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Abstract: Modeling work in neuroscience can be classified using two different criteria. The first 
one is the complexity of the model ranging from simplified conceptual models that are amenable to 
mathematical analysis to detailed models that require simulations in order to understand their 
properties. The second criterion is that of direction of workflow, which can be from microscopic to 
macroscopic scales (bottom-up) or from behavioral target functions to properties of components 
(top- down). We review the interaction of theory and simulation using examples of top-down and 
bottom-up studies and point to some current developments in the fields of computational and 
theoretical neuroscience. 



 

 

 
 
Mathematical and computational approaches in neuroscience have a long tradition that can be followed back 
to early mathematical theories of perception [1, 2] and of current integration by a neuronal cell membrane [3]. 
Hodgkin and Huxley combined their experiments with a mathematical description, which they used for 
simulations on one of the early computers [4]. Hebb’s ideas on assembly formation [5] have, already in 1956, 
inspired simulations on the largest computers available at that time [6]. Since the 1980ies the field of 
theoretical and computational neuroscience has grown enormously [7]. 
 
Modern neuroscience methods requiring extensive training have led to a specialization of researchers so 
that neuroscience today is fragmented into labs working on genes and molecules; on single-cell 
electrophysiology; on multi-neuron recordings; on cognitive neuroscience and psychophysics, to name just a 
few. One of the central tasks of computational neuroscience is to bridge these different levels of description 
by simulation and mathematical theory. The bridge can be built in two different directions. Bottom-up models 
integrate what is known on a lower level (e.g., properties of ion channels) to explain phenomena observed 
on a higher level (e.g., generation of action potentials [4, 8–10]). Top-down models, on the other hand, start 
with known cognitive functions of the brain (e.g., working memory), and deduce from these how components 
(e.g., neurons or groups of neurons) should behave to achieve these functions. Influential examples of the 
top-down approach are theories of associative memories [11, 12], reinforcement learning [13, 14], and 
sparse coding [15, 16]. 
 
Bottom-up and top-down models can either be studied by mathematical theory (theoretical neuroscience) or 
by computer simulations (computational neuroscience). Theory has the advantage of providing a complete 
picture of the model behavior for all possible parameter settings, but analytical solutions are restricted to 
relatively simple models. The aim of theory is therefore to purify biological ideas to the bare minimum, so as 
to arrive at a ’toy model’, which crystallizes a concept in a set of mathematical equations that can be fully 
understood. Simulations, in contrast, can be applied to all models, simplified as well as complex ones, but 
they can only sample the model behavior for a limited set of parameters. If the relevant parameters were 
known, the whole or a major fraction of the brain could be simulated using known biophysical components, a 
prospect that has inspired recent large-scale simulation projects [17–21]. 
 
How can theory and simulation interact to contribute to our understanding of brain function? In this article, we 
illustrate the interaction with four case studies and outline future avenues for synergies between theory and 
simulation. Even though it forms an important subfield of computational neuroscience, the analysis of 
neuronal data [22–24] is not included in this review. 
 

From detailed to abstract models of neural activity: Bottom-up theory 

The brain contains billions of neurons, which communicate by short electrical pulses,  
called action potentials or spikes. Hodgkin and Huxley’s description of neuronal action potentials [4] provides 
today a basis for standard simulator software [25, 26] and, more generally a widely used framework for 
biophysical neuron models. In these models, each patch of cell membrane is described by its composition of 
ion channels, with specific time constants and gating dynamics that control the momentary state (open or 
closed) of a channel (Fig. 1C). 

 
By a series of mathematical steps and approximations, theory has sketched a systematic bottom-up path 
from such biophysical models of single neurons to macroscopic models of neural activity. In a first step, 
biophysical models of spike generation are reduced to integrate-and-fire models [27–32] where spikes occur 
whenever the membrane potential reaches the threshold (Fig. 1B). In the next abstraction step, the 
population activity A(t) – defined as the total number of spikes emitted by a population of interconnected 
neurons in a short time window – is predicted from the properties of individual neurons [33–35] using mean-
field methods known from physics: because each neuron receives input from many others, it is sensitive only 
to their average activity (’mean field’) but not to the activity patterns of individual neurons. Instead of the 
spike-based interaction between thousands of neurons, network activity can therefore be described 
macroscopically as an interaction between different populations [36, 33, 35]. Such macroscopic descriptions 
are called population models, neural mass models or, in the continuum limit, neural field models (Fig. 1A) 
and help researchers to gain an intuitive and more analytical understanding of the principal activity patterns 
in large networks.  
 
While the transition from microscopic to macroscopic scales relies on purely mathematical arguments, 
simulations are important to add biological realism such as heterogeneity of neurons and connectivity, 
adaptation on slower time scales, variability of input and receptive fields, which are difficult to treat 



 

 

mathematically; but the theoretical concepts and the essence of the phenomena are often robust with 
respect to these aspects. 

Decision Making: Theory combines top-down and bottom-up 

Many times a day we are confronted with a decision between two alternatives (A or B), like ‘Should I turn left 
or right?’. Psychometric measures of performance and reaction times for two-alternative forced-choice 
decision-making paradigms can be fitted by a phenomenological drift-diffusion model [37]. This model 
consists of a diffusion equation describing a random variable that accumulates noisy sensory evidence until 
it reaches one of two boundaries, corresponding to a specific choice (Fig. 2A). Despite its success in 
explaining reaction time distributions, the drift-diffusion model suffers from a crucial disadvantage, namely 
the difficulty in assigning a biological meaning to the model parameters. 
 
Recently, neurophysiological experiments have begun to reveal neuronal correlates of decision making, in 
tasks involving visual patterns of moving random dots [41,42], vibrotactile [43] or auditory frequency 
comparison [44]. Computational neuroscience offers a framework to bridge the conceptual gap between the 
cellular and the behavioral level. Explicit simulations of microscopic models based on local networks with 
large numbers of spiking neurons can reproduce and explain both the neurophysiological and behavioral 
data [45, 39]. These models describe the interactions between two groups of neurons coupled through 
mutually inhibitory connections (Fig. 2C). Suitable parameters are inferred by studying the dynamical 
regimes of the system and choosing parameters consistent with the experimental observations of decision 
behavior. Thus, the pure bottom-up path is complemented by the top-down insights of target functions that 
the network needs to achieve. 

 
Interestingly, theory has provided a way to identify the connection between the simulation-based biophysical 
level and the phenomenological drift-diffusion models that were used to quantify behavioral data in the past. 
This analysis first involves reducing the system of millions of differential equations to only two equations, by 
the mean-field techniques [33] discussed in the previous paragraph (cf. Fig. 1A). In this reduced system, 
different dynamical regimes can be studied by means of a bifurcation diagram (Fig. 2B), leading to a picture 
in which the dynamics of decision making can be visualized as a ball rolling down into one of the minima of a 
multi-well energy landscape. Close to the bifurcation point (DD), finally, the dynamics can be further reduced 
to a non-linear one-dimensional drift-diffusion model [46] (Fig. 2A). 

Hebbian assemblies and associative memories: Top-down concepts 

The name of Hebb is attached to two different ideas that are intimately linked [5]: the Hebbian cell assembly 
and the Hebbian learning rule. The former states that mental concepts are represented by the joint activation 
of groups of cells (assemblies). The latter postulates that these assemblies are formed by strengthening the 
connections between neurons that are ’repeatedly and persistently active together’. These strong 
connections enable the network to perform an associative retrieval of memories (Fig. 3A): if a neuron that is 
part of the assembly does not receive an external stimulus sufficient to trigger its firing, it can nevertheless 
be activated by lateral excitatory input from active partners in the assembly, such that eventually the stored 
activity pattern is completed and the full assembly – and thus the memory – is retrieved. While Hebb wrote 
down his ideas in words, it soon inspired mathematical models of learning rules and large-scale simulation 
studies [6]. Whereas the simulations pointed to limitations of Hebb’s original ideas in practical applications, 
mathematical studies [11, 48, 49] cleared first paths through the jungle of possible model configurations 
toward a working model of memory retrieval. In analogy to models of magnetic systems and spin glasses in 
statistical physics, the picture of memory retrieval as movement toward a minimum in an energy landscape 
emerged (Fig. 3B), first in networks of binary units [50, 12], later also for rate models [51, 52]. In these 
frameworks, important questions could be answered, such as that of memory capacity. Because each 
neuron can participate in many different assemblies, memory capacity is difficult to estimate by pure verbal 
reasoning. Theory shows that the number of different random patterns that can be stored scales linearly with 
the number of neurons [53]: a network with 10,000 neurons can store about 1000 patterns, but if we double 
the number of neurons, we can store twice as many. 
 
It took many steps from these abstract concepts to arrive at biologically plausible models of memory. 
Whereas the energy landscape analogy is restricted to a limited class of abstract models, the concept of 
memory retrieval as movement towards an attractor state (Fig. 3C) turned out to be robust with respect to 
model details. The top-down path (Fig. 3C-E) of model development includes the transition from high-activity 
states to low-activity states [54]; from networks with complete and reciprocal connectivity to ones with sparse 
and asymmetric connections [55]; tuning of inhibition in sparsely active networks [56]; transition from rate 
neurons to spiking neurons [57, 34, 58]; addition of a spontaneous state at low firing rates [59, 60]; 
homeostatic control of threshold or plasticity [61, 47]; and further steps still to be taken, so as to solve the 
issue of online-learning in associative memory networks [62]. The above historical sketch shows the flow of 



 

 

ideas from top to bottom, by adding biological realism and details to well-understood abstract concepts. As 
research moves along this path, numerical simulations gain in importance, but theory remains the guiding 
principle. Given the technical challenges of detecting distributed but jointly active neuronal assemblies in the 
brain, it is not surprising that experimental evidence for associative memories as attractor states remains 
scarce and indirect: neither invariant sensory representations as observed in individual high-level neurons 
[63] nor persistent activity during working memory tasks [64, 65] are sufficient to prove attractor dynamics, 
and the interpretation of multi-unit recordings during remapping in hippocampus as signature of attractors 
[66] has been questioned [67], so that novel experimental approaches that enable large-scale recordings of 
complete neural ensembles [68–70] will be necessary. 

Reward-based learning: From behavior to synapse 

Hebbian assemblies play a role in models of decision making (e.g., two populations representing choices A 
or B), but the assemblies are fixed and do not change. As such, these models describe static stimulus-
response mappings that do not take into account that we can alter our decision strategies that we can learn 
from experience. Theories of behavioral learning are an example for a top-down approach that has led from 
psychology to models of synaptic plasticity, which go beyond a simple Hebbian learning rule. 
 
Models of behavioral learning date back to early experimental psychology. Thorndike’s ”law of effect” [71] 
already stated that animals use behavioral alternatives more often when they were rewarded in the past. The 
mathematical theory of Rescorla and Wagner [13] extended this idea and suggested that it is not reward per 
se that drives learning, but the discrepancy between actual and expected outcome, an insight that is also 
essential in models of temporal difference learning [72]. In the 1980s, this line of research on trial-and-error 
learning in animal psychology and artificial intelligence joined the parallel, mainly engineering-driven line of 
control theory [73] to form the large research field of reinforcement learning [74]. 
 
Although reinforcement learning often makes use of neural architectures [75, 76], its main focus is 
algorithmic. The renewed interest of computational and theoretical neuroscience in reward-based learning 
was triggered in the 1990’s by two physiological findings. First, Schultz and colleagues discovered that 
dopamine neurons in the midbrain respond to unexpected rewards [77] with activity patterns that resemble 
the reward prediction error of temporal difference learning [14]. Moreover, it was shown that synaptic 
plasticity, long hypothesized to form the neural basis of learning [78], is under dopaminergic control [79–81] 
and thus modulated by reward prediction errors. These findings have led to the idea that the traditional 
Hebbian view of synaptic plasticity driven by pre- and postsynaptic activity has to be augmented by reward 
prediction error as a third factor [80]. The current tasks of computational neuroscience are to compare the 
learning rules suggested by the top-down approach with experimental data, and generalize existing concepts 
in order to evaluate if and under which conditions 3-factor learning rules [82–84] of reward-modulated 
Hebbian synaptic plasticity can be useful at the macroscopic level of networks [85, 86] and behavior [87, 88]. 
 
Reinforcement learning is a textbook example for a synergistic interaction of theory and simulation. Most 
algorithms are based on mathematical theory, but without an actual implementation and simulation, it is 
difficult to predict how they perform under realistic conditions. The undesired increase in learning time with 
problem complexity observed in simulations of most algorithms poses challenges for the future. The solution 
could lie in efficient representations of actions [89] as well as environmental and bodily states [90], possibly 
adapted through Hebbian learning; place cells could serve here as an example [91, 92]. Large-scale 
simulations will be key to evaluating whether neuronal representations across different brain areas are apt to 
turn complex reward-based learning tasks into simple ones - or whether we need a paradigm shift in reward-
based learning. 

Large-Scale Simulation needs Theory 

With the growth of computer power, the notion of large-scale simulation continues to change. While in the 
1950s, networks of 512 binary neurons were explored on the supercomputers of that time [6], network size 
and biological realism increased in the 1980s to 9900 detailed model neurons [93]. Current simulations of 

networks go up to 10
9
[94] or 10

11
 [95] integrate-and-fire neurons or 10

6
 multi-compartment integrate-and-fire 

models with synaptic plasticity [96]. 
 
The structure of neural networks, which is intrinsically distributed and parallel, lends itself to implementations 
on highly parallel computing devices (e.g., [97, 98]), and has triggered specialized ’neuromorphic’ design of 
silicon circuits [99, 100]. Future implementations of large networks of integrate-and-fire neurons with synaptic 
plasticity on specialized parallel hardware [101–104] should run much faster than biological real time, 
opening the path toward rapid exploration of learning paradigms. Current large-scale implementations on 
general-purpose or specialized computing devices are feasibility studies suggesting that the simulation of 



 

 

neural networks of the size of real brains is possible. But before such simulations become a tool of brain 
science, major challenges need to be addressed - and this is where theory comes back into play. 
 
First, theory supports simulations across multiple spatial scales. Even on the biggest computers it is 
impossible to simulate the whole brain at a molecular resolution, but, for, e.g., a study of the interaction of a 
drug with a synapse, the synapse could be simulated at the molecular level; the neuron on which the 
synapse sits at the level of biophysical model neurons; the brain area in which the circuit is embedded at the 
level of integrate-and-fire models; and the remaining brain areas are summarized in population equations 
that describe their mean activity. Theory provides the methods to systematically bridge the scales while 
ensuring the self-consistency of the model. 
 
Second, theories guide simulations of learning. Because learning (at the behavioral level) and long-term 
plasticity of synapses (at the cellular level) evolve on the time scale of hours, experimental progress is slow 
and data to constrain synaptic plasticity rules are scarce. Even before a candidate plasticity rule is 
implemented in a simulation, theories allow to predict, in some cases, that a given rule cannot work for the 
task at hand, while another one should work, but might be slow, and yet another one should work perfectly, if 
combined with some finely tuned homeostatic process, etc. 
 
Third, regularization theories provide a framework for optimization of parameters. Already at the level of a 
single neuron the number of parameters is huge considering the fact that there are about 200 different types 
of ion channels [105] and that the density of ion channels varies along the dendrite. Moreover, in a network 
of billions of neurons, each with thousands of connections, the number of parameters to specify the 
connectivity is daunting. How then, can experimental findings ever sufficiently constrain such detailed 
models? 
 
A solution to this problem could be provided by regularization theory, which penalizes parameter settings 
that deviate from what is considered plausible. The challenge in the application of regularization to 
biologically detailed neural networks consists in designing appropriate regularization terms that summarize 
plausible prior assumptions in a transparent fashion. For example, ion channel distributions along a dendrite 
can be regularized by imposing plausible density profiles [10, 106], and penalizing the use of more than a 
few channels for any neuron [107]. Connectivity can be regularized by penalizing deviations from simple 
‘connectivity rules’ [108, 109]. 
 
Fourth, theory drives understanding. It is extremely difficult to control a complex simulation if we do not have 
an intuition of the basic mechanisms at work. Mathematical abstraction forces us to express intuitions 
rigorously, to turn ideas into toy models. These not only make qualitative predictions of how a complex 
simulation should behave under changes of parameters, but also provide the understanding necessary to 
communicate ideas to others. 

Theory Needs Simulations 

While theoretical concepts exist for some aspects of brain function, theoretical neuroscience is not finished 
and big challenges lie ahead of it regarding, e.g., neurally plausible models of verbal and mathematical 
reasoning or representations of language and music. Will existing and future concepts developed in 
mathematical toy models be transferable to systems of the size of a brain with realistic input and output? The 
authors believe so, but currently extensions to large systems cannot be tested. In our opinion, mathematical 
toy models will continue to play a major role in guiding the way we think about neuroscience. However, in 
order to avoid that the biggest problems addressed in computational neuroscience are limited to the size of 
one PhD project, initiatives for shared modular and reusable code and standardized simulator interfaces 
[110–113] are important. More generally, the community of theoretical and computational neuroscience 
would profit from a simulation environment where the ideas developed in the toy models could be tested on a 
larger scale, in a biologically plausible setting, and where the ideas arising in different communities and labs 
are finally connected to the bigger whole. 
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Fig. 1: Bottom-up abstraction scheme for neuronal modeling. A. Neural mass model at the 
macroscopic scale. B. Integrate-and-fire point neuron model C. Biophysical neuron model. The ion 
currents flowing through channels in the cell membrane (left) are characterized by an equivalent 
electrical circuit comprising a capacity C and a set of time-dependent conductances g, one for 
each channel type (right). These currents can generate action potentials (green). At the next level 

of abstraction (B), action potentials are treated as formal events (’spikes’) generated whenever 

the membrane potential u (solid red line) crosses a threshold ϑ (dashed blue line). After each spike 

the voltage is reset (dashed red line). Arrivals of spikes from other neurons (red arrows) generate 
postsynaptic potentials. At the highest level of abstraction (A), groups of neurons interact by their 
population activity An(t) derived mathematically from neuronal parameters. In a continuum 
description (neural field model), different neuronal populations are characterized by their input 
characteristics such as the preferred orientation θ of a visual stimulus. 
 

 
 
 
 
 



 

 

 
 
Fig. 2: Binary decision making. A. Behavioral level: Drift-Diffusion Model for reaction time 
experiments [37]. A decision is taken (arrow) when the decision variable hits a threshold (first trial, 
green, choice A; second trial, red, choice B). B. Mesoscopic level: Mathematical model of 
interacting populations. A decision can be visualized (left) as a ball moving down the energy 
landscape into one of the minima corresponding to A or B. While the black lines in the energy 
landscape correspond to an unbalanced (50-50) free choice (i.e., no evidence in favor of any 
decision), the dotted red lines represent the cases with evidence for decision A. The three different 
landscapes correspond to different parameter regimes, indicated in the bifurcation diagram (right). 
In the multi-stable region (M), the spontaneous state is stable, but noise can cause a transition to a 
decision. In the bistable region (BI) a binary choice is enforced. At the bifurcation point (DD), the 
landscape around the spontaneous state is flat and the decision dynamics can be further reduced 
to the drift-diffusion process in A. The vertical dashed line in the energy landscape indicates the 
’point of no return’ and correspond to the decision thresholds in A. C. Multi-neuron spiking model 
[38, 39]. Two pools of neurons (left) receive input representing evidence for choice option A or B, 
respectively, while shared inhibition leads to a competition between the pools. In the absence of 
stimuli the system is spontaneously active, but if a stimulus is presented, the spontaneous state 
destabilizes and the dynamics evolve towards one of the two decision states (attractor states, 
bottom right). During a decision for option A, the firing rate of neurons in pool A increases (top 
right, green line). The mathematical model in B can be derived from the spiking model in C by 
mean-field methods [40]. The parameter of the bifurcation diagram in part B is the strength of 
excitatory self-interaction of neurons in C. 
 

 



 

 

 
 

 
Fig. 3: Top-down evolution of ideas and models from Hebbian assemblies to associative 
memories. A. Left: According to Hebb, neurons that are active together (red triangles) during a 
concept such as ’apple’ form a cell assembly with stronger excitatory connections with each other 
(thick lines), compared to connections to and from inactive neurons (yellow). Right: Partial 
information is sufficient to excite the inactive neuron of the assembly and retrieve the full concept 
(green arrow indicates flow of network dynamics). B. The dynamics can be visualized in an energy 
landscape (energy as a function of network state) as a downward flow into the well corresponding 
to ’apple’. Other concepts (car, grandmother) correspond to other minima of the energy. C. 
Similarity of the present network state with one of the assemblies. After a short presentation of 
partial information resembling the concept ’apple’, the network moves toward an attractor state 
with high similarity (blue) to the corresponding assembly. After a reset, the network is ready to 
respond to a second stimulus (’car’, red). Similarity with other learned patterns (green) does not 
change significantly during retrieval of one of the memories. The dashed horizontal line indicates 
maximal similarity, and therefore identity, with a stored assembly. D. In a brain-like neural network 
only few units have elevated firing rates (red). E. Memory retrieval from partial information also 
works in networks of excitatory (red) and inhibitory (black) spiking neurons. In the spontaneous 
state (left) each neuron emits only a few spikes (vertical bars along a horizontal line) while during 
memory retrieval a few excitatory neurons fire many spikes (right). Adapted from [47]. 


