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Introduction

Most biological neurons communicate by short electrical pulses, called ac-
tion potentials or spikes. In contrast to the standard neuron model used in
artificial neural networks, integrate-and-fire neurons do not rely on a tempo-
ral average over the pulses. In integrate-and-fire and similar spiking neuron
models, the pulsed nature of the neuronal signal is taken into account and
considered as potentially relevant for coding and information processing. In
contrast to more detailed neuron models, integrate-and-fire models do not
describe explicitly the form of an action potential. Pulses are treated as for-
mal events. This is no real drawback, since, in a biological spike train, all
action potentials of a neuron have roughly the same form. The time course
of an action potential does therefore not carry any information.

Integrate-and-fire and similar spiking neuron models are phenomenolog-
ical descriptions on an intermediate level of detail. Compared to other
SINGLE-CELL MODELS, they offer several advantages. In particular, cod-
ing principles can be discussed in a transparent manner. Moreover, dynamics
in networks of integrate-and-fire neurons can be analyzed mathematically.
Finally, large systems with thousands of neurons can be simulated rather
efficiently. Reviews of integrate-and-fire networks can be found in Maass and
Bishop (1998) or in Gerstner and Kistler (2002).
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(M.A. Arbib, Ed.), Cambridge, MA: The MIT Press, 2002. http://mitpress.mit.edu
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Spiking neuron models

Integrate-and-fire model

In its simplest form an integrate-and-fire neuron i consists of a resistor R in
parallel to a capacitor C driven by an external current Ii. The voltage ui

across the capacitor is interpreted as the membrane potential. The voltage
scale is chosen so that ui = 0 is the resting potential. The temporal evolution
of ui is

τm
dui

dt
= −ui + R Ii(t) (1)

where τm = RC is the membrane time constant of the neuron. Spikes are
formal events. We say that neuron i has fired a spike if ui reaches at a
time t = tfi a threshold ϑ. The form of the action potential is not described
explicitly. Immediately after spike firing, the potential ui is simply reset to
a value ureset < ϑ. Integration of (1) is then resumed with ureset as initial
condition (Stein, 1967). Since the spatial structure of the neuron is neglected,
such a model is also called a point model. (SINGLE CELL MODELS).

In a network of neurons, the input Ii to neuron i is due to the spikes of
presynaptic neurons j. Detailed models of synaptic input can be found in
SYNAPTIC CURRENTS. In the simplest model of a synapse, each presy-
naptic spike arrival evokes a postsynaptic current with a standard time course
α. The total input to neuron i is then

Ii =
∑

j,f

wij α(t− tfj ) (2)

where the sum runs over all firing times tf
j of all presynaptic neurons. The

factor wij is the synaptic efficacy of a connection from a presynaptic neu-
ron j to a postsynaptic neuron i. Choices for the postsynaptic current
include a delayed δ-pulse, α(s) = δ(s − ∆ax), or a double exponential,
α(s) = [e−(s−∆ax)/τ1 − e−(s−∆ax)/τ2 ]/(τ1 − τ2), where ∆ax is the axonal trans-
mission delay and τ1, τ2 are synaptic time constants.

Spike Response Model

The integrate-and-fire equation (1) with the synaptic current (2) can be in-
tegrated, either numerically or analytically. Since it is a linear equation, the
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analytical integration can be done for each term in the sum of eq. (2) sepa-
rately. The total membrane potential is then the sum of all the postsynaptic
potentials (PSPs) caused by presynaptic firing plus the refractory effect of a
negative reset potential. Given the last firing time t̂i of neuron i, the result
of the integration is therefore of the form (t > t̂i)

ui(t) = η(t− t̂i) +
∑

j,f

wij ε(t− t̂i, t− tfj ) . (3)

The next firing of i occurs, if the membrane potential ui approaches the
threshold ϑ from below. Eq. (3) defines the dynamics of the Spike Response
Model (SRM). It has been introduced above as an integrated version of the
integrate-and-fire model, but the SRM is in fact more general (Fig. 1). The
function η describes the action potential at t̂i and the spike afterpotential
that follows. The function ε describes the voltage response of neuron i to a
presynaptic spike at tfj . Let us suppose that the last spike of the postsynaptic

neuron i was far back in the past (t− t̂i →∞). Then ε(∞, s) as a function of
s describes the time course of the PSP caused by a presynaptic spike. If the
postsynaptic neuron i has been active in the recent past, then a presynaptic
spike is less effective in exciting a postsynaptic response. The first argument
of ε(t − t̂i, t − tfj ) describes the dependence upon the recent firing history
of the postsynaptic neuron. With an appropriate choice of the functions ε
and η, about ninety percent of the firing times of the Hodgkin-Huxley model
with time dependent input can be correctly predicted by the SRM, with a
precision of ±2 ms (Kistler et al., 1997). Moreover the spatial structure of
neurons with linear dendritic tree can be incorporated by an appropriate
choice of ε. For synapses which are farther out on the dendritic tree, the
PSP, and hence the function ε rises more slowly.

Noise

Biological neurons which are driven by a time-dependent intracellular current
exhibit a reliable, (nearly) deterministic behavior, just as the models (1) or
(3). On the other hand, neurons which are part of a cortical network emit
spikes at irregular intervals. Since the exact spike times cannot be controlled
by the experiment, the irregularity is interpreted as noise.

Formally, noise can be introduced into the integrate-and-fire model by
adding a fluctuating input σ ξi(t) on the right-hand side of (1) where σ
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is a parameter controlling the amplitude of the noise and ξ is a normally
distributed random variable with zero mean (DIFFUSION MODELS OF
NEURON ACTIVITY). In the presence of noise, we may ask the following
question. Given the last firing time t̂i of neuron i and the input current Ii(t

′)
for t′ > t̂i, what is the probability that the next spike occurs around time t?
The answer is given by the conditional interval distribution P (t|t̂i, I(.)). The
calculation of P (t|t̂i, I(.)) for the diffusion model is equivalent to the solution
of a first passage time problem. The general solution to this problem is not
known.

Noise can also be introduced in a different manner into spiking neuron
models. The voltage ui(t) is calculated according to (1) or (3). Even before
ui reaches the threshold ϑ, neuron i may fire with an ‘escape rate’ ρ(t) which
depends on the momentary distance from threshold and possibly also on
the current input I, viz., ρ(t) = h(u(t) − ϑ; I(t)). In this case, an explicit
expression for the conditional interval distribution is known, viz.,

P (t|t̂i, I(.)) = ρ(t) exp
[

−
∫ t

t̂i
ρ(t′) dt′

]

. (4)

With an appropriate choice of the escape function h, the diffusion model can
be approximated by the escape model to a high degree of accuracy For a
review of noise models, see Gerstner and Kistler (2002), Ch. 5.

Network dynamics and population equations

In many areas of the brain, neurons are organized in groups of cells with
similar properties, e.g., pools of motoneurons or columns in the visual cortex.
Instead of looking at the firings of individual neurons, we may simply be
interested in the fraction of neurons which are active in the population. In
each small time window ∆t, let us count the number of spikes nsp(t; t + ∆t)
which are emitted across the population and divide by the number N of
neurons and ∆t. This procedure defines the population activity or population
rate

A(t) = lim∆t→0
nsp(t; t + ∆t)

N ∆t
=

1

N

∑

j,f

δ(t− tfj ) , (5)

where δ is the Dirac δ function and the sum runs over all spikes of all neurons
in the population. The population activity has units of one over time and can
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be seen as the rate at which the total spike count increases. Note that the
definition of the population rate (5) does not involve a temporal, but only a
spatial average. What is the temporal evolution of A(t) in a (homogeneous)
network of spiking neurons?

The state of each neuron depends on its input and on the time t̂ of its last
spike, see (3). We define a homogeneous population by the conditions that
(i) lateral coupling has a fixed value wij = w0/N , and (ii), external inputs
Istim(t) are the same for all neurons. The total input to any neuron in the
network is therefore

I(t) = w0

∫

∞

0
α(s) A(t− s) ds + I stim(t) (6)

Even though they all receive the same input, different neurons will, in general,
have different firing times t̂. A neuron which has fired its last spike at t̂ and
has received an input I(t′) for t′ > t̂ will contribute with weight P (t|t̂, I(.)) to
the population activity at time t. Hence the expected value of the population
activity at time t is

A(t) =
∫ t

−∞

P (t|t̂, I(.)) A(t̂) dt̂ . (7)

For spiking neurons with escape noise ρ(t), P (t|t̂, I(.)) is given by eq. (4) and
therefore highly non-linear. Equation (7) is implicitly contained in (Wilson
and Cowan, 1972; Knight, 1972) and formally derived in (Gerstner, 2000)
for a homogeneous, fully connected network of spiking neurons in the limit
of N →∞.

In their 1972 paper, Wilson and Cowan proposed to transform the integral
equation (7) into a differential equation of the form

τ
d

dt
A(t) = −A(t) + g

[

w0

∫

∞

0
α(s) A(t− s) ds + I stim(t)

]

(8)

where τ is a time constant, w0 is the neuronal coupling strength, Iext(t) is
a stimulus, and g a nonlinear transfer function. One of the problems of
eq. (8) is that the time constant τ is the result of a process of ‘time coarse-
graining’ which is necessary for the transition from eq. (7) to (8). Sine the
time window of course graining has to be defined somewhat arbitrarily, the
time constant τ is basically ad hoc. Because of the problems inherent in
eq. (8), it is preferable to work directly with eq. (7).
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For the diffusion noise model, eq. (7) is valid but not very useful, because
the conditional interval distribution P (t|t̂, I(.)) is not known. As an alterna-
tive to eq. (7), the state of the population can be described by the distribu-
tion of membrane potentials P (u, t) (Abbott and van Vreeswijk, 1993; Brunel
2000; Nykamp and Tranchina 2000). At each moment of time P (u, t) ∆u N
gives the number of neurons in the population with a membrane potential
between u and u + ∆u. The equation of the integrate-and-fire model (1)
with additive diffusion noise σ ξ(t) can be transformed into a Fokker-Planck
equation for the distribution of membrane potentials:

τ
∂P (u, t)

∂t
=

σ2

2τ

∂2P (u, t)

∂u2
+

∂

∂u
{[u− R I(t)]P (u, t)} . (9)

The threshold is treated as an absorbing boundary so that the probability
density vanishes for u ≥ ϑ. The probability current across threshold equals
the population activity

A(t) =
σ2

2τ 2

∂P (u, t)

∂u
|u=ϑ . (10)

Since the membrane potential of active neurons is immediately reset to ureset,
the population activity A(t) acts a source of probability current at u = ureset.
For a review, see Gerstner and Kistler (2002), Ch. 6.

Application to Coding

Integrate-and-fire models can be used to discuss potential principles of coding
and dynamics in a transparent manner (Maass and Bishop, 1998, Chs. 1,2,10-
14). Before we turn to networks, let us start with two examples of coding on
the single-neuron level.

Signal encoding by single neurons

Coherent input is more efficient than incoherent spikes in driving a postsy-
naptic neuron. To see why, let us consider the SRM (3). For the sake of
simplicity, we assume that the postsynaptic neuron i was inactive in the re-
cent past (t < 0) and receives, for t > 0, input from two presynaptic neurons
j = 1, 2, both firing at 100 Hz. We set wi1 = wi2 = w0. According to eq. (3),
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each input spike evokes a postsynaptic potential ε(−∞, t − tf
j ) where tfj is

one of the firing times of neuron j. If the two spike trains are out of phase,
the summed postsynaptic potential is lower than in the synchronous case
(Fig. 2). By an appropriate choice of the threshold ϑ, an output spike of
the postsynaptic neuron i occurs therefore only in the coherent (or ‘coinci-
dent’) case. Quite generally, coincidence detection is possible if the threshold
of the postsynaptic neuron is slightly above the mean value, the membrane
potential would take for asynchronous input (Koenig et al., 1996; Kempter
et al., 1998). In the auditory system, it is commonly accepted that coinci-
dence detection is used for the localization of sound sources. On the other
hand, it is an open question whether cortical neurons operate in the regime
of coincidence detection (Koenig et al., 1996). (SINGLE CELL MODELS)

Coding by homogeneous populations

Spiking neurons connected to each other by excitatory or inhibitory synapses
exhibit non-trivial dynamical properties. The population may respond rapidly
to external signals. The network activity may explode or die away. Neurons
may spontaneously develop a tendency to fire synchronously or in groups.
All of these phenomena which can potentially be the basis of various coding
schemes, can be understood from an analysis of equations (6) - (10). Some
of the fundamental questions are highlighted in the following.

First, is it possible, in the absence of an external stimulus, to stabilize
a population of spiking neurons at a reasonable level of spontaneous activ-
ity? For N →∞, spontaneous activity corresponds to a stationary solution
A(t) ≡ A0 of the population dynamics (7) or (10). Spontaneous asynchronous
firing seems to be a generic feature of cortical tissue, but its role is still un-
clear. A stability analysis shows that without noise asynchronous firing is
never stable. Thus the apparent noisiness of cortical neurons is a necessary
feature of the system.

Even in the presence of noise, neurons often tend to synchronize their fir-
ings and develop collective oscillations. This observation leads to the second
question: How is the frequency of collective oscillations related to neuronal
parameters? It turns out that there are different oscillatory regimes depend-
ing on the form of the postsynaptic potential, the axonal delay, and the value
of the threshold (Abbott and van Vreeswijk, 1993; Gerstner, 2000; Brunel,
2000). The frequency of the collective oscillation may be low (about that
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of individual neurons) or several times faster. Collective oscillations and
synchronization (Maas and Bishop, 1998, Chs. 10,11; Gerstner and Kistler,
2002, Ch. 12) have been suggested as potential coding schemes in cortex and
hippocampus (SYNCHRONIZATION, BINDING, AND EXPECTANCY).

Third, how rapidly does the population activity A(t) respond to changes
in the input? An analysis of (7) shows that the response time is not limited
by the membrane time constant of the neurons, but can be much faster (Ger-
stner, 2000). The fast response is due to the fact that, during spontaneous
activity, there are always some neurons with a membrane potential just be-
low threshold. A slight increase in the input will make those neurons fire
immediately. The fast response of populations of spiking neurons to a new
input could be important for an explanation of reaction time experiments
(Thorpe et al., 1996). The same type of arguments also shows that popula-
tions of spiking neurons can reliably transmit signals which vary on a time
scale that is short compared to the interspike intervals of a neuronal spike
train, as is for example the case in the auditory pathway.

All of the above results hold true for homogeneous networks with either
excitatory or inhibitory coupling. Formally the theory is valid for full con-
nectivity in the limit of N →∞. It yields also an excellent approximation for
networks with random connectivity if the density of connections is either very
high or very low. An extension to mixed excitatory/inhibitory populations
as found in the cortex is possible (Brunel, 2000).

Coding in structured networks

Structure in neuronal networks may arise from a spatial arrangement of neu-
rons or from specific patterns stored in a distributed manner in the network.

In networks with local (or distance-dependent) excitatory connections,
traveling waves may occur. In two-dimensional sheets of neurons, wave fronts
may have planar or spiral shapes, similar to the ones found in reaction-
diffusion systems. Collective oscillations and asynchronous firing are other
possible network states. These effects can be described by a direct gener-
alization of the theory of homogeneous systems to a spatially continuous
population. Replace A(t) in (7) by A(x, t) where x is the spatial location.
Instead of (6) we use I(x, t) =

∫

dx′w(|x − x′|)
∫

ds α(s) A(x′, t − s) where
w(.) is the distance dependent coupling strength. Activity waves have been
reported in slice cultures. It has also been suggested that similar activity
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waves could account for some of the trial-to-trial variability in cortical spike
train recordings.

In the previous example, neurons that are strongly connected are lo-
cated next to each other. Activity spreads from one group of neurons to its
neighbors which is easily recognizable by an external observer as a travel-
ling wave of activity. Let us now keep the connections between the same
neurons as before but move all neurons to a new random location on the
two-dimensional sheet. Apart from the fact that connection lines are longer,
nothing has changed. What used to be a propagating wave in the original
spatial arrangement, now looks like asynchronous firing of neurons all over
the sheet. Nevertheless, it is a specific nearly deterministic spatio-temporal
spike pattern. These ‘hidden’ waves of activity has been termed a SYNFIRE
CHAINS (Abeles 1991). While the existence and stability of synfire chains
can be shown by simulation or analysis of model networks, this does not
necessarily imply that real brains make use of synfire chains for coding.

Discussion

What is the code used by cortical neurons? What is signal, what is noise
in neuronal spike trains? While the final answers to these questions have to
come from additional experiments, modeling on the level of integrate-and-fire
networks can contribute to answering, because models allow researchers to
explore potential coding schemes and to identify relevant operating regimes.

In populations of integrate-and-fire neurons, a rate code can be a very fast
code, if rate is defined by a population average (‘population activity’) rather
than by a temporal average (Knight, 1972; Gerstner, 2000). In contrast to
a widespread belief, the speed of signal transmission is not limited by the
membrane time constant of the neuron. Moreover, with appropriate spike-
based learning rules (Maass and Bishop, ch. 14), spiking neurons can work,
in principle, at a very high temporal precision (Abeles, 1991). Large-scale
simulations of integrate-and-fire networks provide a link between theory and
experiments.

One of the points that has been stressed in recent models of integrate-
and-fire neurons is the relevance of the subthreshold regime. If neuronal
and network parameters are chosen so that the mean membrane potential
stays just below threshold, then several interesting properties emerge. First,
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neurons act as coincidence detectors. They are sensitive to fluctuations in
the input and can therefore ‘read out’ the coherent aspects of the input
signal (Koenig et al., 1996; Kempter et al., 1998). Second, neurons in this
regime respond rapidly to changes in the input (Gerstner, 2000). This might
be relevant to explain fast reaction times (Thorpe et al., 1996). Third, to
stabilize a highly recurrent network of spiking neurons in the subthreshold
regime, a certain amount of ‘noise’ is necessary (Abbott and van Vreeswijk,
1993; Gerstner, 2000). From that point of view, it comes as no surprise that
cortical neurons appear to be ‘noisy’. Whether this apparent noisiness is due
to intrinsic noise sources in the neuronal dynamics, to noise in the synaptic
transmission, or the result of deterministic chaos in a network, is not clear.
Model studies have shown that ‘noise’ itself can arise as a network effect
if neurons are in the subtreshold regime. While individual neurons behave
more or less deterministically, the same neurons show large firing variability,
when part of a random network of excitatory and inhibitory neurons with
sparse connectivity (Brunel, 2000). Such networks can represent past input
in their spatio-temporal firing pattern (TEMPORAL INTEGRATION IN
RECURRENT CIRCUITS). Thus the study of integrate-and-fire networks
may shed new light on burning questions of brain theory.
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Fig. 1. Each input current pulse (arrows) evokes a postsynaptic poten-
tial with time course ε. If the sum of the postsynaptic potentials reaches
the threshold ϑ, and action potential with time course η is triggered. An
input current pulse immediately after the action potential evokes a reduced
response because of refractoriness.
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Fig. 2. Left: Spike trains from two different presynaptic neurons are
phase shifted with respect to each other. The summed potential u does not
reach the threshold. Right: Spikes from the same presynaptic neurons arrive
synchronously so that u reaches the threshold ϑ and evokes the generation
of output spikes (arrows). Afterwards u is reset (schematic figure).
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