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A paraDOX that exists in auditory and electrosensory neural
systems'? is that they encode behaviourally relevant signals in
the range of a few microseconds with neurons that are at least one
order of magnitude slower. The importance of temporal coding in
neural information processing is not clear yet*®. A central
question is whether neuronal firing can be more precise than
the time constants of the neuronal processes involved’. Here we
address this problem using the auditory system of the barn owl as
an example. We present a modelling study based on computer
simulations of a neuron in the laminar nucleus. Three observa-
tions explain the paradox. First, spiking of an ‘integrate-and-fire’
neuron driven by excitatory postsynaptic potentials with a width
at half-maximum height of 250 ps, has an accuracy of 25 ps if the
presynaptic signals arrive coherently. Second, the necessary
degree of coherence in the signal arrival times can be attained
during ontogenetic development by virtue of an unsupervised
hebbian learning rule. Learning selects connections with match-
ing delays from a broad distribution of axons with random delays.
Third, the learning rule also selects the correct delays from two
independent groups of inputs, for example, from the left and right
ear.

Barn owls use interaural time differences for azimuthal sound
localization'™". They can locate sounds, and hence prey, with a
precision of 1-2 degrees'?, a capability that requires a time
resolution of less than Sus (ref. 11). The key process in the
auditory system is ‘phase locking’: spikes occur preferentially at
a certain phase, termed the ‘mean phase’, of a stimulating tone, at
frequencies up to 8 kHz (ref. 13). To understand the high degree
of temporal precision in phase locking, we must consider both the
typical duration (t,) of the synaptic input current and the mem-
brane time constant (z,,). For auditory neurons in the chicken'**,
time constants of synaptic input are in the range of 200 ps. Even
though the passive membrane time constant is about 2 ms (ref. 14),
the effective membrane time constant (see Fig. 1, methods) of
magnocellular and laminar neurons is shorter than 200 pus because
there is an outward rectifying current that is activated above the
resting potential™. Such outward rectifying currents are com-
monly found in phase-locking neurons of the auditory
system!®7. As a result of the short time constants, the width of
single excitatory postsynaptic potentials (e.p.s.ps) in chicken is
about 500—800 ps at half maximum amplitude’. We assume that
laminar neurons in an auditory specialist like the barn owl are
twice as fast as those in chicken and model e.p.s.ps with a width of
250 ps (Fig. 1a, inset).

We concentrate on a single-frequency channel and stimulate
with a pure tone of, for example, 5 kHz (period 7" = 200 ps). The
input from magnocellular neurons to our ‘integrate-and-fire’
model neuron in the laminar nucleus is described as a sequence
of spikes (Fig. 1b). Presynaptic spikes occur preferentially around a
specific mean phase of the tone®. A 4jitter’ of 40 pus models internal
sources of variability and noise along the auditory pathway as well
as the bandwidth of frequency tuning of auditory neurons. The
mean firing rate is relatively low (667 Hz) so that each presynaptic
spike train skips most of the cycles of the 5kHz tone.
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FIG. 1 a, Membrane potential v of an integrate-and-fire neuron as a
function of time. b, Probability density P(t) of presynaptic firing during 5-
kHz stimulation and four samples of input spike trains (vertical bars). The
model neuron receives input from 154 presynaptic neurons®*? in volleys of
phase-locked spikes with a ‘jitter’ of 40 us driven by a 5-kHz tone. Spikes
are generated by a stochastic process with periodically modulated rate
(solid line in b). A histogram of spike arrival times (number of spikes N, in
bins of 5 us) summed over all 154 synapses is shown in ¢. Each input spike
evokes an e.p.s.p. shown on an enlarged voltage scale (same time scale) in
theinset of a. The e.p.s.ps from all neurons are added linearly and yield
the membrane voltage v (a, main figure). With the spike input shown in ¢ the
membrane voltage exhibits oscillations (solid line). The model neuron fires
(arrow), if v reaches a threshold v. Firing must always occur during the time
when v increases so that, in the case of coherent input, output spikes are
phase locked as well. If input spikes arrive incoherently, v follows a trajectory
with statistical fluctuations, but no systematic oscillations (dashed line) and
the output spikes are not phase locked. Time scales in a—c are identical; the
period T = 200 ps is indicated by a horizontal bar. Voltage in a: arbitrary
units; the threshold v is 36 times the amplitude of a single e.p.s.p. Rate in b
in kHz.

METHODS. The differential equation dv/dt = —v/z,, + I(t) has been inte-
grated (time step 5ps) with an effective membrane time constant
7, = 100 ps. An input spike arriving at time t[ at a synapse j evokes an
input current I](t) = (1/,) exp(—(t — t/)/z,) for t <t/ with t, = 100 ps.
The total input is I(t) = Y, JiI/ (t) where J; is the efficacy of synapse j and
the sum runs over all synapses and firing times preceding t. For each input
channel j, firing times are generated with probability density
P(t) = (nT/oV2m) S exp[—(t —mT — Aj)2/2az] where © = 1kHz is
arate, T = 200 ps is the period of the stimulation tone, A; is the transmis-
sion delay from the ear to the laminar nucleus, and o = 40us is the
temporal jitter. We impose absolute refactoriness through a minimal
interspike interval of 0.5ms. For incoherent spike arrival (dashed line in
a), the transmission delays Aj are drawn from the broad distribution of Fig.
2a, for coherent spike arrival (solid line in a) the delay distribution is that of
Fig. 2c. To define the effective time constant 7, of the integrate-and-fire
model, we started from a more detailed model with an explicit description of
the outward rectifying current'**®, See Supplementary Information for
details.

Spikes from more than 100 presynaptic neurons (Fig. 1c)
produce e.p.s.ps that arrive coherently with a common mean
phase and lead to an oscillating membrane potential v. The
membrane potential builds up, reaches the threshold in the
rising stage of the cycle and in this way produces slightly more
accurate phase locking than that of the input (Fig. 1la). If
presynaptic spikes arrive with random phases, however, v shows
aperiodic fluctuations (Fig. 1), and the output spikes have a
uniform phase distribution (Fig. 2a). We expect this to be the
initial, embryonic condition before the connections between the
magnocellular and the laminar nucleus are tuned during a sensi-
tive period'®. In adult owls, transmission delays from the ear to the
laminar nucleus differ greatly. Their mean value is between 2 and
3ms, and the standard deviation is about 200-240 us (ref. 19).
Without tuning of the delays, any phase information would be lost.
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FIG. 2 Hebbian learing. In a-c, the left-hand graph shows synapses
binned as a function of the signal transmission delay A. On the right-hand
side, the distributions of output phases are shown in period histograms (bin
width 5ps). a, Before learning, there are 600 synapses with a broad
distribution of signal transmission delays (left) drawn from a gaussian
distribution (2.5 + 0.3 ms). The output of the laminar model neuron
shows no phase locking to a 2-kHz (not shown) or a 5-kHz signal (right).
b, After a learning session while being stimulated by a 2-kHz signal. The 105
synapses that survive learning have delays which differ by multiples of the
period T = 500 ps (scale bar). The output spikes exhibit phase locking with
vector strength?® v = 0.97 corresponding to a temporal precision of 20 us
(right). ¢, Same plot as in b, after learing a 5-kHz input signal. 154
saturated synapses survive. The output spikes exhibit phase locking
(v = 0.75) corresponding to a temporal precision of 25pus. d, Learning
window W as a function of the delay s between postsynaptic firing and
presynaptic spike arrival. The graph on the right-hand side shows the boxed
region around the maximum on an expanded scale. If W(s) is positive
(negative) for some s, the synaptic efficacy is increased (decreased). The
postsynaptic firing occurs at s = O (vertical dashed line). Learning is most
efficient if presynaptic spikes arrive shortly before the postsynaptic neuron
starts firing as in synapse A. Another synapse B which fires after the
postsynaptic spike is weakened.

METHODS. Before learning, all synapses have identical efficacies
J;=1. During leaming, efficacies are changed according to
Ay =ed [y + >, W(t —t")] with factors ¢ = 0.002, y = 0.1. The sum
runs over all spike arrival times t; < t and all postsynaptic firings t" < t.
We take W(s)=0.3exp[(s+0.05)/0.5] for s< —-0.05 and
W(s) = 0.5exp[—(s + 0.05)/0.5] — 0.2 exp[—(s + 0.05)/5] for s>
—0.05 where s is a time in ms. Learning occurs during 3,000 seconds in
time steps of 5 ps. The synaptic strength saturates at a maximum of 3. A
synapse whose efficacy vanishes is removed. The efficiency of phase locking
is quantified by the vector strength?®. Spike input and electrical time
constants are as in Fig. 1.

A hebbian learning rule proves to be an efficient tuning mechan-
ism.

In hebbian learning, a synaptic efficacy is changed by a small
amount ¢, if presynaptic spike arrival and postsynaptic firing
coincide. This simultaneity constraint is implemented by a learn-
ing window W(s) where s is the difference between the arrival time
of a presynaptic spike and the postsynaptic firing. In our model,
W(s) has two regimes (Fig. 2d). For s < 0, W(s) is positive. Thus,
the efficacy of synapses which are repeatedly active shortly before
a postsynaptic spike occurs, is increased”?. The efficacy of
synapses which are active shortly after the postsynaptic spike is
decreased™?*. As depolarization is known to induce potentiation
of active synapses® and as the neuron is depolarized most of the
time between two spikes, we also strengthen each active synapse
by a small amount y, even if no postsynaptic spike occurs. The
procedure of continuously strengthening and weakening the
synapses automatically leads to a normalization of the total
input strength to the postsynaptic neuron in a competitive self-
organized process.

As a result of learning, a clearly structured distribution of
synapses evolves (Fig. 2b, c). Delays of the remaining synapses
differ roughly by multiples of the period T of the stimulating tone.
Before learning, the cell was not tuned to this period. The final
synaptic pattern of a neuron stimulated by a 2-kHz signal during
learning is different from that of a 5-kHz neuron (Fig. 2b, c).

The evolution of synaptic efficacy during learning does not
depend on the specific shape of the learning window W but only on
some generic properties. In particular, the learning window can
extend over several milliseconds™ and therefore is large compared
with the period T of the sound (Fig. 2d). Efficient learning
depends on the temporal relationship between the process of
strengthening the synaptic efficacies and that of weakening them.
The maximum of the window function W(s) should be at a location
§ ~ —1,/2 where 1, is the rise time of the postsynaptic potential
(Fig. 2d). This can be understood as follows. Let us assume that
learning has led to a sharply peaked distribution with all synapses
having a common delay A (modulo T'). Coherent input arriving at
the synapses can trigger a postsynaptic spike with a mean delay of
roughly 7,/2. Because of learning, all synapses which are active
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slightly before the postsynaptic firing will be strengthened. If
§ = —1,/2, the maximal increase of synaptic efficacy occurs at
those synapses which are already strongest.

So far we have considered monoaural input, but laminar
neurons also exhibit a sensitivity to the interaural time difference
(ITD)"*%, We divide the synapses into two groups, with input
from the left or the right ear. During learning, both ears are
stimulated by the same signal and with a fixed ITD. The learning
rule selects synaptic connections so that spikes arrive coherently
for exactly this ITD. If the same ITD is used after learning, the
neuron is driven optimally and emits phase-lock spikes. If the ITD
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FIG. 3 a, b, Turning to interaural time difference (ITD). The output rate (a)
and the vector strength (b) of a laminar neuron are shown as a function of
ITD. The model neuron has been tuned to a 5 kHz signal (T = 200 ps) as
described in the text and the legend of Fig. 2. Half of the 154 synapses
which survive learning transmit signals from the left ear, the others from the
right ear. The neuron exhibits best phase locking and maximal output rate
f..x fOr the interaural delay used during learning (ITD = 0). The rate has a
minimum £, for ITD = T/2. c, d, Effect of t,,. We define the modulation as
(Fmax — fmin)/fmax @nd plot the modulation as a function of the effective
membrane time constant t,,, in ¢. The vector strength at ITD = O is shown as
a function of 7, in d.
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FIG. 4 Population coding. The temporal precision that can be achieved in a
population of N independent neurons is shown as a function of N under the
assumption of population vector coding®’?, The ITD is estimated based on
spikes occurring in a time window of © = 50 ms (squares), 100 ms (trian-
gles), or 200 ms (stars). The accuracy is defined as the average deviation of
the estimate from the actual ITD of the stimulus. The horizontal line at 5 psis
the boundary given by the behavioural performance of 1-2° of azimuthal
angle®2. For large N, the accuracy scales as 1/ VZN as expected from the
central limit theorem.

METHODS. We took N neurons 1 < k <N with ITD tuning curves similar to
Fig. 3a, approximated by f, (x) = 164 + 36 cos|(x — x,)2n/T] Hzwhere x is
the ITD and T the period of the stimulation, x, is the optimal ITD of neuron k
and f, its mean firing rate in Hz. The values of x, have a uniform distribution
between O and T. Spikes of neuron k are generated by a Poisson process
with mean rate f,. In an additional simulation (data not shown) we have
confirmed that Poisson statistics give a reasonable assumption and these
results do not change, if we generate spikes by a model neuron as in Fig. 1.
The ITD of the stimulus is estimated as®” x* = (T/2r) arg(3>_, n,e?™/7)
where n, is the number of spikes of neuron kl/rpeasured in a time-window of
length 7. We plot the accuracy (|x** — x|2> where the angular brackets
denote an average over 20,000 trials.

does not match, phase locking of the output spikes breaks down
and the mean firing rate decreases (Fig. 3a, b).

Temporal information conveyed by a single laminar neuron is
limited. The temporal precision of phase locking is about 20-25 ps
(Fig. 2) and the ITD tuning curve is only weakly modulated (Fig.
3a). Nevertheless, barn owls achieve a behavioural performance
corresponding to a temporal precision of 5 us. The barn owl has a
reaction time of about 100 ms before it initiates a head move-
ment'?. During 100 ms the firing pattern of a population of laminar
neurons potentially contains enough information to resolve ITDs
with a precision of 5 ps.

We consider a group of laminar neurons with ITD tuning curves
as in Fig. 3a, but shifted along the ITD axis so that the optimal
responses occur at different ITDs. Neurons are stimulated by a
tone with a fixed, but unknown, ITD. We estimate the ITD from
the neuronal firing pattern by a ‘population vector’ decoding
scheme?*: the ITD corresponding to the optimal response of
each neuron is noted, and each value is weighted according to the
number of spikes that occur in a time window of 100 ms. We find
that the activity of about 100 independent neurons provides
enough information to estimate the ITD with a precision of 5 ps
(Fig. 4) apart from ambiguities that are caused by periodicity of
the signal. Weak correlations from common inputs rescale the
absolute values but do not alter the conclusions.

The firing precision of 20-25 us of single neurons has been
achieved despite the fact that input spikes evoke e.p.s.p.s which
are ten times broader. In an additional set of simulations, we have
systematically varied the effective membrane time constant ., and
hence the width of the e.p.s.p. We find that the temporal precision
of neuronal spiking depends only weakly on t,, (Fig. 3d). This is
possible because firing always occurs during the rise time of a
postsynaptic potential. On the other hand, for a 5-kHz signal, ITD
tuning breaks down rapidly, if 7, exceeds 0.1 ms (Fig. 3c). Thus
modulation of ITD tuning does indeed require short e.p.s.p.s. In
fact, very short time constants have been measured'*".

Our results show that the temporal precision of output spikes
need not be limited by the membrane time constant. Spike timing
can achieve a resolution shorter than the rise time of an e.p.s.p.
given coherent spike arrival; and spike arrival times can be tuned
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accurately by a hebbian learning rule. It is tempting to apply the
same ideas to information processing in the hippocampus’, the
cerebellum®, or the cortex’. If we increase time constants by a
factor of about 100 and reinterpret our results, then we are led to
the conclusion that in areas where effective membrane time
constants are in the range order of 10-20 ms (ref. 30), a temporal
code with an accuracy of 1-3 ms would be possible.
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PerHAPS the most widely recognized but least understood electro-
physiological activity of the cerebral cortex is its characteristic
electrical oscillations. Recently, there have been efforts to under-
stand the mechanisms underlying high-frequency gamma oscilla-
tions (~40 Hz) because they may coordinate sensory processing
between populations of cortical cells'?. High-resolution cortical
recordings show that gamma oscillations are constrained to
sensory cortex’, that they occur independently in auditory and
somatosensory cortex’, and that they are phase-locked between
primary and secondary sensory cortex’. As yet, the mechanism of
their neurogenesis is unknown®. Whereas cortical neurons can
produce gamma oscillations without subcortical input®®, they
may also be modulated by the thalamus'® and basal forebrain''.
Here we report that the neural generator of gamma oscillations in
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