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Abstract

What is the ‘meaning’ of a single spike? Spike-triggered averaging (‘reverse correlations’) yields the typical input just before a spike.
Similarly, cross-correlations describe the probability of firing an output spike given (one additional) presynaptic input spike. In this paper, we
analytically calculate reverse and cross-correlations for a spiking neuron model with escape noise. The influence of neuronal parameters
(such as the membrane time constant, the noise level, and the mean firing rate) on the form of the correlation function is illustrated. The
calculation is done in the framework of a population theory that is reviewed. The relation of the population activity equations to population
density methods is discussed. Finally, we indicate the role of cross-correlations in spike-time dependent Hebbian plasticity. © 2001 Elsevier

Science Ltd. All rights reserved.
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1. Introduction

The problem of neural coding can be phrased as two
questions (Berry & Meister, 1998; Bialek, Rieke, de Ruyter
van Steveninck & Warland, 1991; de Ruyter van Steve-
ninck, Lowen, Strong, Koberle & Bialek, 1997; Kjaer,
Hertz & Richmond, 1994; Konig, Engel & Singer, 1996;
Optican & Richmond, 1987; Rieke, Warland, de Ruyter
van Steveninck & Bialek, 1996; Roddey, Girish & Miller,
2000; Softky, 1995; Tovee, Rolls, Treves & Belles, 1993).

1. Encoding. What is the effect of a single presynaptic spike
on the activity of a postsynaptic neuron, i.e. does the
stimulation cause an output spike or not?

2. Decoding. What do we learn about the stimulus from the
observation of a single output spike?

The first question can be addressed by cross-correlation
experiments (see Fig. 1). A neuron that is spontaneously
active because of background activity receives at time "
one additional presynaptic input spike. By averaging over
many presynaptic spike arrivals at the same synapse, we can
estimate the probability of generating an output spike 7'’
given an input spike 7. The cross-correlation C*(:\)|f™)
can, therefore, be evaluated via a peri-stimulus-time histo-
gram (PSTH) triggered on the presynaptic spike. Systematic
experiments along those lines have, for example, been
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performed by Poliakov, Powers and Binder (1997) in conti-
nuation of earlier models and experiments (Fetz & Gustafs-
son, 1983; Kirkwood & Sears, 1978; Knox, 1974; Moore,
Segundo, Perkel & Levitan, 1970).

The second question can be addressed by information
theoretic measurements (Bialek et al., 1991; de Ruyter
van Steveninck et al., 1997; Optican & Richmond, 1987;
Tovee et al., 1993) or, in its simplest form by reverse-corre-
lation measurements (de Boer & Kuyper, 1968). In the
reverse-correlation approach, a neuron is stimulated by a
time-dependent stimulus .#(f) = ., + A#(¢). Every time
an output spike /) occurs, the time course At — s)
just before the firing time ') is recorded. Averaging over
many firing times 7’ yields the typical input

(I = )p = C(s). (1)

Thus, the reverse correlation function C™'(s) is defined by a
spike-triggered average (Fig. 2).

For a linear rate model where output spikes 7' are gener-
ated by an inhomogeneous Poisson process with input-
dependent rate

VU () = " + Joo G()AS(t — s) ds ()
0

it is well known (de Boer & Kuyper, 1968) that the
reverse correlation function is determined by the filter
G(s) and the auto-correlation (A.Z(H)A.#(t')) of the
input (see Appendix A for a review of the argument).

0893-6080/01/$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved.
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b)

Fig. 1. (a) A neuron which is driven by a noisy background input receives at time #, one extra input spike. Does this extra input trigger an output spike? (b) Two
hypothetic scenarios: top: with noisy input an output spike is the more likely the closer the mean membrane potential (thick solid line) is to the threshold ¢
(dashed horizontal line). The firing probability increases during the postsynaptic potential that is caused by the input pulse at #, (arrow); bottom: without noise,
the membrane potential can reach threshold (for the first time) only during the rising phase of the postsynaptic potential.

In particular, for white-noise input with

(AF()) = 0 and (AL (OAI () = 0'28(t -1 3)
we have
2
C(s) = ——G(s). )
Yo

For spiking neurons, however, the form of the reverse
correlation function and its relation to elementary model
parameters such as the membrane time constant has
remained unclear. Apart from occasional simulation
results (e.g. Softky, 1995), no systematic study seems
to have been undertaken. Oddly enough, it is recent
progress in the theory of population dynamics (Abbott
& van Vreeswijk, 1993; Amit & Brunel, 1997; Brunel &
Hakim, 1999; Fusi & Matteo, 1999; Gerstner, 1995,
2000; Gerstner & van Hemmen, 1992; Knight, 1972a;
Nykamp & Tranchina, 2000; Omurtag, Knight & Siro-
vich, 2000) that allows us now to calculate some of the
coding properties of single neurons (Bethge, Pawelzik,
Rothenstein & Tsodyks, 2001; Brunel, Chance, Fourcaud
& Abbott, 2001; Herrmann & Gerstner, 1999, 2001a; see
also Knight, 1972b). In fact, the typical behavior of a
single neuron is identical to that of a population of inde-
pendent neurons (i.e. without coupling).

The paper is organized as follows. After a brief discussion
of the dynamics of a single spiking neuron in Section 2, we
will review in Section 3 population equations that describe
the dynamics of a pool of neurons. Linearization of the
population equations allows us to analytically calculate
the reverse correlation function for the case of input with

7 7 stimulus
t
| L1l L
t

Fig. 2. Reverse correlation technique (schematic). The stimulus .#(¢) in the
top trace has caused the spike train shown immediately below. The time
course of the stimulus just before the spikes (dashed boxes) has been
averaged to yield the typical time course (.# (t(f) — 5))» (bottom).

low-amplitude fluctuations A.#(f). Reverse and cross-corre-
lations are the topic of Section 4. In the discussion of
Section 5 we indicate how the correlation function enters
into the formalism of spike-time dependent Hebbian learn-
ing. Formal mathematical arguments have been moved to
Appendices A and B.

2. Spike response model

In this section, we review the spike response model
(SRM) and specify the particular, somewhat simplified
version that we will use throughout the paper.

2.1. General framework

During and immediately after an action potential, the
membrane potential of a given neuron follows (at least in
most cases) a rather stereotyped trajectory. In the SRM, this
trajectory is described as a function n(t — 7) where 7 is the
moment when the spike has been triggered. The form of the
function m can be chosen so as to reproduce as closely as
possible the time course of an action potential. If a short
current pulse #(¢) is applied during or immediately after an
action potential, the membrane potential u(r) will deviate
slightly from its standard time course 7(t — f). The differ-
ence between the actual time course u(t) and the reference
time course n(¢ — 7) is described by a response kernel «, i.e.

wt) =t — 1)+ r k(t — 1,8).7(t — s5) ds. 5)
0

Note that the response kernel k depends on the time ¢t — 7
since the last spike. In order to emphasize this dependence,
we introduce a refractory variable r = ¢ —  and rewrite Eq.
(5) in the form

o0

u(t) = n(r) + J k(r,s)Z(t — s)ds 6)
0

If the last spike occurred a long time back in the past and if
there has been no further stimulation, the neuron is at rest. In
this case, the response to a small current pulse is described
by ko(s) = lim,_k(r, 5); typically the time course k(s) is
characterized by the passive membrane time constant 7,
During or a few milliseconds after an action potential, the



W. Gerstner / Neural Networks 14 (2001) 599-610 601

n(r), u

0! 20 1711740
r [ms]

0 20 40
s [ms]

Fig. 3. (a) Spike Response Model. A neuron that has fired at » = 0 (vertical line) passes for » > 0 through a phase of refractoriness described by a kernel
N(r) = —MpeXp(—1/Ty) With 7 = 20 ms (solid line). Each presynaptic current pulse (arrow) causes a response k(r, s) oc exp(—s/7y,) with 7, =4 ms. The
membrane potential u is the sum of the refractory kernel and the total effect of input current (dashed line). (b) Inter-spike interval distribution Py(s) for the
piecewise linear escape rate (13) with B8 = 1. The neuron is stimulated by a constant current .#, that has been adjusted so that the mean interval is

(s) = J§ sPy(s)ds =20 ms.

response to the same current pulse can be quite different
since sodium and potassium channels are open that are
normally closed at rest. The dependence of k upon the
refractory variable r takes care of this effect (Kistler, Gerst-
ner & van Hemman, 1997).

In a noiseless model neuron, spikes are generated by
a threshold process that resets the refractory variable r
in Eq. (6)

ut)=9=r=0 (F=1. 7)

Graphically speaking, we simply add (or ‘paste in’) an
action potential of standard shape w(r—17) if the
membrane potential reaches the threshold at time 7.
Noise can be induced by adding a stochastic component
to the input current S (¢) — J(t) + & (). The stochas-
tic contribution £ ;. can be motivated by stochastic
spike arrival. Usually the noise is taken as white, i.e.
(Fnoise) =0 and <jnoise(t)jnoise(ll)> = 0'360 - t/)- We
call this the diffusive noise model. The noisy input
generates a distribution of membrane potentials with
standard deviation o, that can be measured in experi-
ments (Destexhe & Pare, 1999). While such a noise
model is not too far from reality, it suffers from the
disadvantage that it renders the analytical calculation
of inter-spike interval distributions rather difficult.

It is, therefore, more convenient (albeit somewhat less
realistic) to introduce noise by replacing the deterministic
threshold by a ‘noisy’ threshold. More precisely, the neuron
may fire in a time step Az with some probability pAz even
though the membrane potential u# has not yet reached the
threshold 4. The ‘hazard’ p of firing depends on the
momentary distance between the membrane potential and
the threshold and, possibly, also on the slope & = du/dt, ie.!

p(t) = flu@®) — 9,4l ®)

We call f the ‘escape rate’. A suitable function f should
vanish for u < ¥ and increase rapidly for u > . It turns

' In addition, we require that the rate vanishes during the first few milli-
seconds that correspond to the duration of the spike itself.

out that, at least for standard integrate-and-fire neurons, the
diffusive noise model introduced above can be replaced to a
high degree of accuracy by an escape rate of the form (Herr-
mann & Gerstner, 2001a; Plesser & Gerstner, 2000;)

G(u— 9, o)
Erfc( ﬂ )

gy

f(uzﬁ,u)za(% +2u) 9)

where %(x,0,) is a normalized Gaussian with standard
deviation o, and vanishing mean; Erfc(x) is the complemen-
tary error function; and « is a parameter. Since in an inte-
grate-and-fire model, the variance a',f of the membrane
potential is directly related to the (usually known) variance
oy of the noise current, a is in fact the only free parameter
for a fit of the escape rate (9) to the diffusive noise model.
Optimization of a over a large ensemble of periodic and
aperiodic stimuli yields a® =~ 1.2 (H.E. Plesser, private
communication). Note that for u > 9 and fixed i, the escape
rate (9) increases linearly with u — .

A major advantage of escape rate models is the fact that
statistical quantities such as the interval distribution can be
calculated analytically. In fact, whatever the choice of the
escape rate f, the probability that a neuron fires a spike at
time ¢ given that its last spike was at 7 is

Pl = pr(texp] - Jf put ar'} (10)

where p,(t") = flu,(t") — 9,1u,(t")] with r =+t — f; cf. Eq.
(6). For constant input .#(f) = .#,, we get the stationary
interval distribution Py(t — 7) = P, (1[f). For arbitrary
time-dependent input, we call P ,(#|f) the input-dependent
interval distribution. Eq. (10) is a generalization of standard
renewal theory (Cox, 1962; Perkel, Gerstein & Moore,
1967) to the case of time-dependent input.

2.2. Specific model

In this paper, we work in the framework of the noisy SRM
defined by Eqgs. (6) and (8). It has been shown that with an
optimal choice of the kernels 7 and « the SRM can
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correctly predict about 90% of the firing times of the Hodg-
kin—Huxley model with time-dependent input (Kistler et al.,
1997). Thus, the SRM seems to offer a framework that is
general enough to capture some essential aspects of neuro-
nal dynamics.

To keep our arguments transparent, we focus in this paper
on a much simpler model within the framework of Eq. (6)
and take exponential kernels

r

noo=:&n-—nmmp(— )Jf@) (11)

refr

N

Kk(r,s) = exp(— )J’f(r — 8)H(s) (12)

m
where J(.) is the Heaviside step function; cf. Fig. 3a. In Eq.
(11), the form of an action potential has been reduced to a
Dirac 6 function which simply marks the firing time of the
spike. The Heaviside function #(r — s) in Eq. (12) assures
that the membrane potential trajectory restarts after each
spike with an initial condition lim,_qu,.(f) = —mny. Our
specific choice of parameters is 7, =4 ms, T, =20 ms,
and ny = 1; cf. Fig. 3a.

For the escape rate, we take the piecewise linear function

p, () = B Lu,(t) — 9y = B [u(0) — NA[u, () — 9. (13)

A value of 8 =1 corresponds to a medium noise level; cf.
Fig. 3b.

We note that for 7., = 7, = 7 we obtain the standard
integrate-and-fire neuron as a special case. In fact, taking the
derivative of Eq. (5) with exponential kernels i and « with
a common time constant 7 yields between two spikes

d u
w4 + J(1). (14)
After firing, the membrane potential is reset and integration
restarts at a value Uy = —mo. For B — oo firing occurs
immediately when u(f) crosses the threshold. In other
words, in the limit of B — o and 7., = 7, We recover
the noise-free integrate-and-fire neuron. On the other
hand, a choice 7. # 7, allows us to separate the time
scale of refractoriness from the time scale set by the
membrane time constant which is not possible in the case
of a standard integrate-and-fire model.

3. Population equations

Instead of studying a single neuron and averaging over a
long experiment (or several trials) to measure the reverse
correlations, we will consider in this paper a population of N
independent neurons and study its behavior in a single
(short) trial. Let us denote the spike train of neuron j by
Si() = Y 8t — ") where 1/ with f=1, 2, ... are the
firing times of neuron j. The quantity we are interested in

is the population activity

1 N rt+Ar , , 1 N
A(t) = limp,g—— . - _
(1) = limy,_o Ath; L S di' = & >

J

> 8 — i),
!

s)

1

i.e. the number of spikes that occur in a population of N
neurons in a time window [¢, ¢ + Af] divided by the number
of neurons and the length of the window. Since the popula-
tion activity has units of a rate, it is also called the popula-
tion rate (Nykamp & Tranchina, 2000) or the space-rate
(Maas & Nathschlédger, 2000).

In order to get a first intuitive understanding of the rela-
tion between the population activity and single-neuron
dynamics, let us consider a population which is stimulated
at =0 by a stimulating pulse .#(¢) of a duration of, say,
2 ms. Neurons in the population that happen to be close to
threshold at the moment of input switching will be put
across the threshold by the stimulation and will, therefore,
emit an action potential. Other neurons that are in the refrac-
tory period or close to rest will stay quiescent. Thus, on a
single-neuron level the response to a stimulus can be
completely different depending on the internal state of the
neuron. By calculating the population activity A(¢), we aver-
age over the internal state—in very much the same way as a
repetition of the stimulus at random intervals would do.

In this section, we review the population dynamics of
spiking neurons and derive a population equation of the
form (Gerstner, 1995, 2000; Gerstner & van Hemmen,
1992)

A®=ijA®A®& (16)

where P,(t]f) is the input-dependent interval distribution
introduced in Eq. (10). In particular, we discuss the relation
of this integral equation to the membrane potential density
approach of Abbott and van Vreeswijk (1993); Nykamp and
Tranchina (2000); Omurtag et al. (2000) and Brunel and
Hakim (1999).

3.1. Review of density methods

Before we turn to the SRM, we make a short detour and
start with the well-known integrate-and-fire model; cf. Eq.
(14). Since the state of individual integrate-and-fire
neurons is fully characterized by their membrane poten-
tial, the state of a large population of integrate-and-fire
neurons can be described by a membrane potential density
p(u,t). The normalization is jizoop(u, Hdu=1, i.e.
Ju p(u,H)du is the probability that a randomly chosen
neuron has at time t a membrane potential between
and u;. The dynamics of the membrane potential density
can be expressed by the continuity equation (Abbott &
van Vreeswijk, 1993; Brunel & Hakim, 1999; Nykamp &
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Fig. 4. (a) State transitions in a discretized implementation of the membrane potential density equation for integrate-and-fire neurons stimulated by constant
current .# and diffusive noise. The flux Jy;; drives the membrane potential towards uy = R.#,, while stochastic spike arrival (diffusive noise) leads to a flux Jgg
upwards (excitation) or downwards (inhibition). The flux across threshold, i.e. the activity A, is reinjected at the reset potential u,,,,, (schematic). (b) Population
dynamics of SRM neurons with escape noise. Top: membrane potential of a neuron that has fired its last spike at 7. The membrane potential trajectory u(f) ends
when the neuron fires. The instantaneous firing rate is p,(f) = f[u,(f) — ¥]. Middle: the flow has constant speed along the r-axis. The trajectory of the
refractory variable r(f) ends when the neuron fires and restarts immediately at » = 0. Bottom: discretized state diagram; the activity A consists of the firings of
all neurons with different refractory variables r. The activity A is reinjected at r = 0.

Tranchina, 2000; Omurtag et al., 2000)

plu 1) = ~ (1) + AWB ) a7
ot ou

where J(u, ) is the flux along the voltage coordinate and
A(?) is the population activity. The last term in Eq. (17)
describes the reset to u = u, after firing. For neurons with
stochastic input .# ;. of power o2, the flux is

2

J
TG, 1) = pu, it — 2 L p(u, 1)
27 du

where &t = (—u/7) + #(¢) is the velocity of the flow. The
second term in Eq. (18) arises due to the noise component
Joise and is called the ‘diffusion term’. The population
activity A(¢) is given by the flux through the threshold; cf.
Fig. 4a. Since the threshold acts as an absorbing boundary
(i.e. p(u, r) =0 for u = ¥), we have

(18)

2
A = 3.0 =T pes. o). (19)
27 du
For stationary input, Eqs. (17)—(19) can be solved analytically
(Brunel & Hakim, 1999; Riccardi, 1977); for arbitrary time-
dependent input they must be integrated numerically (Nykamp
& Tranchina, 2000; Omurtag et al., 2000). This ends our
discussion of integrate-and-fire neurons with diffusive noise.
We now return to neurons of the SRM type. The interval
state of a SRM-neuron can be characterized by the time r =
t — 7 since its last output spike. We, therefore, introduce a
‘refractory density’ g(r,t) with normalization
,[o q(r,t)ydr=1, (20)
ie. [}l gq(r,1) dr is the probability that a randomly chosen
neuron has at time ¢ a refractory variable between ry and r;.
In analogy to Eq. (17), the continuity equation for SRM
neurons is given by Gerstner and van Hemmen (1992)

1% 1%
540D = == J(r. 1) = p(q(r. 1) + ADST). ey
T

The flux along the r-axis is

J(r,t) = q(r, )i = q(r,1) (22)

since the velocity 7 of the refractory variable is constant and
equal to one. The last term in Eq. (21) describes the ‘reset’
of the refractory variable to r = 0. Note that, in contrast to
diffusive noise, escape noise does not enter into the flux
equation (22) but directly as a ‘sink’ term —p,(f)g(r,t) on
the right-hand-side of Eq. (21). The magnitude of the ‘sink’
can be calculated from the escape rate

pr () = flu, () — 9, 1,(1)] (23)
with u, given by Eq. (6). The population activity is
A0 = [ paen o 4)

i.e. neurons with refractory variable » contribute with rate
p(?) to the activity A(#). A schematic graph of the refractory
dynamics is given in Fig. 4b.

We show in Appendix B that, for integrate-and-fire
neurons with escape noise (and similarly for noiseless
neurons), the continuity equation (17) for the membrane
potential density p(u, t) is equivalent to the continuity equa-
tion (21) for the refractory density g(r, t). In fact, the transi-
tion from Eq. (17) to Eq. (21) is given by a simple
coordinate transformation. The advantage of the formula-
tion with refractory densities is that the partial differential
equation (21) can be solved analytically. Since the flux has
the simple form (Eq. (22)), we may switch to a moving
coordinate frame. In the new frame, the partial differential
equation has been reduced to an ordinary differential equa-
tion that can be integrated; cf. Appendix B. The result is
(Gerstner & van Hemmen, 1992, 1994)

1 1
a0 = _pexs| - [ psrar |ai e @
which has the form of the population equation (16) with an
input-dependent interval distribution given by Eq. (10). The
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correct normalization of the population activity A follows
from Eq. (20) and is given by

1= JI exp[ - J[ p,/_;(t/)dt/] AP df. (26)

3.2. Linearization

In this subsection, we linearize the population equation
(16) about a constant activity level A. The activity Ay can be
the result of stimulation by a constant current ., > 0 or else
due to spontaneous activity of the neurons (£, = 0). Let us
now assume that, in addition to the bias current .#, we also
apply a time-dependent input A.#(¢). The population activity
will then respond by a change AA(r), i.e.

A(t) = Ay + AA(D). (27

Linearization of the population equation (16) yields (Gerst-
ner, 2000)

AA(t) = Jt Py(t — DAA(D) + AO% Joo L(x) Jw Ko($)AZ(t — x — s)dsdx.
—o0 0 0

(28)

The first term on the right-hand-side of Eq. (28) describes
the after-effect of previous perturbations AA(?) in the past
(f < t). Perturbations that have occurred about one inter-
spike interval earlier ‘reappear’ at time ¢, smoothed out by
the interval distribution Py(7). If there have been no pertur-
bations in the past, the first term vanishes. The second term
in Eq. (28) is a linear filter that describes the immediate
effect of recent input variations A.# .

Three aspects are important for an understanding of the
filter properties generated by the second term in Eq. (28).
Firstly, the integral Ah(f) = [§ ko(s)AF(t — s)ds can be
interpreted as the contribution to the membrane potential
caused by the input A.#. We call Ah the input potential.

Secondly, the input potential is convolved with a filter
ZL(x). For escape rates f(u) (i.e. escape rates that depend on
the voltage u, but not on the slope ), the filter is (Gerstner,
2000)

L(x) = j FTu€ = x) — 9NSp(HAE — Sp(x) L e I u( — Ndé,
(29)
with

Syls) = exp{ - j;f[u(a - a]ds}. (30)

Here, u(¢) is the membrane potential trajectory of a neuron
with constant stimulus .#,. As we can see from Fig. 5, for
high noise the filter #(x) exhibits low-pass characteristics
(i.e. the filter extends over a broad time window of aver-
aging), whereas for low noise it becomes sharper. In the
limit of no noise (8 — o), it approaches a 6 function.
Thirdly, Eq. (28) combines the integral over the filter ¥
with a temporal derivative. For high noise, the derivative
‘cancels’ the convolution by the low-pass filter #. The

1

L(s)

0 20 40
s [ms]

Fig. 5. Filter #(s) for a SRM neuron with exponential kernels and a piece-
wise linear escape rate (13) at a noise level of 8 =1 (solid line), 8 = 0.1
(dotted line), and B = 2 (long-dashed line). The bias current .#, has been

readjusted so that the mean interval is always 20 ms (mean firing rate

vg" = 50 Hz). Parameters: membrane time constant 7,, = 4 ms and refrac-

tory time constant T.g = 20 ms.

immediate response AA to a change in the input is, there-
fore, proportional to the input potential

(o)

high noise : AA(7) oc Ah(r) = J k()AL (t — s)ds. (31)
0

For low noise, however, the immediate response becomes
proportional to the derivative of the input potential

low noise : AA(t) oc %Ah(r) = % J: K(S)AS(t — s) ds.
(32)

An advantage of the analytical expressions (28) and (29) is
that we can not only study the extreme cases but also
intermediate noise levels. An illustration is given in the
following section, where we determine reverse and cross-
correlation functions.

4. Results

In this section, we apply the linearized population equa-
tion to the problem of neuronal coding and calculate reverse
and cross-correlation functions. The Fourier transform of
Eq. (28) yields

Alw) = iwwj(w) = G(w)f (w) (33)
1 — P(w)

with a filter

o AL (@)R(w)

Glw) = lwil — I3(w) . (34

The inverse Fourier transform of Eq. (33) yields
A(t)=Ap + J G(s)AJ(t — s)ds (35
0

where A, is the population activity for stimulation with
constant bias current .#,. The filter G is

G(s) = % J: G(w)et ™ do. (36)
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Fig. 6. Reverse correlations. A SRM, neuron is stimulated by a constant bias current plus a stochastic input current. Each time an output spike is triggered, the

time course of the input current is recorded. (a) Average input (# (¢t — t“’)),m as a function of s = ¢ — 1) averaged over 1000 output spikesf=1, ...,

1000. (b)

The same, but averaged over 25,000 spikes. The simulation result is compared with the time-reversed linear filter G(—s) predicted from the theory (smooth

line). Noise model: linear escape rate with 8 = 1.

Eq. (35) has the form of a linear rate model; cf. Eq. (2). We
can, therefore, repeat the arguments of Appendix A to show
that

2
cs) = Z-Gs). (37)
Ag

The central point of our approach is that the filter G(s) can
be predicted via Eq. (34) from the shape of the interval
distribution Py(s), the response kernel k((s) and the filter
ZL(s). Eqs. (34) and (37) establish, therefore, a relation
between neuronal parameters and the reverse correlation

function C™(s).

4.1. Reverse correlations

We consider the SRM neuron defined in Section 2.2. The
response kernels are exponential kernels with a time
constant of 7, =4 ms for the kernel k and 7., =20 ms
for the refractory kernel 1. The neuron is driven by a current
J(t) = Iy + AJ(t). The bias current .#, was adjusted so
that the neuron fired at a mean rate of 50 Hz. The noise
current was generated by the following procedure. In
every time step of 0.1 ms we apply with a probability of
0.5 an input pulse of amplitude *1, i.e. the input has white-
noise characteristics. To estimate the reverse correlation
function, we build up a histogram of the average input
(I(t — 7)), preceding a spike . We see from Fig. 6a
that the main characteristics of the reverse correlation func-
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_1 . . .
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tion are already visible after 1000 spikes. After an average
over 25,000 spikes, the time course is much cleaner and
reproduces to a high degree of accuracy the time course of
the time-reversed filter G(—s) predicted by the theory. The
oscillation with a period of about 20 ms reflects the intrinsic
firing period of the neuron. This is shown more clearly in
Fig. 7 where the bias current has been changed so that the
mean interval is either shorter ({s) =10 ms) or longer
({s) =30 ms). The oscillations of the reverse correlation
filter G(—s) change accordingly. An increase in the noise
level suppresses the oscillations; cf. Fig. 8.

4.2. Cross-correlations

In the preceding subsection, the input AJ(f) was a
random current with white-noise characteristics; cf. Eq.
(3). In this subsection, we focus on a scenario that is some-
what closer to real synaptic input. To keep things simple, we
model presynaptic spike arrival as current injection (rather
than conductance change). More precisely, we assume that a
presynaptic spike that arrives at time 1™ generates an expo-
nential current pulse

I () = iexp(— - )yf(t — "), (38)

Tsyn 7-syn
where J(.) is the Heaviside step function. The postsynaptic

b)

0o 20 40
s [ms]

Fig. 7. Reverse correlations (a) and interval distribution (b) for the same neuron as in Fig. 6, except that the bias current has been changed so that the mean
interval is 10 (dotted line), 20 (solid line) or 30 ms (long-dashed line). Linear escape rate with 8 = 1.
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Fig. 8. Reverse correlations (a) and interval distribution (b) for the same neuron as in Fig. 6, except that the noise level has been changed from 8 =1 (solid

line) to B = 0.1 (dotted line) or B = 2 (long-dashed line).

potential (PSP) generated by the pulse is
€(s) = J Ko(s) I (s — ') ds’. (39)
0

Let us now suppose that we study a neuron that is sponta-
neously active at low rate. At =" a presynaptic spike
arrives and evokes a PSP. Depending on the internal state
of the neuron, the extra PSP may or may not be sufficient to
drive the membrane potential across threshold. Intuitively,
the cross-correlation function C"**(¢|¢") describes the prob-
ability of generating an output spike given the input. To
make our intuition more precise, we take a population
approach. Neurons in the population are firing sponta-
neously at a rate A, At time 7™ all neurons receive a
presynaptic input spike which generates a modulation
AA(?) of the population activity. The change of the neuronal
firing rate caused by one presynaptic input spike is
C*(¢]f™) = AA(#). Using the linearized population equa-
tions, we can estimate the cross-correlation

Ccross(t|tin) _ AA(t) ~ Jt PO(Z _ i)AA(i)df

d (o)
+Ag— J Lx)ey(t — x)dx  (40)

dr Jo
where P, is the interval distribution during spontaneous
activity and A, the spontaneous rate. From Eqs. (31)

and (32) we conclude that the main peak of the cross-
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correlation is

€y(s)  for high noise

d . 41)
—€y(s) for low noise.
ds

Ccross(tin + S|lin) —
Thus, for high noise the cross-correlation is proportional
to the PSP while for low noise it is proportional to its
derivative (Abeles, 1991; Fetz & Gustafsson, 1983;
Herrmann & Gerstner, 2001a; Kirkwood & Sears,
1978; Moore et al.,, 1970; Poliakov et al., 1997). For
intermediate noise levels we calculate the cross-correla-
tion from

=) !
Ccross(tin + S|lin) ZJ G(s/)iexp(— s—S )ds'. (42)
0 syn Tsyn
The result is shown in Fig. 9. For high noise, the time
course of the cross-correlation is indeed comparable to
that of the PSP; cf Fig. 9b. For low noise, however, the
sharp initial rise is followed by a trough and a second
peak about one inter-spike interval later. The overall
pattern is dominated by oscillations; Fig. 9a.

5. Discussion
5.1. Correlations in spike-time dependent plasticity
Correlations between pre- and postsynaptic neurons are

b)
0.1

0 20 40
s [ms]

Fig. 9. Cross-correlations. The input consists of a synaptic current pulse at s = 0 with time constant 7, = 4 ms. (a) Same neuron model as in Fig. 6, with noise
levels B =1 (solid line), B = 0.1 (dotted line) or B = 2 (long-dashed line). For medium and low noise (8 = 1 or 2) the cross-correlations exhibit oscillations
with the intrinsic firing period of 20 ms. (b) In the case of high noise (8 = 0.05, solid line) the cross-correlation is similar to the time course of the postsynaptic
potential (dotted line). The postsynaptic potential has been scaled to approximately the same amplitude as C***.
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of eminent importance for synaptic plasticity. In standard
Hebbian learning, the weight w;; from a presynaptic neuron j
to a postsynaptic neuron i changes if both neurons are active
‘at the same time’. Hebb’s original formulation is slightly
more precise and makes explicit reference to a causal rela-
tion between pre- and poststynaptic firing. It states that a
change should occur if the ‘presynaptic neuron contributes
in firing’ the postsynaptic one (Hebb, 1949). Thus, learning
should occur if there are cross-correlations between pre- and
postsynaptic activity.
More generally, we call a plasticity rule Hebbian if

1. it only depends on locally available information such as
pre- and postsynaptic spike times and the current weight
value w; and

2. it depends on the correlations between pre- and postsy-
naptic firings (i.e. plasticity is not due to pre- or postsy-
naptic activity alone).

An example of a Hebb-type learning rule is (Gerstner,
Kempter, van Hemmen & Wagner, 1996; Kempter, Gerst-
ner & van Hemmen, 1999; Kistler, & van Hemmen, 2000;
Roberts & Bell, 2000; Senn, Tsodyks & Markram, 2001;
Song, Miller & Abbott, 2000)

wy() = ag(wy) + al’ (wy)S;'(0) + ai™ (wy) S (1)
. t
+ a%"“(w,-j)S}“(t)J AWt — t)S (')

1 .
+ ag‘)"(w,-j)sg’“‘(t)J di'W(—t + S,
(43)

where S (t) =>,8(t— t(f )) is the pre- and Sout(t) =
O 8(t - t ) the postsynaptlc spike train. The contributions
ay, at’, ai™ describe the change if there are no spikes at all,
presynaptic spikes only, or postsynaptic spikes only. These
are called the ‘non-Hebbian’ terms, since they describe
adaptation processes; some or all of these terms may
vanish—they are included in Eq. (43) for the sake of gener-
ality. All of the above parameters as well as a5™" may
depend on the current weight value wy. The correlations
between pre- and postsynaptic spikes are taken care of by
the learning window W(t(f ) (f)) (Gerstner et al., 1996;
Gerstner, Ritz & van Hemmen, 1993). The learning window
can have two phases depending on the relative timing of
pre- and postsynaptic neurons (Bell, Han, Sugawara &
Grant, 1997; Bi & Poo, 1998; Debanne, Gihwiler &
Thompson, 1998; Markram, Liibke, Frotscher & Sakmann,
1997; Zhang, Tao, Holt, Harris & Poo, 1998). Since such
two-phase learning windows are useful to detect temporal
variations in neuronal firing patterns, they have been postu-
lated on theoretical grounds (Gerstner et al., 1996).

To see more clearly how correlations enter into the learn-
ing equation (43), we assume that learning is slow compared
to typical inter-spike intervals. The expected evolution of

weights on the slow time scale of learning is”

d in/ cin
Ewij(t) =aqy t a <Sj )+ a(l)m<5?m(t)>

+ r ds aS™" W(s) (S (OSP(t — s)). (44)

The term (Si“(t)> can be identified with the presynaptic rate

vj"(r) and similarly (S{"(#)) with the postsynaptic rate v{"'(¢).
The integral over the learning window is driven by correla-
tions between pre- and postsynaptic spikes. If the presynap-
tic firing is described by a Poisson process with constant
rate, the correlations can be further separated into correla-
tions between pre- and postsynaptic rates and additional
spike—spike correlations. The final result is (Kempter et
al., 1999)

o0
wi(t) = ag + allnvm + a‘fmvout + a%orrvmv(’mJ W(s)ds
— 00

+ a;"“v“‘f W(=5)Cii*(t + s|t)ds.
(45)

Thus, the cross-correlation Cj;** (¢ + s|r) enters as expected
into the learning equation. Previously, the cross-correlation
function C“°*(¢ + s|t) has only been evaluated for a parti-
cularly simple stochastically firing neuron model (Kempter
et al., 1999). For this simple model it was found that the
cross-correlations follow the time course of the postsynaptic
potential. The results in this paper allow the analysis of
Hebbian plasticity to be extended to more realistic spiking
neuron models. As we have seen, the cross-correlation is a
linearly filtered version of the postsynaptic potential; the
time course of the cross-correlation function depends on
the noise level and the mean firing rate of the neuron.

5.2. Extensions

In this paper, we calculated reverse and cross-correlations
for spiking neuron models. While the framework of the
SRM introduced in Section 2 is rather general, we illustrated
the results so far only for one specific, somewhat simplified
neuron model with piecewise linear escape rate. Extensions
could come in several directions. First, we could redo the
analysis for more interesting realizations of the SRM (Herr-
mann & Gerstner, 2001b; Kistler et al., 1997). Second, if the
kernels n and k are fitted to real neurons, we could try to
explain experimental cross-correlation (Poliakov et al.,
1997) or reverse correlation measurements. Third, so far
the analysis is restricted to independent neurons. The results
should be extended to cross-correlations in connected
networks.

2 For the sake of notational simplicity, we suppress the w;; dependence of
parameters.
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Appendix A. Reverse correlations as a linear filter

In this appendix, we want to show that the reverse corre-
lation function C™"(s) is proportional to the filter G(s) of the
linear rate model

v () = v 4 r G(s)AI(t — ) ds. (46)
0

Here, v§" is the mean output rate and A.#(f) is the fluctuating
part of the input. Eq. (46) describes the relation between a
known (deterministic) input A.#(¢) and the rate. We adopt a
statistical point of view and assume that the input A.#(¢) is
drawn from a statistical ensemble of stimuli with mean
(A4 (1)) = 0. Angular brackets denote averaging over the
input ensemble or, equivalently, over an infinite input
sequence. We are interested in the correlation

1 T
C,s(s) = limy_, T ,[0 VU + $)AS (1) dt

= (V"1 + 5) AL (1)) (47)

between input A# and activity AA. With the linear rate
equation (46) we find

C,y(s) = J: G {AI @ + s — sHAF (@) ds', (48)

where we have used v{"(A.#(¢)) = 0. Thus, the correlation
function depends on the filter G(s) as well as on the auto-
correlation (A.#(t")A.#(¢)) of the input ensemble.

For the sake of simplicity, we assume that the input
consists of white noise, i.e. the input has an autocorrelation

(AFEHAILD)) = a8t — 1). (49)
In this case, Eq. (48) reduces to
C,s(s) = 0> G(s), (50)

i.e. the correlation function C, , is proportional to the filter
G(9).

In order to relate the correlation function C,, to the
reverse correlation C™, we think of the rate v as the
intensity of an inhomogeneous Poisson process that gener-
ates spike events 1), The rate can be estimated if we aver-
age over a large number 1 =i =N of repetitions of the
experiment (or else over a large number of independent
neurons)

1 X

== > S s -1, (51)
7

i=1

VOUt(t)

The correlation function (47) is, therefore,

C,,(s) = lim L i S Asa? - )
vy T—o00 T N 54 i

= "I = $))n = 15" C(s). (52)

For the second equality sign, we have used that the expected

number of spike events in an interval of length T is v{"'T
where v{" is the mean rate. The last equality follows from
the definition of the reverse correlation function; cf. Eq. (1).
The combination of Egs. (50) and (52) yields

2
o

C*®(s) = G(s). (53)

out
Vo

Thus, the reverse correlation function is proportional to the
linear filter G. In Section 4 we calculate the filter G(s) for
spiking neurons.

Appendix Bl. Integrating the partial differential
equation

In this appendix, we integrate Eq. (21) that describes the
dynamics of refractory densities g(r.f). All neurons that have
fired together at time 7 form a group that moves along the r-
axis at constant speed; cf. Fig. 4b. To solve Eq. (21) we turn
to a reference frame that moves along with the group.
Formally, we replace the variable r by x = — r and define
a new density

O, 1) =q(t —x,t) forx =t (54)

and Q(x,f) = 0 for x > ¢. The temporal derivative of Q for
x<tis

J Jd dr J
- =— r— + — e
19[ Q(x’ t) (9}" q(r7 t)|r—t X dt &[ Q(r’ t)|r—l‘ X (55)
with dr/dt = 1. We insert Eq. (21) on the right-hand-side of
Eq. (55). For x = ¢, the result is

%Q(x, = —p_. (D0, 1) + AD)S(t — x) forx =t (56)

and Q(x, f) = 0 for x > r. Thus, the partial differential equa-
tion (21) has been transformed into an ordinary differential
equation. The solution of Eq. (56) is (starting the integration
at tp > x)

t
O(x, 1) = O(x, to)exp[ - J pr—(t")dt ] (57)
Iy
where Q(x,t,) is the initial condition of the integration. How
can we interpret Eq. (57)? The variable x =t — r is in fact

the last firing time 7. Evaluating Eq. (57) in the limit of
to— x yields (with x =7)

@, 1) = A(DeXP[ - Jt p,f-;(t’)dt]. (58)

Here, we have used lim, _;Q(7, 1)) = A(f) which follows
from the 6 term in Eq. (56). On the other hand, from
Eq. (24) we have

A = JO PG i, (59)
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If we insert Eq. (58) into Eq. (59), we find
1 t
A@t) = J pr—i(0) exp[— L pt_;(t’)dt’] A(Dd? (60)

which is the population equation (16) for escape noise.
If we insert Eq. (58) into the normalization condition
for the Q-variable, 1= f’,oo Q(f,r)dt, we arrive at a
normalization equation for the activity:

t t
1= J' exp(— JAp,f_;(t’)dt') A(Ddi. (61)
—00 t
Eq. (61) can be used as a starting point for a theory of
population dynamics (Gerstner, 2000). In fact, Eq. (6)
can be derived from Eq. (61) by taking the temporal
derivative.

Appendix B2. From membrane potential densities to
refractory densities

In this appendix, we study a population of integrate-and-
fire neurons with escape noise. We want to show that we can
use the membrane potential trajectory of the integrate-and-
fire model

t—1 ! t—1t o
u(t) = noexp<— —) + Jﬂexp(— —)f(t )dt'  (62)
T i T
to define a transformation from voltage to refractory vari-
ables: u — r with r = t — . It turns out that the final equa-
tions are even simpler if we take 7 instead of r as our new
variable—and we, therefore, consider the transformation
u—t.

Before we start, we calculate the derivatives of Eq. (62).
The derivative with respect to ¢ yields du/dt = [ — u/7] +
J(t) as expected for integrate-and-fire neurons. The deriva-
tive with respect to 7 is

&_If = %_—Wexp(—:) - F(LD{@} — () exp
ot T T T

(63)

where the function F is defined by Eq. (63).

The densities in the variable 7 are denoted as Q(7, t). Since
the density Q is normalized to one, the coordinate transfor-
mation from p(u,t) to Q(f,t) must respect Q(, fdf =
p(u, t)du. This yields

0@, 1) = p(u, HF (1, 1) (64)

where u is taken as a function of ¢ and 7; cf. Eq. (62). We
now want to show that the differential equation for the
density Q(%,t) that we derived in Eq. (56)

200, = =p (D01 for P < 1 (65)

is equivalent to the continuity equation (17) for the
membrane potential densities. If we insert Eq. (64) into

Eq. (65) we find

dp du dp oF

— —F+ —F+p— = —ppF. 66
oo a Py TP (66)
For the integrate-and-fire neuron, we have JF/dt = —F/T.
Furthermore, for R#(t) > m, we have F # 0. Thus, we can
divide Eq. (66) by F and rewrite Eq. (66) in the form

ap(u, t) d .
= —fu— > u,.
o P [up(u, t)] f(u — Np(u,t) for u > u,
(67)
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