nykamp, Tranchina, Shapley, & McLoughlin, 1998). The population
equations discussed in this article are related to the integral equations of
Wilson and Cowan (1972) and Knight (1972a). Section 3 will review the
population equations in continuous time developed in detail in Gerstner
and van Hemmen (1992, 1994) and Gerstner (1995). Sections 4 through 7
will apply the population equations to the questions of locking, fast tran-
sients, signal transmission, and asynchronous firing.

2 Model

2.1 Deterministic Threshold Model. Model neurons are described by
the spike response model, a variant of the integrate-and-fire model (Gerst-
ner, 1995; Gerstner et al., 1996). A neuron i fires if its membrane potential ui
hits the threshold ϑ . The membrane potential is of the form

ui(t) = η(t− t̂i)+ hPSP(t|t̂i), (2.1)

where t̂i is the most recent firing time of neuron i, and

hPSP(t|t̂i) =
∑
j∈0i

∑
t( f )
j

wijε(t− t̂i, t− t( f )
j )

+ Jext
∫ ∞

0
ε̃(t− t̂i, s)Iext(t− s) ds (2.2)
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is the postsynaptic potential caused by firings t( f )
j of presynaptic neurons

j ∈ 0i or by external input Iext(t). The kernel η(.) in equation 2.1 is a (nega-
tive) contribution due to refractoriness. Alternatively, we could incorporate
refractoriness into the threshold and define a dynamic thresholdϑ−η(t− t̂i).

Since we are interested in a homogeneous population of neurons, the
kernels η, ε, and ε̃ have no indices i, j, and all neurons receive the same
input Iext(t). Moreover, the interaction strength between the neurons is
uniform,

wij = J0

N
, (2.3)

where J0 is a parameter. The interaction strength scales with one over the
number N of neurons so that the total input remains finite in the limit of
N→∞.

The theoretical approach developed in this article is valid for arbitrary
response kernels ε and ε̃ and for a broad variety of refractory kernels η.
Occasionally, however, we may want to specify the response kernels. For
example, with an appropriate choice of the kernels ε, ε̃, and η, equation 2.1
gives an excellent approximation to the Hodgkin-Huxley model with time-
dependent input (Kistler, Gerstner, & van Hemmen, 1997). Kernels can also
be adjusted to experimental data (Stevens & Zador, 1998). With a different
choice of kernels, equation 2.1 can be mapped exactly to various versions of
the integrate-and-fire model (Gerstner, 1995). Although most of the theory
developed in this article is general, we will use two specific models for an
illustration of the results.

2.1.1 Simple Spike Response Model (SRM0). In the first model, we assume
that the kernels ε and ε̃ do not depend on their first argument: ε(t− t̂, s) =
ε0(s) and ε̃(t− t̂, s) = ε̃0(s). This is the simplest instance of a spike response
model (Gerstner & van Hemmen, 1992) and will be called SRM0. In this
case, the postsynaptic potential is independent of the last firing time of the
neuron. We set hPSP(t|t̂) = h(t) with

h(t) =
∑
j∈0i

∑
t( f )
j

wijε0(t− t( f )
j )+ Jext

∫ ∞
0

ε̃0(s)Iext(t− s) ds. (2.4)

We will refer to h(t) as the input potential. In simulations we need to specifiy
the kernels. We take

ε0(s) = s−1ax

τ 2 exp
(
− s−1ax

τ

)
H(s−1ax), (2.5)

where1ax is the axonal delay and τ is a membrane time constant. The nor-
malization is

∫
ε0(s) ds = 1. As always, H(s) is the Heaviside step function
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withH(s) = 0 for s ≤ 0 andH(s) = 1 for s > 0. For external input we use in
simulations

ε̃0(s) = 1
τ

exp
(
− s
τ

)
H(s) (2.6)

with the same time constant τ as in equation 2.5. After each spike the mem-
brane potential is reset by adding a refractory kernel,

η(s) = −η̃0 exp (−s/τ)H(s). (2.7)

In simulations of SRM0 neurons we set η̃0 = 1. The spike response model
with the specific kernels defined in equations 2.5 through 2.7, can be consid-
ered as an approximation to the integrate-and-fire model. The approxima-
tion is based on a truncation and is valid if the typical interspike interval T0
is much larger than the time constant τ (Gerstner et al., 1996); the error of the
approximation is of the order exp(−T0/τ). For the numerical analysis later
on, we have adjusted the threshold ϑ so that the mean interspike interval
T0 is exactly T0 = 2τ . In this case, we may expect that SRM0 gives a rea-
sonable, albeit not perfect, approximation to the integrate-and-fire model.
A major advantage of SRM0 neurons (compared to integrate-and-fire neu-
rons) is that most of the results of sections 3 through 7 can be formulated in
a mathematically transparent form, which allows an easy interpretation.

2.1.2 Integrate-and-Fire model (IF). With a different choice of the kernels
ε and ε̃ in equation 2.2, it is possible to construct a perfect mapping between
equation 2.1 and the standard integrate-and-fire model (Gerstner, 1995).
Between two firings, the membrane potential of an integrate-and-fire (IF)
unit i changes according to

τm
dui

dt
= −ui +

∑
j

∑
t( f )
j

wijα(t− t( f )
j )+ JextIext(t), (2.8)

where τm is the membrane time constant, wij is the coupling strength, and
α(.) is the time course of the synaptic current. If ui hits a threshold ϑ , the
membrane potential is reset to ureset < ϑ . The spike response equation, 2.1,
can be considered an integrated version of equation 2.8. The value ureset
comes in as an initial condition for the integration of equation 2.8 and leads
to a kernelη as in equation 2.7 with τ = τm and η̃0 = −ureset. For ureset = 0, the
η-kernel vanishes. Integration of the synaptic current terms in equation 2.8
yields

ε(x, s) =
∫ s

s−x
α(s′) e−(s−s′)/τm ds′

= ε0(s)− ε0(s− x) e−x/τm , (2.9)
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where ε0(s) =
∫ s

0 ds′α(s′) exp[−(s − s′)/τm]. The response kernel defined in
equation 2.5 corresponds to a synaptic current α(s) = τ−1

s exp(−s/τs)H(s)
with time constant τs = τm = τ and an additional axonal transmission delay
1ax. Similarly, ε̃(x, s) = ε̃0(s)− ε̃0(s− x) e−x/τm with ε̃0 given by equation 2.6
and τm = τ . Using the expressions for ε̃ and ε with τm = τ , the postsynaptic
potential for IF units can be expressed as

hPSP(t|t̂) = h(t)− h(t̂) e−(t−t̂)/τ , (2.10)

where the input potential h(t) is given by equation 2.4. We emphasize that
the specific choice of the kernel ε0 in equation 2.5 corresponds to a synaptic
current with fast rise time. The theoretical framework of this article, how-
ever, is more general and applies equally well to slowly rising synaptic
currents.

2.2 Noise. The neuron model discussed so far is purely deterministic.
Given a spike at t̂ and for a known postsynaptic potential hPSP(t|t̂), we can
calculate the interval until the next spike from the threshold condition,

T(t̂) = min{(t− t̂)|u(t) = ϑ; t > t̂}. (2.11)

In words, the interval T is given by the first threshold crossing after the
spike at t̂.

In the presence of noise, the exact firing time and, hence, the exact interval
are unknown. We may, however, determine the probability density Ph(t|t̂)
that firing occurs around time t given the postsynaptic potential hPSP(t′|t̂)
for t̂ < t′ ≤ t and knowing the last firing time t̂. The distribution Ph(t|t̂)
will play an important role for the population equations in section 3. In the
noiseless case, the interval distribution reduces to a Dirac δ-function

Ph(t|t̂) = δ[t− t̂− T(t̂)], (2.12)

where T(t̂) is the next interval given a spike at t̂ and determined implicitly
by equation 2.11.

To calculate Ph(t|t̂) in the noisy case, we have to decide on a noise model.
There are at least three different ways to include noise in spiking neurons.
A popular procedure is to add white noise on the right-hand side of the
differential equation of the IF neuron. Below this is called noise model C.
Calculation of Ph(t|t̂) requires the solution of a first passage time problem,
which is known to be hard (Tuckwell, 1988, 1989). It is therefore convenient
to work with one of the following two noise models: threshold noise (noise
model A) or reset noise (noise model B).

2.2.1 Noisy Threshold (Noise Model A). In this first noise model, we as-
sume that the neuron can fire even though the formal threshold ϑ has not
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been reached yet or may stay quiescent even though the membrane po-
tential is above threshold. To do this consistently, we introduce an “escape
rate” ρ, which depends on the distance between the momentary value of
the membrane potential and the threshold,

ρ(t) = f [u(t)− ϑ]. (2.13)

In the mathematical literature, the quantityρwould be called a stochastic in-
tensity. We require f (x)→ 0 for x→−∞. Otherwise the choice of the func-
tion f is arbitrary. Plausible assumptions are an exponential dependence
ρ = ρ0 exp[β (u−ϑ)] or a gaussian dependence ρ = ρ0 exp[−β (u−ϑ)2]; or
a step function ρ = ρ0H(u− ϑ); or a piecewise linear function ρ = ρ0 (u−
ϑ)H(u− ϑ). β and ρ0 are parameters. Note that the escape rate ρ is implic-
itly time dependent, since the membrane potential u(t) = η(t− t̂)+hPSP(t|t̂)
varies over time. In addition, we may also include an explicit time depen-
dence, for example, to account for a reduced spiking probability immedi-
ately after the spike at t̂.

Let us now calculate Ph(t|t̂), the probability density of having a spike at t
given that the last spike occurred at t̂, and in the presence of a postsynaptic
potential hPSP(t|t̂) for t > t̂. At each moment of time, the value u(t) of the
membrane potential determines the escape rate ρ(t) = f [u(t)− ϑ]. In order
to emit the next spike at t, the neuron has to survive the interval (t̂, t)without
firing and then fire at t. Given the escape rate ρ(t), the probability of survival
from t̂ to t without firing is

Sh(t|t̂) = exp
(
−
∫ t

t̂
ρ(t′) dt′

)
. (2.14)

The probability density of firing at time t is ρ(t); thus with equation 2.14 we
have

Ph(t|t̂) = ρ(t) exp
(
−
∫ t

t̂
ρ(t′) dt′

)
, (2.15)

which is the desired result. More detailed derivations of equation 2.15 can
be found in Gerstner and van Hemmen (1994) and in the appendix of Wilson
and Cowan (1972) (see also Cox & Lewis, 1966)

2.2.2 Noisy Reset (Noise Model B). In this noise model, firing is given by
the exact threshold condition u(t) = ϑ . Noise is included in the formulation
of reset and refractoriness. A convenient way of doing this is by replacing
η̃0 in equation 2.7 by

η̃0 −→ η0(r) = η̃0 er/τ , (2.16)
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where r is a random variable with zero mean. In the language of the IF
neuron, we can describe the effect of r as a stochastic component in the
value of the reset potential. After each spike, a new value of r is drawn
randomly from a gaussian distribution Gσ (r) with variance σ ¿ τ . Let us
write T(t̂, r) for the next interval of a neuron that has fired at t̂ and was
reset with a stochastic value r. Since r is drawn at random, the interval
distribution is

Ph(t|t̂) =
∫

dr δ[t− t̂− T(t̂, r)]Gσ (r). (2.17)

In order to keep the arguments simple, we assume in the following that the
typical interval T0(t̂) = T(t̂, 0) is significantly larger than the width σ of the
distribution.

In the case of the simple spike response model SRM0, a reset according
to equation 2.16 with r 6= 0 shifts the refractory kernel horizontally along
the time axis. To see this, let us consider a neuron that has fired its last
spike at t̂ and has been reset with variable r. Its refractory kernel is η(t) =
η̃0 exp[−(t− t̂− r)/τ ]. Thus the neuron acts like a noiseless neuron that has
fired its last spike at t′ = t̂ + r. We therefore have T(t̂, r) = r + T0(t̂ + r),
where T0(t′) is the interval of a noiseless neuron that has fired at t′. For a
constant input potential h(t) = h0, the interval distribution of a SRM0 neuron
is therefore a gaussian distribution centered at the noise-free interval T0,
Ph0(t|t̂) = Gσ̂ (t− t̂−T0)with variance σ̂ = σ . Thus, the gaussian distribution
Gσ (r) of the noise variable r maps directly to a gaussian distribution of the
intervals around the mean T0.

In the case of the IF neuron, the argument is slightly more involved. For
σ ¿ T0(t̂) we may expand the interval T(t̂, r) = T0(t̂) + r T1(t̂) + O(r2)

in equation 2.17 to linear order in r. From the threshold condition, equa-
tion 2.11, we find T1(t̂) = η′/u′ where η′ denotes the derivative of η(s) at
s = T0(t̂) and u′ = du/dt is to be evaluated at t = t̂ + T0(t̂). The integration
on the right-hand side of equation 2.17 can now be performed and yields

Ph(t|t̂) = Gσ̂ [t− t̂− T0(t̂)] (2.18)

with variance σ̂ = σ T1(t̂). Hence the interval distribution is a gaussian
around the noise-free interval. For a constant input potential h0, we find
from equation 2.10 T1 = η̃0/(η̃0+h0), which may be used for the calculation
of σ̂ .

2.2.3 Noisy Integration (Noise Model C). A noise term is added on the
right-hand side of equation 2.8 (Tuckwell, 1988, 1989),

τm
dui

dt
= −ui +

∑
j

∑
t( f )
j

wijα
(

t− t( f )
j

)
+ JextIext(t)+ ξ (2.19)
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where ξ represents gaussian white noise with zero mean and correlation
〈ξ(t) ξ(t′)〉 = D τm δ(t−t′). The noise term can be motivated either by random
input from background neurons that are not modeled explicitly (Stein, 1967)
or by random openings of membrane channels. Noise causes the actual tra-
jectory to drift away from the noise-free reference trajectory. In the absence
of a threshold, the actual trajectories would have a gaussian distribution
around the reference trajectory with variance σ 2

u = (D/2) [1− exp(−2t/τm)]
(Tuckwell, 1989). The threshold acts as an absorbing boundary, and Ph(t|t̂)
is the distribution of first passage times. In general, the first passage time
problem is hard to solve. Even for constant driving current, the interval
distribution is not symmetric around its mean, and higher moments are
important. If, however, the level of noise is low and the reference trajec-
tory hits the threshold with finite slope u′, then a gaussian approximation
of the distribution is reasonable (Tuckwell, 1989). In this case, the interval
distribution is the same as for noise model B with σ = σu/u′. On the other
hand, if the reference trajectory stays significantly below threshold, then
noise model C may be approximated by a noisy threshold (noise model A)
with escape rate ∝ ρ0 exp[−β (u − ϑ)2] with parameters ρ0 ≈ 1/τm and
β = D−1. (Plesser & Gerstner, 1999). To avoid the complications of noise
model C, we work in the following mainly with noise models A and B, ex-
cept for some statements concerning C. A disadvantage of noise model B is
that it generates spikes only for suprathreshold stimuli and cannot describe
noise-activated spiking with subthreshold input. On the other hand, an in-
direct justification of noise model B could come from the theory of excitable
membranes (Gutkin & Ermentrout, 1998).

3 Population Activity Equation

We consider a homogeneous and fully connected network of spiking neu-
rons in the limit of N→∞. We aim for a dynamic equation that describes the
evolution of the population activity over time. The total number of spikes
nact emitted by all neurons in the population is

nact(t; t+1t) =
N∑

i=1

∑
t( f )
i

∫ t+1t

t
δ(t′ − t( f )

i ) dt′. (3.1)

The population activity has already been defined in equation 1.1. Using
equation 3.1 in equation 1.1, we may write

A(t) dt = 1
N

N∑
i=1

δ
(

t− t( f )
i

)
dt. (3.2)



Population Dynamics of Spiking Neurons 53

The definition of A allows us to rewrite the postsynaptic potential hPSP in
equation 2.2 in the form

hPSP(t|t̂) = J0

∫ ∞
0

ε(t− t̂, s)A(t− s) ds

+ Jext
∫ ∞

0
ε̃(t− t̂, s)Iext(t− s) ds. (3.3)

Thus, given the activity A(t′) for t′ < t, we can determine the potential
hPSP(t) of a neuron that has fired its last spike at t̂. What we need is another
equation that allows us to determine the present activity A(t) given the
past. The equation for the activity dynamics will be derived from three
observations:

1. The model neurons are supposed to show no adaptation. According to
equation 2.1, the state of neuron i depends explicitly on only the most
recent firing time t̂i (and, of course, on the input hPSP), but not on the
firing times of earlier spikes of neuron i. This allows us to work in the
framework of a (nonstationary) renewal theory (Cox, 1962; Gerstner,
1995).

2. In the limit of N to infinity, only the expectation value of a random
variable matters. The exact form of a probability distribution is irrele-
vant, and we can work directly with the mean. Full connectivity and
N→∞ is the limit where mean-field theory becomes exact.

3. The total number of neurons in the population remains constant. We
may exploit this fact to derive a conservation law.

3.1 Integral Equation for the Dynamics. Because of the first observation
above, the probability density for a spike at t depends only on t̂ and on
hPSP(t|t̂) for t > t̂. We have already used this knowledge in our notation
Ph(t|t̂) for the probability density of firing. The subscript h stands for the
dependence on hPSP(t|t̂). Integration of the probability density over time∫ t

t̂ Ph(s|t̂) ds gives the probability that a neuron that has fired at t̂ fires its
next spike at some arbitrary time between t̂ and t. Consequently, we can
define a survival probability

Sh(t|t̂) = 1−
∫ t

t̂
Ph(s|t̂) ds, (3.4)

that is, the probability that a neuron that is under the influence of hPSP and
has fired its last spike at t̂ survives without firing up to time t.

We now turn to a homogeneous population of neurons in the limit of
N→∞. We consider the network state at time t. Because of the second ob-
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servation, the proportion of neurons that have fired their last spike between
t0 and t (and have not fired since) is exactly

∫ t

t0

Sh(t|t̂)A(t̂) dt̂. (3.5)

All neurons have fired at some point in the past;1 thus,

∫ t

−∞
Sh(t|t̂)A(t̂) dt̂ = 1. (3.6)

Because of the third observation, the normalization equation 3.6 must hold
at any arbitrary time t. Taking the derivative of equation 3.6 with respect to
t yields the activity dynamics,

A(t) =
∫ t

−∞
Ph(t|t̂)A(t̂) dt̂. (3.7)

A different derivation of equation 3.7 is given in Gerstner and van Hemmen
(1992, 1994) and Gerstner (1993, 1995).

The population equation 3.7, with hPSP given by 3.3, is the starting point
for the discussions in the following sections. Intuitively, equation 3.7 is easy
to understand. The kernel Ph(t|t̂) is the probability density that the next
spike of a neuron under the influence of a potential hPSP(t|t̂) occurs at time
t given that its last spike was at t̂. The number of neurons that have fired at
t̂ is proportional to A(t̂), and the integral runs over all the past.

An important remark concerns the proper normalization of the activity.
Since equation 3.7 is defined as the derivative of equation 3.6, the integra-
tion constant on the right-hand side of the equation is lost. The system of
equations 3.7 and 3.3 is therefore invariant under a rescaling of the activity
A −→ c A and J0 −→ c−1 J0 with some constant c. To get the correct nor-
malization, we have to go back to equation 3.6. In the following sections the
population equations in the form of equations 3.7 or 3.6 are analyzed for
various scenarios.

Equation 3.7 with the kernel Ph(t|t̂) calculated for the potential hPSP given
by equation 3.3 defines the dynamics in a homogeneous network of spiking
neurons with short-term memory. We remark that although equation 3.7
looks linear, it is in fact a highly nonlinear equation because the kernel
Ph(t|t̂) depends nonlinearly on hPSP, and hPSP in turn depends again on the
activity via equation 3.3. (See noise model A in section 2.2 for an explicit
example of the kernel Ph(t|t̂).)

1 Neurons that have never fired before are assigned a formal firing time t̂ = −∞
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3.2 Relation to the Wilson-Cowan Integral Equation. The Wilson-
Cowan integral equation, 1.3, is a special case of the population dynam-
ics, equation 3.7. We assume neurons of the SRM0 type, hPSP(t|t̂) = h(t),
and consider noise model A. The interval distribution is equation 2.15 with
instantaneous rate ρ(t) = f [u(t)]. We may identify f with the gain function
g of the Wilson-Cowan model. As shown in appendix A, for a refractory
kernel η with absolute refractoriness only, equation 3.7 reduces strictly to
the Wilson-Cowan equation, 1.3. Moreover, the framework of the popula-
tion equation 3.7 also works for relative refractoriness. In the appendix it is
shown that equation 3.7 for SRM0 neurons with noise model A is formally
equivalent to the population equations for neurons with relative refractori-
ness derived in the appendix of Wilson and Cowan (1972).

There is, however, an important difference in the interpretation of the
equations. Wilson and Cowan motivated their gain function g by a distri-
bution of threshold values ϑ in an inhomogeneous population. In this case,
the population equation 1.3 is an approximation, since correlations are ne-
glected. In general, it matters whether the neurons in the refractory state
are those with high or low threshold (Wilson & Cowan, 1972). In our in-
terpretation g is the instantaneous escape rate due to a noisy threshold in
a homogeneous population. In this interpretation, equation 1.3 is the exact
equation for neurons with absolute refractoriness.

4 Noise-Free Population Dynamics

4.1 General Results. We start with a discussion of equation 3.7 in the
noise-free case. As we have seen in equation 2.12, the probability density
Ph(t|t̂) reduces in the limit of no noise to a Dirac δ-function. We use equa-
tion 2.12 in 3.7 and find

A(t) =
∫ t

−∞
δ(t− t̂− T(t̂))A(t̂) dt̂. (4.1)

Here T(t̂) is the interval given implicitly by the threshold condition, equa-
tion 2.11. Note that T(t̂) is the interval starting at t̂ and looking forward
toward the next spike.

The integration over the δ-function in equation 4.1 can be done. Since T
in the argument of the δ-function depends on t̂, the result is

A(t) =
[

1+ ∂th+ ∂t̂h
η′ − ∂t̂h

]
+

A[t− Tb(t)], (4.2)

where Tb(t) is the backward interval given a spike at time t. The partial
derivatives in equation 4.2, ∂th = dhPSP(t|t̂)/dt and ∂t̂h = dhPSP(t|t̂)/dt̂, are to
be evaluated at t̂ = t− Tb(t). The derivative η′ = dη/ds is to be evaluated at
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Figure 2: A change in the input potential h with positive slope h′ > 0 (dashed
line, bottom) shifts neuronal firing times closer together (middle). As a result,
the activity A(t) (solid line, top) is higher at t = t̂ + T(t̂) than it was at time t̂
(schematic diagram).

s = Tb(t). Note that the expression in the square brackets can also be written
as u′/(η′ + ∂t̂h)with u′ = du/dt|t evaluated at t. Since the threshold must be
reached from below, a spike at time t is possible only if u′ > 0. For u′ < 0, the
backward interval does not exist, and the activity vanishes. We have taken
care of this fact by the notation [x]+ = x for x ≥ 0 and zero otherwise.

Equation 4.2 is the first major result of our analysis. In order to facilitate
the discussion, we define a variable:

C(t) = ∂th+ ∂t̂h
η′ − ∂t̂h

. (4.3)

Let us evaluate C for SRM0 and IF-neurons.
For SRM0 neurons, all terms in equation 4.2 can be calculated explicitly.

Since ∂t̂h vanishes, equation 4.3 reduces to

CSRM(t) = h′(t)
η′[Tb(t)]

. (4.4)

The backward interval Tb exists if h(t) > ϑ and is found from the threshold
condition, equation 2.11, viz. Tb(t) = τ ln{η0/[h(t)− ϑ]}. With equation 4.4,
the factor in square brackets in equation 4.2 becomes [1+h′/η′]+. Its meaning
is illustrated in Figure 2. A neuron that has fired at t̂ will fire again at t =
t̂ + T(t̂). Another neuron that has fired slightly later at t̂ + δt′ fires its next
spike at t + δt. If the input potential is constant between t and t + δt, then
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δt = δt′. If, however, h increases between t and t + δt, as is the case in
Figure 2, then the firing time difference is reduced. The compression of
firing time differences is directly related to an increase in the activity A.
To see this, we note that all neurons that fire between t̂ and t̂ + δt′ must
fire again between t and t + δt. This is due to the fact that the network is
homogeneous and the mapping t̂ → t = t̂ + T(t̂) is monotonous. If firing
time differences are compressed, the population activity increases. For a
SRM0 neuron with a kernel η as in equation 2.7, η′(s) > 0 holds for all s > 0.
An input with h′ > 0 implies, because of equation 4.2, an increase of the
activity: h′ > 0⇐⇒ A(t) > A(t− Tb).

For IF neurons we have a related result. To evaluate C, we use equa-
tion 2.10 and find

CIF(t) = τ h′(t) eTb/τ − h′(t− Tb)

η̃0 + h(t− Tb)+ τ h′(t− Tb)
. (4.5)

The backward interval Tb(t) is given implicitly by the threshold condition
ϑ = h(t) − [η̃0 + h(t − Tb)] exp(−Tb/τ). It is shown in appendix B that
the denominator on the right-hand side of equation 4.5 is always positive.
Therefore, a compression of firing times and hence an increase of the activity
occurs whenever the numerator of the equation is positive: h′(t) − h′(t −
Tb) exp(−Tb/τ) > 0⇐⇒ A(t) > A(t−Tb). This is a rather general property
of the noise-free IF dynamics that will be exploited in the following sections.

For general spike response neurons defined by equation 2.1, ∂th+∂t̂h > 0
is a necessary condition for an increase of the activity, but it is not sufficient:
∂th+ ∂t̂h > 0 H⇒ A(t) > A(t− Tb). Details are discussed in appendix B.

4.2 Application to Locking. We will show in this subsection that the
locking theorem developed in Gerstner et al. (1996) follows directly from the
noise-free population equation 4.2. We consider a population that is already
close to perfect synchrony and fires nearly regularly with period T. In order
to keep the arguments transparent, let us assume that the population activity
for times t < T/2 can be approximated by a sequence of square pulses,

A(t) =
0∑

n=−m

1
2δnH(t− nT + δn)H(nT + δn − t), (4.6)

where m is some small integer, say, m = 3, andH(.) denotes the Heaviside
step function with H(s) = 1 for s > 0 and H(s) = 0 for s ≤ 0. The δn are
assumed to be small, δn ¿ T, where T, is the period.

We want to check whether the “Ansatz” (see equation 4.6) is consistent
with the noise-free population dynamics (see equation 4.2). More precisely,
we ask, Is there some period T and some sequence δn for n = −m,−m +
1, . . . , 0, 1, 2, . . . so that the sequence of square pulses described by equa-
tion 4.6 continues for t > T/2? We will determine T and the sequence δn
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self-consistently. If we find δn → 0 for n→∞, then the square pulses con-
tract to δ-functions, and we say that a synchronous T-periodic oscillation is
a stable solution of the population dynamics.

As a first step, we determine the potential hPSP(t|t̂). Given hPSP, we can
calculate the period T from the threshold condition and also the derivatives
∂th and ∂t̂h needed in equation 4.2. To get hPSP, we put equation 4.6 in 3.3.
We assume δn ¿ T and integrate. To first order in δn, we find

hPSP(t|t̂) =
nmax∑
n=0

J0 ε(t− t̂, t+ n T) + O
[
(δn)2

]
, (4.7)

where−δ0 ≤ t̂ ≤ δ0 is the last firing time of the neuron under consideration.
The sum runs over all pulses back in the past. Since ε(t− t̂, s) as a function
of s decays quickly for s À T, it is usually sufficient to keep only a finite
number of terms (e.g., nmax = 1 or 2).

As the next step we determine the period T. To do so, we consider a
neuron in the center of the square pulse that has fired its last spike at t̂ =
0. Since we consider noiseless neurons the relative order of firing of the
neurons cannot change. To make the Ansatz, equation 4.6, consistent, the
next spike of this neuron must therefore occur at t = T, in the center of the
next square pulse. We use t̂ = 0 in the threshold condition, equation 2.11,
which yields

T = min

{
t|η(t)+ J0

nmax∑
n=0

ε(t, t+ n T) = ϑ
}
. (4.8)

If a synchronized solution exists, equation 4.8 defines the period.
In the population equation, 4.2, we need the derivative of hPSP,

∂th+ ∂t̂h = J0

nmax∑
n=0

d
ds
ε(x, s)|x=T,s=n T. (4.9)

According to equation 4.2, the new value of the activity at time t = T is
the old value multiplied by the factor in the square brackets. A necessary
condition for an increase of the activity from one cycle to the next is that the
derivative defined by the right-hand-side of equation 4.9 is positive, which
is the essence of the locking theorem (Gerstner et al., 1996).

To illustrate the idea, let us study two specific cases: SRM0 neurons and
IF neurons. For SRM0 neurons we have ε(x, s) = ε0(s), hence ∂t̂h = 0 and
hPSP(t|t̂) = h(t) = J0

∑
n ε0(t+n T). With the η kernel defined by equation 2.7,

we have η′(T) > 0 whatever T. Thus

h′(T) = J0

nmax+1∑
n=1

ε′0(n T) > 0 ⇐⇒ A(T) > A(0). (4.10)
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Figure 3: A sequence of activity pulses (top) contracts to δ-pulses if firing always
occurs when the input potential h (dashed line, bottom) is rising. Numerical
integration of the population equation, 3.7, for SRM0 neurons with inhibitory
interaction J = −0.1 and kernel ε0 (see equation 2.5) with delay 1abs = 2 ms.
There is no noise (σ = 0). The activity was initialized with a square pulse
A(t) = 1 kHz for −1 ms< t < 0 and integrated with a step size of 0.05 ms.

For IF neurons we could go through an analogous argument to show that
equation 4.10 holds. Instead we may verify its validity directly from equa-
tion 4.5 with h′(t) = h′(t − Tb) due to periodicity. Therefore the amplitude
of the synchronous pulse grows only if h′(T) > 0.

The growth of amplitude corresponds to a compression of the width of
the pulse. It can be shown that the corner neurons, which have fired at time
±δ0, fire their next spike at δ1 = δ0 [1+C]−1 with C defined in equation 4.3.
Thus the square pulse remains normalized, as it should be. By iteration of
the argument for t = n T with n = 2, 3, 4, . . . we see that (for IF or SRM0
neurons) the sequence δn converges to zero, and the square pulses approach
a Dirac δ-pulse under the condition that h′(T) =∑n ε

′
0(n T) > 0. In words,

the T-periodic synchronized solution with T given by equation 4.8 is stable
if the input potential h at the moment of firing is rising (Gerstner et al., 1996).

In order for the sequence of square pulses to be an exact solution of the
population equation, we must require that the factor C defined in equa-
tion 4.3 remains constant over the width of a pulse. The derivatives of equa-
tion 4.7, however, do depend on t. As a consequence, the form of the pulse
changes over time, as is visible in Figure 3. The activity as a function of
time was obtained by a numerical integration of the population equation
with a square pulse as the initial condition for a network of SRM0 neurons
coupled via equation 2.5 with weak inhibitory coupling J = −0.1 and delay
1ax = 2 ms. For this set of parameters, h′(T) > 0 and locking is possible.

The framework of the population equation allows us also to extend the
locking argument to noisy SRM0 neurons. At each cycle, the pulse of syn-
chronous activity is compressed due to locking if h′(T) > 0. At the same time
it is smeared out because of noise. For SRM0 neurons with gaussian noise
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Figure 4: Synchronous activity in the presence of noise. Simulation of a pop-
ulation of 1000 neurons with inhibitory coupling (J = −1, 1ax = 2 ms) and
noise model B. (a) Low-noise level (σ = 0.25). (b) For larger noise (σ = 0.5), the
periodic pulses become broader.

in the reset (noise model B), we may use equation 2.17 for the probability
density in the population equation, 3.7,

A(t) =
∫ t

−∞
dt̂
∫ ∞
−∞

dr δ[t− t̂− T(t̂, r)]Gσ (r)A(t̂), (4.11)

and search for periodic solutions. We insert T(t̂, r) = r+T0(t̂+r)where T0(t′)
is the forward interval of a noiseless neuron that has fired its last spike at t′.
The integration over t̂ can be done and yields

A(t) =
[

1+ h′

η′

] ∫ ∞
−∞

drGσ (r)A[t− Tb(t)− r], (4.12)

where Tb is the backward interval. The factor [1+ (h′/η′)] arises due to the
integration over the δ-function just as in the noiseless case; see equations 4.2
and 4.4. The integral over r leads to a broadening, the factor [1+ (h′/η′)] to
a compression of the pulse.

As shown in appendix C, a limit cycle of equation 4.11 consisting of a
periodic sequence of gaussian pulses exists if the noise amplitude σ is small
and (h′/η′) > 0. The width of the activity pulses in the limit cycle is d where
d = σ [2

(
h′/η′

)+(h′/η′)2]−1/2. As in the noise-free situation in equation 4.10,
h′ and η′ have to be evaluated at T. A simulation of locking with noise is
shown in Figure 4. The network of SRM0 neurons has inhibitory connections
(J0 = −1) and is coupled via the response kernel ε0, equation 2.5, with
a transmission delay of 1ax = 2 ms. Doubling the noise level σ leads to
activity pulses with twice the width.

5 Transients

In this section we study the response of the population activity to a rapid
change in the input. To keep the arguments as simple as possible, we con-
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sider an input that has a constant value I0 for t < t0 and then changes
abruptly to a new value I0 +1I . Thus,

Iext(t) =
{
I0 for t ≤ t0

I0 +1I for t > t0.
(5.1)

For the sake of simplicity, we assume a population of independent IF
or SRM0 neurons (J0 = 0). For t ≤ t0, all neurons receive a constant input
potential h0 = Jext I0 since

∫
ε̃0(s) ds = 1. For t > t0, the input potential,

equation 2.4, changes due to the additional current 1I . Thus

h(t) =
{

h0 for t ≤ t0

h0 +Jext1I
∫ t−t0

0 ε̃0(s) ds for t > t0.
(5.2)

Given the input potential h(t) and the last firing time t̂, we can calculate for
any given neuron its momentary membrane potential u(t)—but what is the
time course of the population activity?

In order to analyze the situation, let us suppose that for t < t0, the network
is in a state of incoherent firing. In other words, all neurons fire at the same
mean firing rate, but their spikes are not synchronized. Rather, the firing
times are maximally spread out over time. Such a state has been called the
splay phase (Chow, 1998). In the limit of N→∞, the population activity is
then a constant A(t) = A0. In section 7 we will study the conditions under
which a state of incoherent firing can be a stable state of the system. Here
we just assume that we can set the parameters so that the network fires
asynchronously and with constant activity.

5.1 Transients in a Noise-Free Network. In the noiseless case, neurons
that receive a constant input I0 fire regularly with some period T0. For
t < t0, the mean activity is simply A0 = 1/T0. The reason is that, for a
constant activity, averaging over time and averaging over the population
must be the same.

We now apply the equation of the noise-free population dynamics: equa-
tion 4.2. To do so, we have to calculate the factor C(t)defined in equation 4.3.
For IF neurons, C is given by equation 4.5 and for SRM neurons by equa-
tion 4.4. In both cases we need the derivative of equation 5.2:

h′(t) =
{

0 for t ≤ t0

Jext1I ε̃0(t− t0) for t > t0
. (5.3)

For t < t0, we have h′ = 0 and thus, from equation 4.2, A(t) = A(t − T0),
as it should be for a constant activity A0. Let us now consider a neuron that
has fired exactly at t0. Its next spike occurs at t0 + T, where T is given by
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the threshold condition ui(t0 + T) = ϑ . If the change 1I at t0 is small, we
expect that the interspike interval T changes only slightly. In order to keep
the arguments transparent, we make a zero-order approximation and set
exp(−T/τ) ≈ exp(−T0/τ), hence η′(T) ≈ η′(T0). The population equation,
4.2, then yields

A(t) = [1+ a ε̃0(t− t0)] A0 for t0 < t < t0 + T, (5.4)

with a constant a = Jext1I/η′(T0) for SRM0 neurons and a = Jext1I/
[η′(T0)+ h0 exp(−T0/τ)] for IF neurons. Thus, the time course of the initial
transient reflects the time course ε̃0 of the postsynaptic potential caused by
external input.

So far, the results are general. We now specify the response kernel ε̃0.
With equation 2.6, the response of the input potential to the step current
is h(t) = h0 + Jext1I [1 − exp[−(t − t0)/τ ]] for t > t0. Thus, the potential
has the characteristics of a low-pass filter. The population activity, however,
reacts instantaneously to the step current. We put equation 2.6 in 5.4 and
find

A(t)=A0+1A
1
τ

exp
(
− t−t0

τ

)
H(t−t0) for t0< t< t0+T, (5.5)

where 1A = A0 a andH(.) is the Heaviside step function. Thus there is an
immediate response at t = t0. The simulation in Figure 5 clearly exhibits the
rapid initial response of the population. It is also confirmed by a numerical
integration of the noise-free population dynamics, equation 4.2. As an aside
we note that a dynamic rate model of the form of equation 1.2 defined by a
differential equation with time constant τ would not be able to capture the
initial phase of the transient.

The discussion up to now has focused on the initial phase of the transient.
For t > t0+T every neuron has fired once, and the activity on the right-hand
side of equation 4.2 can no longer be considered constant. What happens?
Let us treat the IF model first. With the response kernel ε̃0 defined in equa-
tion 2.6, we find for t > t0 + T the relation h′(t− T) = h′(t) exp(T/τ). Hence
CIF defined in equation 4.5 vanishes for t > t0+T. Therefore A(t) = A(t−T),
where T is the new backward interval consistent with the constant stimula-
tion current I0 +1I . Thus the population activity is in a new periodic state
as soon as every neuron has fired once. This is what we should expect since
neurons are independent, and as soon as each has been reset once after t0,
they all feel the same constant input current.

The picture is different for SRM0 neurons. Here the new periodic state
is reached only asymptotically (see Figure 5). The sequence of peaks in the
activity that occur at times tk ≈ t0 + k T0 is given by the iteration A(tk+1) =
A(tk) [1+ h′(tk+1)/η

′(T0)]. Since h′(t) ∝ exp[−(t− t0)/τ ], the new limit cycle
is approached asymptotically with time constant τ . For SRM0 neurons, the
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Figure 5: (Top) Response of the population activity to a step current for low
noise (σ = 0.01 ms). Solid line: Simulation of a population of 1000 neurons.
Dashed line: Numerical integration of the population equation, 3.7 (a) IF neu-
rons. (b) SRM0 neurons. (Bottom) Step current input Iext (solid line) and input
potential h(t) (dashed line). Parameters: Time constant τ = 4 ms with response
kernel ε̃0 defined in equation 2.6; input step of 0.05 units at t =100 ms. The
threshold ϑ was chosen so that the mean interval before the step is 8 ms, cor-
responding to a mean activity of 0.125 kHz. There are no interactions, J = 0;
integration time step, 0.05 ms. The result of the simulation has been smoothed
with a running average over 0.2 ms.

sequence of activity peaks therefore follows roughly the same exponential
time course as the input potential h.

5.2 Transients with Noise. So far we have considered noiseless neu-
rons. In the presence of noise, subsequent pulses get smaller and broader,
and the network approaches a new incoherent state (cf. Figure 6a). If, in
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Figure 6: Transients for SRM0 neurons with noise model B. (a) Same as in Fig-
ure 5b, but at a noise level of σ = 2 and J = 0. (b) Noisy network (σ = 2) with
inhibitory interactions defined by equation 2.5 with 1ax = 0.5 ms and J = −2.
In both cases the results of a simulation of 1000 SRM0 neurons (solid line) are
compared with a numerical integration (dashed line) of equation 3.7. All other
parameters are as in Figure 5.
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addition, there is also some interaction J0 6= 0 between the neurons, then
the value of the new stationary state is shifted. A particularly interesting
state is inhibitory interaction J0 < 0. In this case the new value of the sta-
tionary activity for t > t0 is only slightly higher than that for t < t0. For
noise model B, the fast transient with a sharp first peak is clearly visible and
marks the moment of input switching (see Figure 6b). Fast switching has
previously been seen in heterogeneous networks with balanced excitation
and inhibition (Tsodyks & Sejnowski, 1995; van Vreeswijk & Sompolinsky,
1996) and also discussed in the context of associative memory: Treves, 1992;
Treves, Rolls, & Simmen, 1997). Here it is demonstrated and analyzed for
homogeneous networks.

For a preliminary analysis of the noisy case, we take SRM0 neurons with
noise model B and start from equation 4.12. To simplify the expression, we
write A(t) = A0+1A(t) and expand equation 4.12 to first order in1A. The
result is

1A(t) =
∫ ∞
−∞
Gσ (r)1A(t− T0 − r) dr+ h′(t)

η′(T0)
A0. (5.6)

The result for IF neurons with noise model B is analogous to equation 5.6
and is derived in appendix D.

The first term in equation 5.6 accounts for changes that are due to previous
variations of the activity. During the initial phase of the transient (for t0 <

t < t0+T0−σ ), it plays no role and can be neglected. Thus the initial phase is
determined by the second term. As in the noiseless case, the initial transient
is proportional to the derivative of h. After this initial phase, the convolution
with the gaussian (the first term on the right-hand side of equation 5.6)
comes into play and leads to a rapid smoothing (see Figure 6). The initial
transient, however, is sharp.

We may wonder whether we can understand fast switching intuitively.
Before the abrupt change, the input was stationary and the population in
a state of incoherent firing, defined as a state where neuronal firing times
are spread out maximally. Thus some of the neurons fire, others are in the
refractory period, and again others approach the threshold. There is always
a group of neuron whose potential is just below threshold. An increase in
the input causes those neurons to fire immediately, and this accounts for the
strong population response during the initial phase of the transient.

The above consideration also holds for noise model C (noisy integration)
in the limit of low noise and suprathreshold inputs. In order to understand
why the derivative of h comes into play, consider a finite step in the input
potential h1(t) = 1hH(t− t0). All neurons i that are hovering below thresh-
old so that their potential ui(t0) is between ϑ −1h and ϑ will be put above
threshold and fire synchronously at t0. Thus, a step in the potential causes a
δ-pulse in the activity 1A(t) ∝ δ(t− t0) ∝ h′(t0). In Figure 7a we have used
a current step (see equation 5.1), the same step current as in Figure 5. The
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Figure 7: Response of a network of 1000 neurons without interaction (J = 0) to
step current input as in Figure 5, but for (a) noise model C (noisy integration)
and (b) noise model A (noisy threshold). For low noise, the transition is sharp
(top row), whereas for high noise rather smooth (bottom). In all cases, threshold
and noise level were adjusted so that the mean interval before the current step
is 8 ms so as to allow a comparison with Figure 5. (Top) Noise level chosen so
that the variance of the interval distribution is 1 ms. (Bottom) Variance about
4 ms.

response at low noise (top) has roughly the form 1A(t) ∝ h′(t) ∝ ε̃0(t− t0),
as expected. The rapid transient is slightly less pronounced than for noise
model B, but nevertheless clearly visible; compare Figures 6 and 7. As the
amplitude of the noise grows, the transient becomes less sharp. Thus there
is a transition from a regime where the transient is proportional to h′ (see
Figure 7a, top) to another regime where the transient is proportional to h
(see Figure 7a, bottom). What are the reasons for the change of behavior?

The above simple argument based on a potential step1h > 0 holds only
for a finite step size, which is at least of the order of the noise amplitude

√
D.

In noise model C, the threshold acts as an absorbing boundary. Therefore
the density of neurons with potential ui vanishes for ui → ϑ . Thence, for
1h → 0, the proportion of neurons that are instantaneously put across
threshold is 0. In a stationary state, the boundary layer with low density is
of the order

√
D (Brunel & Hakim, 1999). A potential step 1h >

√
D puts a

significant proportion of neurons above threshold and leads to a δ-pulse in
the activity. Thus the result that the response is proportional to the derivative
of the potential is essentially valid in the low-noise regime.

On the other hand, noise model C can also be used in the regime of
large-noise and subthreshold input. In the high-noise regime, a step in the
potential raises the instantaneous rate of the neurons but does not force them
to fire immediately. The response to a current step is therefore smooth and
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follows the potential h(t) (see Figure 7a, bottom). A comparison of Figures 7a
and 7b shows that noise model A exhibits a similar transition from sharp to
smooth responses with increasing noise level. It can be shown that at least
in the subthreshold regime, noise model C can be well approximated by
noise model A (Plesser & Gerstner, 1999; see also Collins, Carson, Capela, &
Imhoff, 1996). Analytical arguments for transients with noise model A are
presented below.

5.3 Theory of Transients with Noise. To formalize the above ideas on
transient responses in the presence of noise, we start from the population
equation, 3.7, and write it in the form

0 = d
dt

∫ t

−∞
Sh(t|t̂)A(t̂) dt̂. (5.7)

Equation 3.7 is the derivative of the conservation law, equation 3.6, and this
is made explicit by our notation in equation 5.7.

We consider a small perturbation of the stationary state A(t) = A0+1A(t)
and hPSP(t|t̂) = h0(t|t̂) + h1(t|t̂) and expand equation 5.8 to linear order in
1A or h1:

0 = d
dt

∫ t

−∞
S0(t− t̂)1A(t̂) dt̂

+ A0
d
dt

{∫ t

−∞
dt1

∫ t

−∞
dt̂ h1(t1|t̂) ∂Sh(t|t̂)

∂h1(t1|t̂)
|h1=0

}
. (5.8)

We have used the notation S0(t− t̂) = Sh0(t|t̂) for the survivor function of the
asynchronous firing state. For the derivative in the first term in equation 5.8,
we use d

dt S0(t− t̂) = −Ph0(t|t̂) and S0(0) = 1.
To make some progress in the treatment of the second term in equa-

tion 5.8, it is helpful to take either the SRM0 or the IF model. For SRM0 neu-
rons, we may drop the t̂ dependence of the potential and set h1(t1|t̂) = h1(t1),
which allows us to pull the h1(t1) in front of the integral over t̂ and write
equation 5.8 in the form

1A(t) =
∫ t

−∞
Ph0(t|t̂)1A(t̂) dt̂+ A0

d
dt

{∫ ∞
0
L(x) h1(t− x) dx

}
, (5.9)

with a filter L = LSRM defined in the top row of Table 1. For IF neurons
we set h1(t|t̂) = h1(t)− h1(t̂) exp[−(t− t̂)/τ ]. After some rearrangements of
the terms, equation 5.8 becomes identical to 5.9 with a filter L = LIF (see
Table 1).

The first term on the right-hand side of equation 5.9 is of the same form
as the population equation 3.7 and describes how perturbations 1A(t̂) in



Population Dynamics of Spiking Neurons 67

Table 1: Filter L(x) for Integrate-and-Fire or SRM0 neurons (Upper index IF or
SRM, respectively).

Def LSRM(x) = −
∫ ∞

x dξ ∂S(ξ |0)
∂h1(ξ−x)

LIF(x) = LSRM(x)+
∫ x

0 dξ e−ξ/τ ∂S(x|0)
∂h1(ξ)

A LSRM
A (x) =

∫ ∞
x dξ f ′[u(ξ − x)] S0(ξ)

LIF
A (x) = LSRM

A (x)− S0(x)
∫ x

0 dξ e−ξ/τ f ′[u(ξ)]

B LSRM
B (x) = δ(x)/η′

LIF
B (x) =

[
δ(x)− Gσ̂ (x− T0) e−T0/τ

]
/u′

Notes: f ′ = df/du is the derivative of the escape func-
tion f (u); S0(s) = Sh0 (s|0) is the survivor function in the
incoherent state. For noise model B, the width of the gaus-
sian is σ̂ = σ T1 = σ η̃0/(η̃0 + h0) and the derivatives are
η′ = dη/ds|s=T0 and u′ = η′ + τ−1 h0 exp(−T0/τ). In B, the
approximation exp(σ̂ /τ ) ≈ 1 has been used.

the past influence the current activity 1A(t). The second term gives an
additional contribution, which is proportional to the derivative of a filtered
version of the potential. As we have seen, for SRM0 neurons with noise
model B, we find L(x) = LSRM

B (x) = (1/η′) δ(x). Thus for noise model B,
the filter is a δ-function, and the second term in equation 5.9 is proportional
to h′.

On the other hand, it is shown in appendix E that for noise model A, L
can often be approximated by a low-pass filter,

LSRM
A (x) = a ρ e−ρ xH(x), (5.10)

where a is a constant and ρ is a measure of the noise. (The result for IF
neurons is given in appendix E.) The noise-free threshold process can be
retrieved from equation 5.10 for ρ →∞. In this limit LSRM

A (x) = a δ(x), and
the initial transient is proportional to h′, as discussed above. For small ρ,
however, the behavior is different. We use equation 5.10 and rewrite the last
term in equation 5.9 in the form

d
dt

∫ ∞
0
LSRM

A (x) h1(t− x) dx = aρ [h1(t)− h1(t)], (5.11)

where h1(t) =
∫∞

0 ρ exp(−ρ x) is a running average. Thus the activity re-
sponds to the temporal contrast h1(t)−h1(t). At high-noise levels, ρ is small.
During the initial phase of the transient (t− t0 < ρ−1), we may set h1(t) = 0.
Thus, we find for noise model A in the large-noise limit1A(t) ∝ h(t). This is
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exactly the result that would be expected for a simple rate model. For a sim-
ulation of noise model A, see Figure 7b. The generalization of equation 5.11
to IF neurons is straightforward (cf. appendix E).

In all cases, the initial phase of the transient is proportional to a linearly
filtered version of the potential,1A ∝ d

dt {L∗h}. In the limit of low noise, the
choice of noise model is irrelevant; the transient response is proportional to
the derivative of the potential, 1A ∝ h′. If the level of noise is increased,
noise model B retains its sharp transients, whereas A and C turn to a different
regime where the transients follow h rather than h′. The transition from one
regime to the other is most easily studied for noise model A. The filter L
is essentially a low-pass filter. The time constant of the filter increases with
the noise level.

The results have an interesting relation to experimental input-output
measurements on motoneurons (Fetz and Gustafsson, 1983; Poliakov, Pow-
ers, & Binder, 1997). In the low-noise regime (where the type of noise model
is irrelevant) the response to a synaptic input current pulse is proportional
to the derivative of the postsynaptic potential (Fetz & Gustafsson, 1983), as
predicted by earlier theories (Knox, 1974). On the other hand, we have seen
that for noise models A and C, the behavior changes at higher noise lev-
els and the response follows h rather than h′. At intermediate noise levels,
the response to a synpatic input is therefore proportional to some mixture
between the postsynaptic potential and its derivative (Fetz & Gustafsson,
1983; Poliakov et al., 1997).

For noise model B, the initial response to a current step is1A ∝ ε̃0(t− t0),
independent of the noise level. Note that if the rise time of the postsynaptic
potential ε̃0 is slow (as it is the case for slow synaptic channels), the transient
will be slow as well. In other words, the response time is limited by the time
constant of the synpatic current rather than by the membrane time constant.
In the following section, this statement will be made more precise.

6 Signal Transmission

Our considerations regarding step current input can be generalized to ar-
bitrary input current Iext(t). We study a population of independent IF or
SRM0 neurons. For each neuron, the membrane potential can be calculated
from the input potential h(t) = Jext ∫∞

0 ε̃0(s) Iext(t − s) ds and the last firing
time t̂ (cf. equations 2.1 and 2.10). We assume that the population is close
to a state of asynchronous firing: A(t) = A0 +1A(t). The linear response of
the population to the change in the potential is given by equation 5.9. The
Fourier transform is

Â(ω) = iω
Jext A0 L̂(ω) ˆ̃ε(ω)

1− P̂(ω)
Î(ω). (6.1)
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Figure 8: (a) Signal gain S( f ) = |Â(2π f )/Î(2π f )| as a function of the frequency
f for IF neurons with time constant τ = 4 ms and noise model B and a mean
interspike interval of 8 ms. Resonances are at the multiples of the single-neuron
frequency of 125 Hz. Noise level σ = 4 ms (long-dashed line); σ = 2 ms (solid
line); σ = 0.75 ms (short-dashed); Jext = 1. (b) Response of the population
activity (top) of SRM0 neurons with noise model B to a time-dependent current
(bottom). The current is a superposition of 4 sine waves at 9, 47, 111, and 1000 Hz.
The simulation of a population of 4000 neurons (solid line, top) is compared with
the numerical integration (dashed line) of the population equation, 3.7. Note
that even the 1 kHz component of the signal is well transmitted. Parameters:
Response function ε̃0 (see equation 2.6) with time constant τ = 4 ms. Threshold
is ϑ = −0.135 so that the mean activity is A = 125 Hz; noise σ = 2 ms; J0 = 0.

Hats denote transformed quantities; ˆ̃ε(ω) = [1+ iωτ ]−1 is the Fourier trans-
form of the kernel ε̃0 defined in equation 2.6 P̂(ω) is the Fourier transform
of the interval distribution, I(ω) is the Fourier transform of the current Iext,
and L̂(ω) is the transform of the linear filter L.

To be specific, we consider IF neurons with noise model B. For gaussian
reset we find P̂(ω) = exp{− 1

2 σ̂
2ω2 − iωT0}. The filter L may be read off

Table 1 and gives L̂(ω) = {1− exp[− 1
2 σ̂

2ω2− iωT0−T0/τ ]}/u′ where u′ is to
be evaluated at T0. In Figure 8a we have plotted the gain S = |Â(ω)/Î(ω)|
as a function of the frequency f = ω/(2π). For a medium noise level of
σ = 2 ms, the signal gain has a single resonance at f = 1/T0 = 125 Hz. For
lower noise, further resonances at multiples of 125 Hz appear. For a variant
of noise model B, a result closely related to equation 6.1 has been derived by
Knight (1972a). The result for SRM0 neurons with noise model B is obtained
by neglecting a term ∝ exp(−T0/τ).

Independent of the noise level, we obtain for IF neurons for ω → 0 the
result S(0) = JextA0[1−exp(−T0/τ)]/(u′ T0). Most interesting is the behavior
in the high-frequency limit. For ω→∞we find S→ JextA0/(u′ τ), hence

S(∞)
S(0)

= T0

τ

[
1− e−T0/τ

]−1
. (6.2)
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We emphasize that the high-frequency components of the current are not
attenuated by the population activity despite the integration on the level
of the individual neurons. The reason is that the threshold process acts
as a differentiator and reverses the low-pass filtering of the integration.
In fact, equation 6.2 shows that high frequencies can be transmitted more
effectively than low frequencies. The good transmission characteristics of
spiking neurons at high frequencies have been studied in (Knight, 1972a)
and confirmed experimentally (Knight, 1972b).

In biology there is, of course, also a time constant of synaptic channels
that leads to a frequency cutoff for the input current that may enter the cell.
In this sense, it is the time constant of the synaptic current that determines
the cutoff frequency of the population. The membrane time constant is of
minor influence. Treves (1993) has reached a similar conclusion.

So far we have discussed results of the linearized theory (see equa-
tions 5.6 and 6.1). The behavior of the full nonlinear system is shown in
Figure 8b. A population of unconnected SRM0 neurons is stimulated by a
time-dependent input current that was generated as a superposition of four
sinusoidal components with frequencies at 9, 47, 111, and 1000 Hz, which
have been chosen arbitrarily. The activity equation, 3.7, has been integrated
with time steps of 0.05 ms, and the results are compared with those of a
simulation of a population of 4000 neurons. The 1 kHz component of the
signal I(t) is clearly reflected in the population A(t). Theory and simulation
are in excellent agreement.

We have seen that noise model B was rather exceptional in that the
transient remained sharp even in the limit of high noise. To study the
relevance of the noise model, we return to equation 6.1. The signal gain
S(ω) = |Â(ω)/Î(ω)| is proportional to L̂(ω). If the filter L(x) is broad, the
Fourier transform will fall off to zero at high frequencies, and so does the
signal gain S(ω). In Figure 9 we have plotted the filter LIF

A and the signal
gain S for IF neurons with noise model A at different noise levels. At low
noise, the result for noise model A is similar to that of noise model B (com-
pare Figures 9b and 8a) except for a drop of the gain at high frequencies.
Increasing the noise level, however, lowers the signal gain of the system.
For high noise (the long-dashed line in Figure 9) the signal gain at 1000 Hz
is 10 times lower than the gain at zero frequency. Note that for noise model
A, the gain at zero frequency changes with the level of noise.

7 Incoherent Firing

In the preceding sections it was shown that a population of neurons may
react rapidly to changes in the input if the network is in a state of incoherent
firing. For a constant input current, incoherent firing may be defined as a
macroscopic firing state with constant activity A(t) = A0. In other words,
incoherent firing corresponds to a fixed point of the population dynamics.
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Figure 9: The filter LIF
A (x) (a) and the signal gain (b) for IF neurons with noise

model A and escape rate ρ = ρ0 [u − ϑ]H(u − ϑ). For low noise (short-dashed
line, ρ0 = 20 which corresponds to a variance of the interval distribution of
σ = 0.75 ms), the filter LIF

A has a small width. For high noise (long-dashed line;
ρ0 = 2.5; variance σ = 4 ms), the filter LIF

A is broad. Solid line: ρ0 = 5.5, which
corresponds to an interval distribution withσ = 2 ms. The value of the threshold
has been adjusted so that the mean interval is always 8 ms. At low noise, the
signal gain shows several resonances at the single-neuron frequency of 125 Hz.
For high frequencies, the signal gain declines due to the low-pass characteristics
of the filter LIF

A . In (a) the slightly negative valley around T0 = 8 ms is typical
for IF neurons and would be absent for SRM0 neurons.

In this section we study the existence and stability of incoherent firing states.

7.1 Determination of the Activity. We search for a fixed point A(t) = A0
of the population dynamics. Given constant A0 and constant external input
I0, the input potential of IF or SRM0 neurons is also constant,

h(t) = h0 = J0 A0 + JextI0, (7.1)

where we have used the normalization
∫
ε0(s) ds = 1 = ∫ ε̃0(s) ds. In a noise-

free situation, neurons driven by h0 fire regularly with a period T0, which
may be determined directly from the threshold condition. The population
activity is then A0 = 1/T0. In the noisy case, the activity is A0 = 1/〈T〉,
where 〈T〉 = ∫∞0 s Ph0(t̂+ s|t̂) ds is the mean interval length (Gerstner, 1995).
The statement follows from the normalization, equation 3.6. For constant
input potential h0, the survivor function and the interval distribution cannot
depend explicitly on the absolute time, but only on the time difference
t − t̂. Hence we may set S0(s) = Sh0(t̂ + s|t̂) and P0(s) = Ph0(t̂ + s|t̂). The
normalization reduces to

1 = A0

∫ ∞
0

S0(s) ds = A0

∫ ∞
0

s P0(s) ds = A0 〈T〉. (7.2)

The second equality sign follows from integration by parts using d
ds S0(s) =

−P0(s).
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For noise model B, P0(s) is a gaussian P0(s) = Gσ̂ (s− T0) where σ̂ is the
width of the distribution and T0 is the noise-free interval in the presence
of the input potential h0. Thus, for this noise model, A0 = 1/〈T〉 = 1/T0 as
in the noise-free case. This is a nice property of noise model B. For noise
models A and C, the mean interval, and hence A0, changes with the level of
noise.

7.2 Stability of Asynchronous Firing. In this subsection, the stability
of incoherent firing is analyzed. We assume that for t > 0, the activity is
subject to a small perturbation around the fixed point at A0,

A(t) = A0 + Â1 eiωt+λt, (7.3)

with Â1 ¿ A0. The perturbation in the activity induces a perturbation in
the postsynaptic potential,

h(t) = h0 + h1 eiωt+λt, (7.4)

with h0 = J0ε̂(0)A0 and h1 = J0ε̂(ω − iλ) Â1, where

ε̂(ω − iλ) = |ε̂(ω − iλ)| e−iψ(ω−iλ) =
∫ ∞

0
ε0(s) e−iωs−λs ds (7.5)

is a Laplacian transform of ε0. The Fourier transform is defined by equa-
tion 7.5 with λ = 0. The angle ψ(.) is the phase shift between h and A.

The change in the potential causes some of the neurons to fire earlier
(when the change in h is positive) and others to fire later (whenever the
change is negative). The perturbation may therefore build up (λ > 0, the
incoherent state is unstable) or decay back to zero (λ < 0, the incoherent
state is stable). At the transition between the region of stability and insta-
bility, the amplitude of the perturbation remains constant (λ = 0, marginal
stability of the incoherent state). These transition points, defined by λ = 0,
are determined now.

We use equations 7.3 and 7.4 on the right-hand side of the linearized
population equation, 5.9. After cancellation of a common factor Â1 exp(iωt),
the result can be written in the form

1− P̂(ω) = iω J0 A0 ε̂(ω) L̂(ω). (7.6)

P̂(ω) is the Fourier transform of the interval distribution Ph0(t|t̂), and L̂(ω)
is the transform of the filter L in Table 1. Equation 7.6 defines the bifur-
cation points where the incoherent firing state loses its stability toward an
oscillation with frequency ω.

So far the result is completely general. We now specify the model. For
SRM0 neurons with gaussian noise in the reset (noise model B), the interval



Population Dynamics of Spiking Neurons 73

0 1 2 3 4
ωT0

0.0

0.5

1.0

1.5

S f(ω
T 0)

Figure 10: Amplitude condition for the bifurcation of an oscillatory solution.
The feedback gain Sf is plotted as a function of the normalized frequency ω T0

for two different values of the noise,σ = 1 ms (solid line) andσ = 0.1 ms (dashed
line). Given a feedback with appropriate phase, instabilities of the incoherent
firing state are possible for frequencies where Sf > 1. For low noise, Sf crosses
unity (dotted horizontal line) at frequencies ω ≈ ωn = n 2π/T0. For σ = 1 ms
there is a single instability region for ω T0 ≈ 1. The feedback gain is defined by
the right-hand side of equation 7.7. For the plot we have set T0 = 2τ .

distribution is a gaussian centered at T0 and the filter is a δ-function,L(x) =
δ(x)/η′. Hence equation 7.6 is of the form

1 = iω
η′

J0 A0 ε̂(ω)

1− Ĝσ (ω) e−iωT0
, (7.7)

where Ĝσ (ω) = exp{− 1
2σ

2ω2} is the Fourier transform of a gaussian with
width σ . We note that equation 7.7 could have been obtained directly from
the signal gain, equation 6.1, after replacement of the input term
Jext ˆ̃ε(ω)Î(ω) −→ J0ε̂(ω)Â1 and evaluation of P̂(ω) and L̂(ω) for noise model
B. In the following we analyze solutions of equation 7.7. To do so we split
the equation into two equations: one for the absolute value and the other
for the phase. Let us start with the equation for the absolute values.

A necessary condition for a solution to equation 7.7 is a feedback gain
Sf of unity, where Sf is defined by the absolute value of the right-hand
side of the equation. In Figure 10 we have plotted Sf as a function of ωT0.
The left-hand side of equation 7.7 corresponds to a horizontal line at unity.
Solutions to equation 7.7 may exist only for frequencies ω ≈ ωn = n 2π/T0
with integer n, where T0 = 1/A0 is the typical interspike interval of the
neurons. A0 is determined by equation 7.2, with h0 given by equation 7.1.
Thus T0 = 1/A0 includes the effect of the feedback. T0 is not the intrinsic
frequency of the free neuron, which could be quite different.

A solution with ω ≈ ω1 implies that the period of the population activity
is identical to the period of individual neurons driven by an input potential
h0. Higher harmonics correspond to cluster states: each neuron fires with
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a mean period of T0, but neurons tend to fire in groups so that the activity
oscillates several times faster. We see from Figure 10 that the harmonics are
relevant for low noise only. At high-noise level, even the solution ω ≈ ω1
disappears. For σ → 0 the absolute value of the denominator of equation 7.7
is 2|sin(ωT0/2)|, and solutions may occur for all higher harmonics.

Figure 10 specifies the amplitude condition for the solution of equa-
tion 7.7. We now turn to the phase equation. In order to work out the phase
conditions, we need the Fourier transform of the response kernel ε0 de-
fined in equation 2.5. It is given by equation 7.5 with amplitude |ε̂(ω)| =
(1+ ω2 τ 2)−1 and phase:

ψ(ω) = ω1ax + 2 arctan(ω τ). (7.8)

We note that a change in the delay1ax affects only the phase of the Fourier
transform, not the amplitude. By changing the transmission delay, we can
therefore systematically shift the phase of the numerator on the right-hand
side of equation 7.7, a convenient property that we will exploit below.

Since we know that solutions are possible only for ω ≈ ωn, we set ω =
ωn + νn. The numerical solutions of equation 7.7 for different values of the
delay 1ax and different levels of the noise σ are shown in the bifurcation
diagram in the center of Figure 11. Neurons interact with strength J0 = 1.
The value of the threshold ϑ was adjusted so that the mean interval in
the presence of coupling was T0 = 2τ . (For this choice of parameters, the
interval of the free neuron would be about twice as long.) In the simulations
shown in the four insets in Figure 11, we have taken τ = 4 ms and a total
number of N = 1000 neurons.

7.3 Bifurcation Diagram. Let us consider a network with interaction
delay 1ax = 2 ms. This corresponds to an x-value of 1ax/T0 = 0.25 in
Figure 11. The phase diagram predicts that at a noise level of σ = 0.5 ms, the
network is in a state of asynchronous firing. The activity during a simulation
run is shown in the inset in the upper right-hand corner. It confirms that the
activity fluctuates around a constant value of A0 = 1/T0 = 0.125 kHz.

If the noise level of the network is significantly reduced, the system
crosses the short-dashed line. The line is the boundary at which the con-
stant activity state becomes unstable with respect to an oscillation with
ω ≈ 3 (2π/T0). A simulation result for a network at a noise level of σ = 0.1
but otherwise the same parameters as before confirms that the population
activity exhibits an oscillation with period Tosc ≈ T0/3 ≈ 2.6 ms.

We now return to our original parameters of σ = 0.5 ms and1ax = 2 ms
and reduce the axonal transmission delay while keeping the noise level
fixed. This correponds to a horizontal move across the phase diagram in
Figure 11. At some point, the system crosses the solid line, which marks
the transition to an instability with frequency ω1 = 2π/T0. Again this is
confirmed by the simulation results shown in the inset in the upper left
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Figure 11: Stability diagram (center) as a function of noise σ (y-axis) and delay
1ax (x-axis). The diagram shows the borders of the stability region with respect to
ω1, . . . , ω4. For high values of the noise, the asynchronous firing state is always
stable. If the noise is reduced, the asynchronous state becomes unstable with
respect to an oscillation with frequency ω1 (solid border lines,) or ω2 (long-
dashed border lines), orω3 (short-dashed border lines), orω4 (long-short dashed
border lines). Four insets show typical patterns of the activity as a function of
time taken from a simulation with 1000 neurons. Parameters σ = 0.5 ms and
1ax = 0.2 ms (top left); σ = 0.5 ms and 1ax = 2.0 ms (top right); σ = 0.1 ms
and 1ax = 0.2 ms (bottom left); σ = 0.1 ms and 1ax = 2.0 ms (bottom right);
Since the pattern repeats along the x-axis with period T0, we have plotted a
normalized delay 1ax/T0.

corner. If we now decrease the noise level, the oscillation becomes more
pronounced (see the bottom right of Figure 11).

In the limit of low noise, the incoherent network state is unstable for vir-
tually all values of the delay. The region of the phase diagram in Figure 11
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around 1ax/T0 ≈ 0.1 looks stable but hides instabilities with respect to the
higher harmonics ω6 and ω5, which are not shown. We emphasize that the
specific location of the stability borders depends on the form of the postsy-
naptic response function ε. The qualitative features of the phase diagram in
Figure 11 are generic and hold for all kinds of response kernels.

The numerical results apply to the response kernel ε0(s) defined in equa-
tion 2.5, which corresponds to a synaptic current α(s) with zero rise time
(cf. equations 2.9 and 2.8). What happens if α is a double exponential with
rise time τrise and decay time τsyn? In this case, the right-hand side of equa-
tion 7.7 has an additional factor [1 + iωτrise]−1 that leads to two changes.
First, due to the reduced amplitude of the feedback, instabilities with fre-
quencies ω > τ−1

rise are suppressed. The tongues for the higher harmonics
are therefore smaller. Second, the phase of the feedback changes. Thus, all
tongues of frequency ωn are moved horizontally along the x-axis by an
amount 1/T0 = −atan(ωnτrise)/(n 2π).

What happens if the excitatory interaction is replaced by inhibitory cou-
pling? A change in the sign of the interaction correponds to a phase shift
of π . For each harmonic, the region along the delay axis where the inco-
herent state is unstable for excitatory coupling (cf. Figure 11) becomes sta-
ble for inhibition, and vice versa. In other words, we simply have to shift
the instability tongues for each frequency ωn horizontally by an amount
1/T0 = 1/(2n). Otherwise the pattern remains the same.

8 Discussion

8.1 Assumptions. We have discussed an integral equation for the pop-
ulation dynamics. The validity of the population equations relies on three
assumptions: (1) a homogeneous population of (2) an infinite number of neu-
rons that show (3) no adaptation.

It is clear that there are no large and completely homogeneous popu-
lations in biology. The population equations may nevertheless be a useful
starting point for a theory of heterogeneous populations (Tsodyks, Mitkov,
& Sompolinsky, 1993; Senn et al., 1996; Chow, 1998; Pham et al., 1998; Brunel
& Hakim, 1998). We expect that most of the results carry over to non-
homogeneous networks. In a sense, noise model B can be considered an
annealed version of a heterogeneous model where the reset value varies
from one neuron to the next. The treatment of heterogeneity as noise (re-
set values are randomly chosen after each reset rather than only once at
the beginning) neglects, however, correlations that would be present in a
truly heterogeneous model. To replace a heterogenous model with a noisy
version of a homogeneous model is somewhat ad hoc but common prac-
tice in the literature. Wilson and Cowan (1972), for example, motivated
the sigmoidal threshold function in their model by a heterogeneous sys-
tem where the threshold value varies from one neuron to the next. In or-
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der to analyze the system, they neglect correlations and replace the het-
erogeneous system by a homogeneous population with noisy threshold
(noise model A). A more recent example for the replacement of a heteroge-
neous system by a noisy homogeneous system can be found in Pham et al.,
1988.

A generalization of equations 3.3 and 3.7 to a network subdivided into
several pools is possible. Within each pool, neurons are homogeneous. The
activity of a pool m is Am(t). A neuron in pool m receives input from all
neurons in pool n with strength wmn = Jmn/Nn. The postsynpatic potential
of neurons in pool m is then given by a straightforward generalization of
equation 3.3 (Gerstner 1995) hm(t|t̂) =

∑
n Jmn

∫∞
0 ε(t− t̂, s)An(t− s) ds. The

population equation 3.7 remains unchanged but has to be applied to each
pool activity Am separately. The pools are coupled via the potential hm,
which determines the kernel Phm(t|t̂). A transition from discrete pools to a
continuous population is possible (Gerstner, 1995) and might be useful for
modeling of primary visual cortex.

The second condition is the limit of a large network. For N → ∞ the
population activity shows no fluctuations, and this fact has been used for
the derivation of the population equation. For systems of finite size, fluc-
tuations are important since they limit the amount of information that can
be transmitted by the population activity. For populations without internal
coupling (J0 = 0), fluctuations can be calculated directly from the interval
distribution Ph(t|t̂). For networks with internal coupling, an exact treatment
of finite size effects is difficult. For noise model A, first attempts toward a
description of the fluctuations have been made (Spiridon, Chow, & Gerst-
ner, 1998). For noise model C, finite size effects in the low-connectivity limit
are treated in Brunel and Hakim (1999).

The limit of no adaptation seems to be valid for fast spiking neurons
(Connors, 1990). Most cortical neurons, however, show adaptation. A gen-
eralization of the population equations to neuron models with adaptation
does not seem straightforward. From the modeling point of view, all IF neu-
rons are in the class of nonadaptive neurons, since the membrane potential
is reset (and the past forgotten) after each output spike. Both leaky and non-
leaky IF neurons can therefore be mapped to a response kernel description
with no dependence on earlier output spikes (Gerstner, 1995). To a very
good approximation, the Hodgkin-Huxley model can also be mapped to
a response kernel description (Kistler et al., 1997). The condition of short
memory (that is, no adaptation) leads to the class of renewal models (Perkel,
Gerstein, & Moore, 1967; Stein, 1967; Cox, 1962), and this is where the inte-
gral equation applies; (cf. Gerstner, 1995).

8.2 Signal Transmission by Incoherent Firing. We have mainly focused
on the state of incoherent firing in the low-noise regime. This state may
be particularly interesting for information transmission, since the system
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can respond rapidly to changes in the input current. For noise model B,
the signal gain defined as the amplitude of the population activity di-
vided by that of the input current shows no cutoff at high frequencies
(Knight, 1972a). The effective cutoff frequency of the system is therefore
given by the input current. Changes in the input current are, of course, lim-
ited by the opening and closing times of synaptic channels. Each presynpatic
spike evokes a postsynaptic current pulse of finite width. The time course
of the current pulse determines the response time of the system (Treves,
1993).

These insights may have important implications for modeling as well
as for interpretations of experiments. It is often thought, that the response
time of neurons is directly related to the membrane time constant τm. This
idea has been criticized repeatedly since in some cases neurons do respond
much faster (Treves, 1992; Koch, Rapp, & Segev, 1996). In neural network
modeling, a description of the population activity by a differential equation
of the form 1.2 is common practice. Our results suggest that the time constant
τ of the left-hand side of equation 1.2 should be of the order of the duration
of the synaptic current pulse.

We have seen that the Wilson-Cowan integral equation 1.3 and hence
the differential equation 1.2 describes neurons with absolute refractoriness
and noise model A; the gain function g in equation 1.3 may be identified
with the escape rate f . For neurons with absolute refractoriness and noise
model A, the filter L is a low-pass filter with cutoff frequency f (h0) (cf.
appendix E). If the mean activity of the system is low, then the cutoff fre-
qency is low, and the activity follows during a transient the input potential
h. The transient is therefore slow. On the other hand, if the rate f (h0) is
high, then the activity follows the derivative h′, and the transient is fast.
Thus time-coarse graining would be possible with a time constant smaller
than f (h0)

−1. We must keep in mind that even if we take a short integra-
tion time constant, the differential equation 1.2 is always a description of
noise model A. We hope that the treatment presented in this article helps
to clarify some important points. The limitations of the differential equa-
tion 1.2 are already mentioned in Wilson and Cowan (1972) and have been
discussed in Abbott and van Vreeswijk (1993), Treves (1993), and Gerst-
ner (1995). For noise model A, the integral equation can be replaced by
a system of differential equations (Eggert & van Hemmen, 1997) or by
partial differential equations (Gerstner & van Hemmen, 1992). For noise
model C, partial differential equations for the distribution of the mem-
brane potential u have been developed (Abbott & van Vreeswijk, 1993;
Brunel & Hakim, 1998) and are an alternative to the approach by integral
equations.

Since we consider incoherent firing as a state with useful signal transmis-
sion properties, we must be concerned about the stability of such a state.
Incoherent firing can be stabilized by a suitable choice of time constants,
transmission delay, and noise (Abbott & van Vreeswijk, 1993; Gerstner &



Population Dynamics of Spiking Neurons 79

van Hemmen, 1993, 1994; Gerstner, 1995). For low noise, incoherent states
are unstable for nearly all choices of parameters. Instabilities lead toward
oscillations, either with a period comparable to the typical interval of the
neuronal spike trains, or much faster (higher harmonics) (Golomb, Hansel,
Shraiman, & Sompolinsky, 1992; Gerstner & van Hemmen, 1993; Ernst,
Pawelzik, & Geisel, 1994; Golomb & Rinzel, 1994). The harmonics have also
been called cluster states since neurons spontaneously split into groups of
neurons that fire approximately together. Higher harmonics can be easily
suppressed by noise.

The instability of asynchronous firing, has previously been been studied
in phase models (Kuramoto, 1975, 1984; Winfree, 1980; Ermentrout, 1981;
Strogatz & Mirollo, 1991; Golomb et al., 1992). Phase models can describe
arbitrary nonlinear oscillator systems in the limit of weak coupling (Ermen-
trout, 1981). In contrast to phase models, the analytical framework presented
in this article does not rely on a weak coupling assumption but works just
as well for strong coupling. The mean interspike interval T0 in the asyn-
chronous or synchronous state is determined self-consistently and includes
the effects of the feedback from other neurons. In the absence of coupling,
the model neurons may be silent or exhibit a Poisson-like rather than an
oscillatory firing behavior. Thus neurons are not necessarily oscillators. To
analyze the stability in the Poisson regime, we simply have to choose the
appropriate interval distribution Ph0(t|t̂), determine its Fourier transform
P̂(ω), and the filter L̂(ω), and put the expressions in the bifurcation equa-
tion, 7.6.

The instability of asynchronous firing in pulse-coupled neuron mod-
els has been studied in the noise-free case (Abbott & van Vreeswijk, 1993;
Gerstner & van Hemmen, 1993; Gerstner, 1995). The effect of small inho-
mogeneities has been studied by Tsodyks et al. (1993) and a network with
several populations and types on ion currents by Treves (1993). Noise in
the differential equation of delayless IF neurons was treated by Kuramoto
(1991) and Abbott and van Vreeswijk (1993). An analysis similar to that
of Abbott and van Vreeswijk (1993), but for heterogeneous networks with
low connectivity, has been done by Brunel and Hakim (1999). The effect of
threshold noise (noise model A) in the spike response model including de-
lays has been investigated by Gerstner (1995). For the analysis in section 7,
we have assumed noise in the reset (noise model B). This noise model is
probably not the most realistic one, but it is particularly convenient to work
with since the mean interspike interval is independent of the noise level.
For other noise models, a bifurcation diagram as in Figure 11 will look more
complicated since the mean interval depends on the noise level. A way out
would be to readjust the threshold for each noise level so as to keep the
mean interval constant.

If the network is firing incoherently, then the population activity responds
immediately to an abrupt change in the input (Treves, 1992; Tsodyks & Se-
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jnowski, 1995; van Vreeswijk & Sompolinsky, 1996; Horn & Levanda, 1998).
There is no integration delay. In the case of incoherent firing, there are al-
ways some neurons close to threshold, and this is why the system as a whole
can respond immediately. This property suggests that a population of neu-
rons may transmit information fast and reliably. Fast information processing
seems to be a necessary requirement for biological nervous systems if the
reaction time experiments are to be accounted for (Thorpe et al., 1996).

Appendix A: Wilson-Cowan Integral Equations

We apply the population equation 3.7 to SRM0 neurons with noise model A.
The escape rate is a sigmoidal function f [u] and ϑ = 0. The neuron model is
specified by a refractory function η in three pieces. First, during an absolute
refractory time 0 < s ≤ δabs, we formally set η(s) to−∞. Second, during the
relative refractory period δabs < s < δrel, η may take some arbitrary values
η(s). Third, η(s) = 0 for s ≥ δrel.

Given η it seems natural to split the integral in the activity equation 3.7
into three pieces:

A(t) =
∫ t−δrel

−∞
Ph(t|t̂)A(t̂) dt̂+

∫ t−δabs

t−δrel
Ph(t|t̂)A(t̂) dt̂

+
∫ t

t−δabs
Ph(t|t̂)A(t̂) dt̂. (A.1)

The interval distribution Ph(t|t̂) for noise model A is given by equation 2.15,
and is repeated here for convenience:

Ph(t|t̂) = f [h(t)+ η(t− t̂)] exp
{
−
∫ t

t̂
f [h(t′)+ η(t′ − t̂)] dt′

}
. (A.2)

The last term in equation A.1 vanishes since spiking is impossible during
the absolute refractory time, f [−∞] = 0. In the first term we can move a
factor f [h(t)+ η(t− t̂)] = f [h(t)] in front of the integral since η vanishes for
t− t̂ > δrel. The first term in equation A.1 can therefore be rewritten as

f [h(t)]
∫ t−δrel

−∞
Sh(t|t̂)A(t̂) dt̂, (A.3)

where we have used the definition (see equation 2.14) of the survivor func-
tion in noise model A. The integral in equation A.3 can be treated further if
we use the normalization given in equation 3.6. The result of these manip-
ulations is

A(t)= f [h(t)]
[
1−

∫ t

t−δrel
Sh(t|̂t)A(t̂) dt̂

]
+
∫ t−δabs

t−δrel
Ph(t|̂t)A(t̂) dt̂. (A.4)
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Except for a slight change of notation,2 equation A.4 is identical to the in-
tegral equation derived by Wilson and Cowan (1972). It applies to neurons
with relative refractoriness of finite duration. For δrel → ∞ the expression
in the square brackets vanishes, and we are back to equation 3.7.

If there is no relative refractoriness but absolute refractoriness only, we
may set δrel = δabs. The last term in equation A.4 then vanishes. Further-
more, during the absolute refractory period, we have a survival probablity
Sh(t|t̂) = 1 since the neurons cannot fire. This yields

A(t) = f [h(t)]
{

1−
∫ t

t−δabs
A(t′) dt′

}
, (A.5)

which is after the substitution f −→ g exactly the Wilson-Cowan integral
equation 1.3.

Appendix B: Compression of Firing Times

We prove the following generalization of the locking theorem:

1. ∂th+∂t̂h > 0 is a necessary condition for a compression of firing times.

2. For IF neurons, the condition ∂th+ ∂t̂h > 0 is also sufficient.

Proof. With view to equations 4.2 and 4.3, we need to show that ∂th+∂t̂h <
0 H⇒ C < 0. We will use that u′ = η′ + ∂th > 0 at the moment of firing. The
assertion follows from

C = ∂th+ ∂t̂h
η′ − ∂t̂h

= ∂th+ ∂t̂h
u′ − [∂th+ ∂t̂h]

. (B.1)

We need to show that for IF neurons the denominator in equation B.1 is
always positive. With view to equation 4.5, this is equivalent to the statement
η̃0+h(t−Tb)+ τ h′(t−Tb) > 0 where t−Tb = t̂ is the last firing time. Hence
u′(t̂) > 0 and u(t̂) = ϑ . The differential equation for the IF model, 2.8, is
τu′ = −u + input where input comprises synaptic and external currents.
The input potential h(t) is a solution to the differential equation—hence,
input = h+ τ h′

0 < τ u′(t̂) = −ϑ + input < −ureset + h+ τh′, (B.2)

where we have used ureset < ϑ . The assertion follows since η̃0 = −ureset.

2 In Wilson and Cowan (1972), f is called S, Sh(t|t̂)A(t̂) is called R(t, t̂), and Ph(t|t̂)A(t̂)
is S R(t, t̂).
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Appendix C: Locking in the Presence of Noise for SRM0 Neurons

We start from equation 4.12 and search for periodic pulse-type solutions. We
assume that the pulses are gaussians with width d and repeat with period T:
A(t) =∑n Gd(t−nT). The pulse width d will be determined self-consistently
from equation 4.12. The integral over r in that equation can be performed
and yields a gaussian with width σ̃ = [d2 + σ 2]1/2. Equation 4.12 becomes

∑
n
Gd(t− nT) =

[
1+ h′(t)

η′(T)

] ∑
n
Gσ̃ [t− Tb(t)− nT], (C.1)

where Tb(t) = τ ln{η̃0/[h(t)−ϑ]} is the interspike interval looking backward
in time.

Let us work out the self-consistency condition and focus on the pulse
around t ≈ 0. It corresponds to the n = 0 term on the left-hand side, which
must equal the n = −1 term on the right-hand side of equation C.1. We
assume that the pulse width is small d¿ T and expand Tb(t) to linear order
around Tb(0) = T. This yields

t− Tb(t) = t
[

1+ h′(0)
η′(T)

]
− T. (C.2)

The expansion is valid if h′(t) varies slowly over the width d of the pulse.
We use equation C.2 in the argument of the gaussian on the right-hand side
of equation C.1. Since we have assumed that h′ varies slowly, the factor h′(t)
in equation C.1 may be replaced by h′(0). In the following we suppress the
arguments and write simply h′ and η′. The result is

Gd(t) =
(

1+ h′

η′

)
Gσ̃
[

t
(

1+ h′

η′

)]
. (C.3)

The gaussian on the left-hand side of equation C.3 must have the same width
as the gaussian on the right-hand side. The condition is d = σ̃ /[1 + h′/η′]
with σ̃ = [d2 + σ 2]1/2. A simple algebraic transformation yields an explicit
expression for the pulse width,

d = σ
[
2
(
h′/η′

)+ (h′/η′)2]−1/2
, (C.4)

where d is the width of the pulse and σ is the strength of the noise.

Appendix D: The Filter L(x) for Noise Model B

We calculate the linear response of IF neurons with noise model B to an input
1I . We start from equation 4.11 and formally integrate over the variable t̂.
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This yields

A(t) =
∫

dr
[

1+ d

dt̂
T(t̂, r)

]−1

Gσ (r)A[t− Tb(t, r)], (D.1)

where Tb(t, r) is the backward interval of neurons that have been reset the
last time with value r. The derivative has to be evaluated at t̂ = t− Tb(t, r).
In order to calculate the derivative needed in equation D.1, we write the
membrane potential in the form

u(t) = −η̃0 er/τ exp

(
− t− t̂

τ

)
+ h(t)− h(t̂) exp

(
− t− t̂

τ

)
, (D.2)

where we have used equations 2.1, 2.4, 2.10, and 2.16. Neurons that fire at t
have u(t) = ϑ , hence

ϑ=−η̃0 er/τ exp

(
−T(t̂, r)

τ

)
+h[t̂+T(t̂, r)]−h(t̂) exp

(
−T(t̂, r)

τ

)
. (D.3)

We take the derivative of equation D.3 with respect to t̂ and find

d

dt̂
T(t̂, r) = − 1

u′
{

h′(t)− h′[t− Tb(t, r)] e−Tb(t,r)/τ
}
, (D.4)

where u′ is the derivative of equation D.2.
We now linearize equation D.1. The variation 1I in the input current

causes a perturbation1h(t) of the input potential (see equation 2.4) around
h0, which in turn evokes a change 1A(t) in the activity. We set h(t) = h0 +
1h(t) and A(t) = A0+1A(t) (where1A is of the order1h) and expand both
sides of equation D.1 to first order in 1A or 1h. Note that the zero-order
term of d

dt̂
T(t̂, r) vanishes (see equation D.4). The result of the linearization

is

1A(t) =
∫
Gσ (r)1A[t− T(r)] dr− A0

∫
Gσ (r)

d

dt̂
T(t̂, r) dr, (D.5)

where T(r) = T0 + T1 r is the interval of a neuron in the asynchronous state
(no perturbation), which has been reset with value r. T1 = η̃0/(η̃0 + h0) has
been introduced after equation 2.18. d

dt̂
T(t̂, r) is given by equation D.4 with

u′ = τ−1 [η̃0 exp(r/τ)+h0] exp[−T(r)/τ ]. To simplify the expression, u′may
be approximated by its value for r = 0 and moved in front of the integral.
Similarly, we use exp[−Tb(t̂, r]/τ ] ≈ exp[−T0/τ). The final result is

1A(t) =
∫
Gσ̂ (r)1A(t− T0 − r) dr

+ A0

u′

[
h′(t)− e−T0/τ

∫
Gσ̂ (r) h′(t− T0 − r) dr

]
, (D.6)
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where σ̂ = T1 σ . The first term contains the convolution of 1A with the
(unperturbed) interval distribution. The second term can be written as a
filter LIF

B applied to h′ (see Table 1 and equation 5.9).

Appendix E: The Filter L(x) for Noise Model A

In noise model A, we have from equation 2.14,

Sh(t|t̂) = exp
{
−
∫ t

t̂
f [η(t′ − t̂)+ hPSP(t′|t̂)] dt′

}
(E.1)

where f [u] is the instantaneous escape rate across the noisy threshold. We
write hPSP(t|t̂) = h0(t− t̂)+ h1(t|t̂). Taking the derivative with respect to h1
yields

∂Sh(t|̂t)
∂h1(t1|̂t)

∣∣∣∣∣
h1=0

=−H(t1−t̂)H(t−t1) f ′[η(t1−t̂)+h0(t1−t̂)] S0(t−t̂), (E.2)

where S0(t − t̂) = Sh0(t|t̂) and f ′ = df/du. For SRM0 neurons, we have
h0(t− t̂) ≡ h0 and h1(t|t̂) = h1(t), independent of t̂. The filter L is therefore

LSRM
A (t− t1) = H(t− t1)

∫ t1

−∞
dt̂ f ′[η(t1 − t̂)+ h0] S0(t− t̂), (E.3)

as noted in Table 1.
It is now shown that equation E.3 can be reduced to

LSRM
A (x) = a ρ e−ρ xH(x), (E.4)

in two limiting cases: (1) SRM0-neurons and noise model A with instanta-
neous rate f (u) = ρH(u − ϑ) and arbitrary η and ε kernels and (2) SRM0
neurons and noise model A with arbitrary f (u) for neurons with absolute
refractoriness η(s) = −∞ for 0 < s < δabs and zero otherwise. Furthermore
it is shown that for IF neurons with step function threshold,

LIF
A (x) = LSRM

A (x)− e−T0/τ LSRM
A (x− T0). (E.5)

E.1 Step Function Threshold. We take f (u) = ρH(u − ϑ). For ρ →∞
neurons fire immediately as soon as u(t) > ϑ , and we are back to the noise-
free sharp threshold. For finite ρ, neurons respond stochastically with time
constant ρ−1.

Let us denote by T0 the time between the last firing time t̂ and the formal
threshold crossing, T0 = min{t− t̂|η(t− t̂)+ h0 = ϑ}. The derivative of f is
a δ-function

f ′[η(t− t̂)+ h0] = ρ δ[η(t− t̂)+ h0 − ϑ] = ρ

η′
δ(t− t̂− T0), (E.6)
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where η′ = d
dsη|T0 . The survivor function S0(s) is unity for s < T0 and

S0(s) = exp[−ρ (s− T0)] for s > T0. Integration of equation E.3 yields

LA(t− t1) = 1
η′
H(t− t1) ρ exp[−ρ (t− t1)], (E.7)

as claimed above. For the filter LIF
A we also have to evaluate the integral

S0(x)
∫ x

0
dξe−ξ/τ f ′[u(ξ ′)] = S0(x)H(x− T0)

ρ

η′
e−T0/τ , (E.8)

which confirms the assertion.

E.2 Absolute Refractoriness. We take an arbitrary escape rate f (u) ≥ 0
with limu→−∞ f (u) = 0 = limu→−∞ f ′(u). Absolute refractoriness is defined
by a refractory kernel η(s) = −∞ for 0 < s < δabs and zero otherwise. This
yields f [η(t− t̂)+ h0] = f (h0)H(t− t̂− δabs) and hence

f ′[η(t− t̂)+ h0] = f ′(h0)H(t− t̂− δabs). (E.9)

The survivor function S0(s) is unity for s < δabs and decays as exp[− f (h0) (s−
δabs)] for s > δabs. Integration of equation E.3 yields

LA(t− t1) = H(t− t1)
f ′(h0)

f (h0)
exp[− f (h0) (t− t1)]. (E.10)

Note that for neurons with absolute refractoriness, the transition to the
noiseless case is not meaningful. As shown in appendix A, absolute refrac-
toriness leads to the Wilson-Cowan integral equation, 1.3. Thus LA = LWC

defined in equation E.10 is the filter relating to equation 1.3. It is a low-pass
filter with cutoff frequency f (h0), which depends on the input potential h0.
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