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Abstract

Populations of neurons in motor cortex engage in complex transient dynamics of large amplitude
during the execution of limb movements. Traditional network models with stochastically assigned
synapses cannot reproduce this behavior. Here we introduce a class of cortical architectures with
strong and random excitatory recurrence that is stabilized by intricate, fine-tuned inhibition, opti-
mized from a control theory perspective. Such networks transiently amplify specific activity states
and can be used to reliably execute multidimensional movement patterns. Similar to the experi-
mental observations, these transients must be preceded by a steady state initialization phase from
which the network relaxes back into the background state by way of complex internal dynamics. In
our networks, excitation and inhibition are as tightly balanced as recently reported in experiments
across several brain areas, suggesting inhibitory control of complex excitatory recurrence as a generic
organizational principle in cortex.

Highlights

• Stability-optimized circuits with strong excitatory pathways produce complex neural dynamics.
• They account for single-cell and population recordings in monkey M1 during reaching.
• Their dynamics form a unique basis that can be assembled into complex motor sequences.
• They predict a novel type of excitation/inhibition balance in single neurons.
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Introduction

The neural basis for movement generation has been the focus of several recent experimental studies
(Churchland et al., 2010, 2012). In a typical experiment (Figure 1A), a monkey is trained to prepare
a particular arm movement and execute it after the presentation of a go-cue. Concurrent electrophysi-
ological recordings in cortical motor and pre-motor areas show an activity transition from spontaneous
firing into a movement-specific preparatory state with firing rates that remain stable until the go-cue is
presented (cf. Figure 1B). Following the go-cue, network dynamics begin to display quickly changing,
multiphasic firing rate responses that form spatially and temporally complex patterns and eventually
relax towards spontaneous activation levels after movement execution (Churchland and Shenoy, 2007).

Recent studies (Afshar et al. (2011); Shenoy et al. (2011)) have suggested a mechanism similar to a
spring loaded box, in which motor populations could act as a generic dynamical system that is driven
into specific patterns of collective activity by preparatory, external stimuli (Figure 1). When released,
intrinsic population dynamics would commandeer the network activity and orchestrate a sequence of
motor commands leading to the correct movement. The requirements for a dynamical system of this
sort are manifold. It must be highly malleable during the preparatory period, excitable and fast when
movement is triggered, and stable enough to return to rest after an activity transient. Moreover, the
dynamics must be sufficiently rich to support complex movement patterns (Maass et al., 2002; Sussillo
and Abbott, 2009; Laje and Buonomano, 2012).

How the cortical networks at the heart of this black box (Figure 1C) could generate such complex
transient amplification through recurrent interactions is still poorly understood. Randomly connected,
globally balanced networks of leaky integrate-and-fire neurons exhibit stable background states (van
Vreeswijk and Sompolinsky, 1996; Tsodyks et al., 1997; Brunel, 2000; Vogels et al., 2005; Renart et al.,
2010) but cannot autonomously produce the substantial yet reliable, spatially patterned departure from
background activity observed in the experiments. Networks with strong recurrent pathways can exhibit
ongoing, complex rate fluctuations beyond the population mean (Sompolinsky et al., 1988; Rajan et al.,
2010; Sussillo and Abbott, 2009; Litwin-Kumar and Doiron, 2012), but do not capture the transient
nature of movement-related activity. Moreover, such rate dynamics are chaotic, and sensitivity to noise
seems improper in a situation where the initial conditions are thought to dictate the subsequent evolution
of the system. Recent studies have shown that chaos can be controlled either through continuous external
feedback loops, or modifications of the recurrent connectivity itself (Sussillo and Abbott, 2009; Hoerzer
et al., 2012; Laje and Buonomano, 2012). However all of these models violate Dale’s principle, according
to which neurons can be either excitatory or inhibitory, but not of a mixed type. This in turn makes it
difficult to motivate the firing rate (as opposed to spike-based) formulations of cortical dynamics used
in these models. In other words, there is currently no biologically plausible network model to implement
the spring loaded box of Figure 1c, i.e. a system that well-chosen inputs can prompt to autonomously
generate multiphasic transients of large amplitude.

Here we introduce a new class of neuronal networks composed of excitatory and inhibitory neurons which,
similarly to chaotic networks, rely on strong and intricate excitatory synaptic pathways. Because tra-
ditional homogeneous inhibition is not enough to quench and balance chaotic firing rate fluctuations in
these networks, we build a sophisticated inhibitory counter-structure that successfully dampens chaotic
behavior but allows strong and fast break-out transients of activity. This inhibitory architecture is con-
structed with the help of an optimization algorithm that aims to stabilize the activity of each unit by
adjusting the strength of existing inhibitory synapses, or by adding or pruning inhibitory connections.
The result is a strongly connected, but non-chaotic, balanced network, which otherwise looks random.
We refer to such networks as “Stability-Optimized Circuits”, or SOCs. We study both a rate-based
formulation of SOC dynamics (which lends itself to theoretical analysis) and a more realistic spiking
implementation (which allows us to make more focused physiological predictions). We show that ex-
ternal stimuli can force these networks into unique and stable activity states. Interestingly, when input
is withdrawn and the activity is left to evolve freely, the subsequent transient dynamics are in good
qualitative agreement with the motor cortex data on single-cell and network-wide levels.
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Figure 1: Dynamical systems view
of movement planning and execu-
tion. (a) A typical delayed movement
generation task starts with the instruc-
tion of what movement must be pre-
pared. The arm must then be held still
until the go cue is given, upon which
the movement is performed. (b) During
the preparatory period, model neurons
receive a ramp input (green). Follow-
ing the go-cue, that input is withdrawn,
leaving the network activity free to
evolve from the initial condition set up
during the preparatory period. Model
neurons then exhibit transient oscilla-
tions (black) which drive muscle activ-
ity (red). (c) Black-box view on move-
ment generation. Muscles (red, right)
are thought to be activated by a popula-
tion of motor cortical neurons (“neural
dynamical system”, middle). To pre-
pare the movement, this network is ini-
tialized in a desired state by the slow
activation of a movement-specific pool
of neurons (green, left).

We show that SOCs connect hitherto unrelated aspects of balanced cortical dynamics. The mechanism
that underlies the generation of large transients here is a more general form of “balanced amplification”
(Murphy and Miller, 2009), which was previously discovered in the context of visual cortical dynamics.
Additionally, during spontaneous activity in SOCs, a “detailed balance” (Vogels and Abbott, 2009)
of excitatory and inhibitory inputs emerges, but much finer than expected from shared population
fluctuations (Okun and Lampl, 2008; Cafaro and Rieke, 2010; Renart et al., 2010), beyond also what
is possible with recently published inhibitory learning rules (Vogels et al., 2011; Luz and Shamir, 2012)
that only alter the weights of inhibitory synapses, but not the structure of the network itself. Prepping
such exquisitely balanced systems with an external stimulus will then lead to momentary but dramatic
departure from balance, demonstrating how realistically shaped cortical architectures can produce a large
library of unique, transient activity patterns that can be decoded into motor commands.

Results

We are interested in studying how neural systems (Figure 1c), can produce the large, autonomous,
and stable “spring box dynamics” as described above. We will first investigate how to construct the
cortical architectures that display such behavior and show how their activity can be manipulated to
produce motor-like activity. We then discuss the implications of this new type of dynamics in terms
of how excitation and inhibition interact. While most of our results are obtained within a rate-based
formulation of neuronal dynamics, we later confirm them in a more realistic, spiking neural network.

Stability-optimized circuits (SOCs)

We use N = 200 interconnected rate units (Dayan and Abbott, 2001; Gerstner and Kistler, 2002; Miller
and Fumarola, 2011), of which 100 are excitatory and 100 are inhibitory (later, we will show that our
main results also hold in large scale, balanced spiking networks). These “rate units” are best thought of
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as subgroups of statistically comparable neurons within some area of cortex. We describe the temporal
evolution of their “potentials”, gathered in a vector x(t), according to

τ
dx
dt = −x(t) + I(t) + W ∆r(x, t) (1)

where τ = 200 ms, the combined time constant of membrane and synaptic dynamics, is set to match
the dominant timescale in the data of Churchland et al. (2012). I(t) = ξ(t) + S(t) denotes all external
inputs, i.e. an independent noise term ξ(t) and a specific, patterned, external stimulation S(t). The
vector ∆r(x, t) contains the instantaneous single-unit firing rates, measured relative to a low level of
spontaneous activity r0 = 5 Hz. These rates are given by a nonlinear function ∆ri = g(xi) of the
potentials (Figure 3e and Experimental Procedures), although we will also consider the linear case
∆ri ∝ xi in our analysis. Thus, the final term in Equation 1 accounts for the recurrent dynamics of the
system due to its connectivity W.

To study the effect of internal network dynamics we consider two different network structures W. First,
we build a reference network in which excitatory and inhibitory connections are drawn randomly with
probability p = 0.1. The connection sign depends on the nature of the presynaptic neuron (excitatory
or inhibitory), and all connections of the same type have equal strengths. Strong excitatory connections
result in an unstable activity regime in which small perturbations in firing rates propagate chaotically
across the network (Sompolinsky et al., 1988; Rajan et al., 2010). The connectivity matrix W is char-
acterized by a circular distribution of eigenvalues (Rajan and Abbott, 2006). The unstable, chaotic
dynamics manifests itself in the presence of several eigenvalues with real parts much larger than unity
(Figure 2b) and can be observed in the large switch-like fluctuations (Figure 2e) in the neurons’ firing
rates in the absence of stimulation (S(t) = 0).

In a second, stability-optimized circuit (SOC, Figure 2a) the excitatory connections are identical to
those in the reference network (Figure 2c), but the inhibitory connections are no longer drawn ran-
domly. Instead, they have been precisely matched against the excitatory connectivity. This “matching”
is achieved by an algorithmic optimization procedure that modifies the inhibitory weights and wiring
patterns of the reference network, aiming to pull the unstable eigenvalues of W towards stability (Ex-
perimental Procedures, and Supplementary Movie 1). We end up with an eigenvalue spectrum that is
compressed horizontally, with all eigenvalues in the stable regime (Figure 2b, black dots). The total
number of inhibitory connections in the inhibition-stabilized network is increased and the distribution
of their strengths is wider, but the mean inhibitory weight is kept the same (Figure 2d). The result-
ing background activity is stable and non-chaotic (Figure 2e), with small noisy fluctuations around the
mean caused by ξ(t). Shuffling the optimal inhibitory connectivity results in chaotic dynamics similar to
the reference network (not shown), indicating that it is not the broad, sparse distribution of inhibitory
weights but the precise inhibitory wiring pattern that stabilizes the dynamics.

SOCs exhibit complex transient amplification

To test whether SOCs can produce the type of complex transient behavior seen in experiments (Church-
land and Shenoy (2007), Churchland et al. (2012), cf. Figure 1), we momentarily clamp each unit to a
specific firing rate, and observe the network as it relaxes to the background state (later we will model
the preparatory period explicitly). Depending on the spatial pattern of initial stimulation, the network
activity exhibits a variety of transient behaviors. Some initial conditions result in fast monotonous decay
towards rest, while others drive large transient deviations from baseline rate in most neurons.

To quantify this amplifying behavior of the network in response to a stimulus, we introduce the notion of
“evoked energy” E(a), that measures both the amplitude and duration of the collective transient evoked
by initial condition a for a given SOC compared to an unconnected network (Experimental Procedures).
Of all initial conditions ∆r with constant power σ2 =

∑
i ∆r2

i /N , we find the one that maximizes this
energy and call it a1. We repeat this procedure among all patterns orthogonal to a1 to obtain the second
best pattern a2, and iterate until we have filled a full basis of N = 200 orthogonal initial conditions
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Figure 2: Random inhibition-
stabilized networks (SOCs).
(a) Schematic of a SOC. A pop-
ulation of rate units is recurrently
connected, with strong and intri-
cate excitatory pathways (red) that
would normally produce unstable
activity. Stabilization is achieved
through fine-tuned inhibitory feed-
back (blue). (b) Eigenvalue spec-
trum of the connectivity matrix of
a SOC (black), and that of the un-
stable random network from which
it is derived (gray). Stability re-
quires all eigenvalues to lie to the
left of the dashed vertical line. Note
the large negative real eigenvalue,
which corresponds to the spatially
uniform activity pattern. (c) Matri-
ces of synaptic connectivity before
(unstable) and after (SOC) stabil-
ity optimization through inhibitory
tuning. By design, the excitatory
weights are the same in both matri-
ces. Matrices were thinned out to
40 × 40 (instead of 200 × 200) for
visualization purposes. The bottom

row shows the strengths of all the inhibitory input synapses to a single sample neuron, in the unstable network
(gray) and in the corresponding SOC (black). (d) Distribution of inhibitory weights in the unstable network
(10% connection density, gray peak at wij ' −3.18) and in the stabilized version (40% connection density, black).
The mean inhibitory weight is the same before and after optimization (' −0.318, gray and black arrowheads).
(e,f) Spontaneous activity in the unstable network (e) and in the SOC (f), for four example units. Note the
difference in firing rate scales.

{a1,a2, . . . ,aN} (an analytical solution exists for the linear case, ∆ri ∝ xi; see Experimental Proce-
dures). A large set of these orthogonal initial conditions are transiently amplified by the connectivity
of the network, with the strongest states evoking energies ∼25 times greater than expected from the
exponential decay of activity in unconnected neurons (Figure 3a). Interestingly, for these strongly am-
plifying states, the population-averaged firing rate remains roughly constant during the transient (red
line in Figure 3b, middle), but the average absolute deviation from baseline firing rate per unit can grow
dramatically (Figure 3b, top), because some units become more active and others become less active
than baseline. Amplifying behavior progressively attenuates but subsists for roughly the first half of the
basis (a1,a2, . . . ,a∼100). Eventually, amplification disappears, and even turns into active dampening of
the initial condition (Figure 3a, green dots). For a200, the least amplifying initial condition, return to
rest occurs three times faster than it would in unconnected neurons (Figure 3b). Here, the least-preferred
state a200 corresponds to the uniform spatial mode of activity (1, 1, . . . , 1), the trivial case in which all
neurons are initialized slightly above (or below) their baseline rate. Notice also that only a fraction of
the 200 possible independent initial states evoke an energy that is substantially larger than E0 – which
is the energy that random initial conditions are expected to evoke (cf. black arrowhead Figure 3a) – and
thus produce responses that are discernible from a noisy background state.

Finally, if we increase the firing rate standard deviation σ in the initial condition, such that a substantial
number of (excitatory and inhibitory) neurons will reach lower saturation and stop firing during the
transient, the duration of the response increases (Figure 3c,d). For σ > 3 Hz the network response
begins to self-sustain in the chaotic regime (data not shown). This behavior is beyond the scope of our
study, and in the following we set σ = 1.5 Hz, which results in transients of ∼ 1 second duration. Note
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Figure 3: Transient amplification in SOCs – (a) The energy E evoked by N = 200 orthogonal initial condi-
tions {a1,a2, . . . ,aN} as the network evolves linearly (∆ri = xi) with no further input according to Equation 1.
The energy (Equation 3) is normalized such that it equals 1 for an unconnected network (W = 0) irrespective of
the initial condition (dashed horizontal line). Each successive initial condition ai is defined as the one that evokes
maximum energy, within the subspace orthogonal to all previous input patterns aj<i (Experimental Procedures).
The black arrowhead indicates the mean, or the expected evoked energy E0 when the neurons are initialized
in random activity states. (b) Dynamics of the SOC in the linear regime (∆ri = xi). Top: time-evolution of
‖∆r(t)‖ /

√
N – which measures the momentary spread of firing rates in the network above or below baseline – as

the dynamics unfold from any of the 10 best or 10 worst initial states (same color code as in panel (a)). Initial
states have a standard deviation of σ = 1.5 Hz across the population. The dashed gray line shows σ exp(−t/τ),
i.e. the behavior of an unconnected pool of neurons. Bottom: sample firing rate responses of 10 randomly chosen
neurons following initialization in state a1 or a199. The red line indicates the momentary population-averaged
firing rate. (c,d) Same as in (b), now with the nonlinear gain function shown in (e). Unlike in the linear case,
the dynamics now depend on the spread σ of the initial firing rates across the network (1.5 Hz in (c) as in (b),
2 Hz in (d)). The larger this spread, the longer the duration of the population transient. When σ > 3 Hz, the
network initiates self-sustained (chaotic) activity (not shown). (e) Single-unit input-output nonlinearity (solid
line, ∆ri = g(xi) given by Equation 2), and its linearization (dashed line, ∆ri = xi).

also that we did not observe this return to chaotic behavior in the full spiking network (see below), even
though firing rates in the initial conditions deviated more dramatically from baseline.

SOC dynamics are consistent with experimental data

In Churchland et al. (2012), monkeys were trained to perform 27 different cued and delayed arm move-
ments (Figure 1a). The activity of the neurons recorded during this task (Figure 4a) displayed transient
activity following the go cue that was similar to the responses of SOCs to appropriate initialization (cf.
Figure 3c). To model this behavior, we assume that each of the 27 instructed movements is associated
with a pool of prefrontal cortical neurons (Figure 1c), each of which feeds the motor network through a set
of properly tuned input weights (Experimental Procedures). For a given movement, the corresponding
command pool becomes progressively more active during the one-second-long delay period (Fuster and
Alexander, 1971; Amit and Brunel, 1997; Wang, 1999). Remarkably, this simple input drives the SOC
into a stable steady state (Figure 4b). By adjusting the movement-specific input weights (Experimental
Procedures), we can manipulate this steady state, making it possible to force the network into a specific
spatial arrangement of activity. This is not possible in generic chaotic networks in which external inputs
are overwhelmed by a strong and uncontrolled recurrent activity. Here, we chose the input weights such
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Figure 4: SOCs agree with experi-
mental data. (a) Experimental data,
adapted with permission from Churchland
et al. (2012). Each trace denotes the trial-
averaged firing rate of a single cell (two
sample cells are shown here) during a de-
layed reaching task. Each trace corre-
sponds to one of 27 different movements.
Vertical scale bars denote 20 spikes/sec.
The go cue is not explicitly marked here,
but occurs about 200 ms before movement
onset. (b) Time-varying firing rates of
two neurons in the SOC, for 27 “condi-
tions”, each characterized by a different
collective steady state of preparatory ac-
tivity (see text). (c) Experimental data
adapted from Churchland et al. (2012),
showing the first 200 ms of movement-
related population activity projected onto
the top jPC plane. Each trajectory corre-
sponds to one of the 27 conditions men-
tioned in (a). (d) Same analysis as in (c),
for the SOC.

that, by the end of the delay period, the network arrives at a state that is one of 27 different linear
combinations of a1 and a2, i.e. the two orthogonal activity states that evoke the strongest collective
responses. The go cue quickly silences the command pool, leaving the network free to depart from its
preparatory state and to engage in transient amplification as shown above. The recurrent dynamics
produce strong, multiphasic, and movement-specific responses in single units (Figure 4b), qualitatively
similar to the data.

Churchland and colleagues reported another important aspect of the transient collective dynamics fol-
lowing the go cue: the complexity of the single-neuron multiphasic responses was in fact hiding orderly
rotational dynamics on the population level. A plane of projection could be found in which the vector
of population firing activity (corresponding to vector ∆r(t) in our model) would start rotating after the
go cue, and consistently rotate in the same direction for all movements (Figure 4c). Surprisingly, our
model analyzed with the same dynamical variant of principal component analysis (jPCA, Churchland
et al. (2012), Experimental Procedures), displays the same phenomenon (Figure 4d, see also Discussion).

SOCs can generate complex movements

The complicated, multiphasic nature of the firing rate transients in SOCs suggests the possibility of
reading out equally complex patterns of muscle activity. We illustrate this idea in a task in which the
joint activation of two muscles must produce one of two target movements (“snake” or “butterfly” in
Figure 5), within 500 ms following the go cue. Similarly to Figure 4, the preparatory input for the “snake”
movement is chosen such that, by the arrival of the go cue, the network activity matches the network’s
preferred initial condition a1. Planning the “butterfly” movement sets the network in its second most
preferred state a2. Two readout units (“muscles”) compute a weighted sum of all neuronal activities in
the network, that we take to directly reflect the horizontal and vertical coordinates of the movement.
The weights are trained through least-squares regression (Experimental Procedures). One hundred noisy
trials for each movement are enough to successfully train the system to map each command onto the
correct trajectory (compare the five test trials in Figure 5a).

We conclude that the SOC’s single neuron responses form a set of basis functions that is rich enough to
allow read-out of non-trivial movements (Figure 5a). This is not possible in untuned, chaotic balanced
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Figure 5: Generation of complex movements through SOC dynamics. (a) Firing rates versus time for
10 neurons of the SOC, as the system prepares and executes either of the two target movements (snake, left
or butterfly, right). Five test trials are shown for each neuron. The corresponding muscle trajectories following
the go cue are shown for the same five test trials (thin traces) and compared to the target movement (black
trace and dots). (b) Same as in (a), for a weakly connected (untuned) random balanced network (Experimental
Procedures).

networks without exquisite feedback loops or supervised learning of lateral connections (Sussillo and
Abbott, 2009; Hoerzer et al., 2012; Laje and Buonomano, 2012) because of the high sensitivity to noise.
Further, in balanced networks with connections that are weak enough to prevent chaotic dynamics,
activity transients resemble simple exponential decays (Figure 5b), and the resulting basis functions are
so redundant that the network cannot robustly learn the snake and butterfly trajectories (Figure 5b).

Interaction between excitation and inhibition in SOCs

To understand the mechanism by which SOCs amplify their preferred inputs, we dissociated the excita-
tory (cE) and inhibitory (cI) synaptic inputs each unit received from other units in the network in the
absence of specific external stimulation (S(t) = 0). We quantified the E/I balance by rEI(t), the momen-
tary Pearson correlation coefficient between cE and cI across the network population. We observed that
the preferred initial states of the SOC momentarily produce substantially negative E/I input correlations
(Figure 6a), indicating an average mismatch between excitatory and inhibitory inputs. Balance is then
quickly restored by internal network dynamics, with rEI(t) reaching ∼ 0.8 at the peak of the transient
triggered by initial condition a1. The effect subsists, although progressively attenuated, for roughly the
first 100 preferred initial states (a1,a2, . . . ,a100), which are also the initial states that trigger amplified
responses.

Notably, the patterns of neuronal activity after 100 ms of recurrent processing have a larger amplitude
than – but bear little spatial resemblance to – the initial condition. This is reflected by a rapid decay
(within 100 ms) of the correlation coefficient between the momentary network activity and the initial state
(Figure 6b, black). However, considering the excitatory and inhibitory populations separately shows that
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Figure 6: Precise balance of excitation and in-
hibition in SOCs. The network is initialized in
state a1 (left), a10 (middle) or a100 (right), and runs
freely thereafter. The amplitude of the initial condi-
tion is chosen weak enough for the dynamics of am-
plification to remain linear (cf. Figure 3). (a) Tem-
poral evolution of the Pearson correlation coefficient
rEI between the momentary excitatory and inhibitory
recurrent inputs across the population. (b) Corre-
sponding time course of the correlation coefficients
between the network activity and the initial state,
calculated from the activity of the entire population
(black), of the excitatory subpopulation (red), and
of the inhibitory one (blue). (c) Temporal evolution
of the correlation coefficient between the network ac-
tivity when initialized in state ai (i = 1 (left), 10
(middle) or 100 (right)) and when initialized in a dif-
ferent state aj (j 6= i, j < 100). Solid lines denote
the average across j, and the dashed flanking lines in-
dicate one standard deviation. Small values indicate
that the responses to the various initial conditions
ai are roughly decorrelated. (d) Black: spontaneous
fluctuations around baseline rate of a sample unit in
the network. The corresponding rate distribution is
shown on the right (black), and compared to the dis-
tribution obtained if the unit were not connected to
the rest of the network (gray). The green line de-
notes the momentary population average rate, which
fluctuates much less. (e) Histogram of pairwise corre-
lations between neuronal firing rates estimated from
100 seconds of spontaneous activity. The black trian-

gular mark indicates the mean (∼ 0.014). (f) Excitatory (red) and inhibitory (blue) inputs taken in the same
sample unit (top) or in a pair of different units (bottom), and normalized to z-scores. The corresponding Pearson
correlation coefficients are indicated above each combination, and computed from 100 seconds of spontaneous dy-
namics. (g) Black: lagged cross-correlogram of excitatory and inhibitory inputs to single units, each normalized
to z-score (cf. (f), top row). The solid line is an average across all neurons; flanking lines denote ± 1 standard
deviation. Inhibition lags behind excitation by a few milliseconds. Cross-correlating the E input into one unit
with the I input into another unit (cf. (f), bottom row) yields the gray curve, which is an average over 1,000
randomly chosen such pairs in the SOC.

the excitatory subpopulation remains largely in the same spatial activity mode throughout the transient,
i.e. neurons that were initially active (resp. inactive) tend to remain active (resp. inactive) throughout
the relaxation (Figure 6b, red). In contrast, the inhibitory subpopulation becomes negatively correlated
with its initial pattern after only 60 ms (Figure 6b, blue). In other words, it is the swift reversal of the
pattern of inhibitory activity that quenches a growing excitatory transient and pulls the system back to
rest.

The amplifying dynamics of excitation and inhibition seen on the level of transient responses to some
initial conditions also shape the spontaneous background activity in SOCs (Figure 2f and Figure 6d). In
the absence of additional stimuli, neurons are driven by private noise ξ(t) (Experimental Procedures),
such that firing rate fluctuations can be observed even in the unconnected case (W = 0, Figure 6d,
gray histogram). The recurrent SOC connectivity amplifies these unstructured fluctuations by one third
(Figure 6d, black histogram), because the noise stimulates each of the ai modes evenly, and although
some modes are amplified by the recurrent dynamics and others are suppressed (Figure 3a), the net
result is a mild amplification (Figure 3a, black arrowhead). Furthermore, since only a few activity modes
experience very strong amplification (cf Figure 3a), the resulting distribution of pairwise correlations
among neurons is wide with a small positive mean (Figure 6e).
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SOCs exhibit an exquisite temporal match between excitatory and inhibitory inputs to single neurons
during spontaneous activity (Figure 6f). The correlation between these two input streams averages to
∼ 0.66 across units, because any substantial mismatch between recurrent E and I inputs is instantly
converted into a pattern of activity in which those inputs match again (cf. Figure 6a). The amplitude
of such reactions is larger than the typical response to noise, so the network is constantly in a state of
detailed E/I balance (Vogels and Abbott, 2009). Furthermore, we have seen that it is mostly the spatial
pattern of inhibitory activity that reverses during the course of amplification to restore the balance, while
the excitatory activity is much less affected (Figure 6b). Thus, during spontaneous activity, inhibitory
inputs are expected to lag behind excitatory inputs by a few milliseconds, which can indeed be seen
in their average cross-correlogram (Figure 6g) and has also been observed experimentally (Okun and
Lampl, 2008; Cafaro and Rieke, 2010).

The small temporal co-fluctuations in the firing rates of the excitatory and inhibitory populations are
known to translate into correlated excitatory and inhibitory inputs to single neurons, in densely connected
circuits (Renart et al., 2010). Here, interestingly, excitatory and inhibitory inputs are correlated more
strongly than expected from the magnitude of such shared population fluctuations. This can be seen
by correlating the excitatory input stream taken in one unit with the inhibitory input stream taken in
another unit (Figure 6f, bottom row). Such correlations average to ∼ 0.26 only (to be compared with
0.66 above – see Figure 6g).

Spiking implementation of a SOC

So far we have described neuronal activity on the level of firing rates. An important question is whether
the dynamical features of rate-based SOCs are borne out in more realistic models of interconnected
spiking neurons. To address this issue, we built a large-scale model of a SOC composed of 15’000 leaky
integrate-and-fire model neurons, separated into 12’000 excitatory and 3’000 inhibitory neurons. The
network was structured such that each neuron belonged to one of 200 excitatory or 200 inhibitory small
neuron subgroups (of size 60 and 15 respectively), whose average momentary activities can be interpreted
as the “rate variables” discussed until here.

In order to keep the network in the asynchronous and irregular firing regime, the whole network was – in
part – randomly and sparsely connected, in this respect similar to traditional models (van Vreeswijk and
Sompolinsky, 1996; Brunel, 2000; Vogels et al., 2005; Renart et al., 2010). In addition to those random
synapses, others were added on the basis of which subgroups the pre- and post-synaptic neurons belonged
to, and following connectivity patterns between subgroups given by a 400 × 400 SOC matrix obtained
similarly to W in Figure 2 (c.f. Experimental Procedures). Overall, the average connection probability
between spiking neurons was 0.2. Note also that neurons were not given any source of randomness,
twork, thus any apparent stochasticity was internally generated.

The random connections were assumed to trigger fast PSPs (10 ms decay time, e.g. as if they were located
proximal to the soma), while the structured synapses were modeled as slow ones (100 ms decay time,
as if they were more distal down the dendritic tree – see Branco and Häusser (2011) and Experimental
Procedures). This separation of timescales endows the spiking network with all of the above-described
dynamical properties of rate-based SOCs (Figure 7 and Figure 8).

The spiking SOC operated in a balanced regime, with large sub-threshold membrane potential fluctua-
tions and occasional action potential firing (Figure 7a) with realistic rate and interspike interval statistics
(Figure 7c). Spiking events were fully desynchronized on the level of the entire population, whose mo-
mentary activity was approximately constant at ∼ 6 Hz (a more detailed description of spontaneous
activity in SOCs is given below in Figure 8).

Similar to our rate-based SOCs, the spiking network could be initialized in any desired activity state
through the injection of specific ramping input currents into each neuron (Figure 7a). The go cue
triggered sudden input withdrawal, resulting in large and complex transients in the trial-averaged spiking
activities of single cells (Figure 7a, middle). These transients lasted for about 500 ms. Note that the
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Figure 7: Transient dynamics in a spiking SOC. (a) The network is initialized in a mixture of its top two
preferred initial states during the preparatory period. Top: raster plot of spiking activity over 200 trials for three
cells (red, green, blue). Middle: temporal evolution of the trial-averaged activity of those cells (same color code),
and that of the overall population activity (black). Rate traces were computed over 1’000 trials and smoothed
with a Gaussian kernel (width 20 ms), to reproduce the analysis of Churchland et al. (2012). Bottom: sample
voltage trace of a randomly chosen neuron. (b) Fast (black) and slow (brown) synaptic PSPs, corresponding to
random and structured connections in the spiking circuit, respectively. (c) Distribution of average firing rates
(top) and ISI CVs (bottom) during spontaneous activity. (d) Trial-averaged firing rate traces for a single sample
cell, when the preparatory input drives the SOC into one of 27 random mixtures of its first and second preferred
initial conditions. Averages were computed over 1’000 trials, and smoothed as described in (a). (e) First 200
ms of movement-related population activity, projected onto the top jPC plane. Each trajectory corresponds to a
different initial condition in (d), using the same color code.

desired preparatory state was reached only on average (as it is in the data of Churchland et al.), i.e. there
was substantial trial-to-trial variability in the spiking activity, even on the level of subgroup activities.
It is therefore interesting that, despite such inaccuracies in the network preparation, large multiphasic
transients can still be observed in the average evoked responses.

The trial-averaged firing rate responses to 27 different initial conditions, chosen in the same way as
in Figure 4, as well as the diversity of single cell responses, were qualitatively similar to the data in
Churchland et al. (2012) (Figure 7d and Supplementary Figure 1). When projected onto the top jPC
plane, the population activity showed orderly rotations, as it did in our rate SOC (Figure 7e) and again
similar to the experimental data.

Spontaneous activity in spiking SOCs is markedly different from that in traditional balanced circuit
models. Subgroups of neurons display large, slow and graded activity fluctuations (Figure 8a), and
pairwise correlations between subgroup activities are accurately predicted by a linear stochastic model
similar to Equation 1 (Figure 8b). These correlations are much weaker in magnitude in a control,
traditional random network (Experimental Procedures; see also Supplementary Figure 2) with equivalent
synaptic input statistics (compare the black and brown histograms in Figure 8b).

The distribution of spike correlations in the SOC (Figure 8c) is wide with a very small positive mean
r̄ ≈ 0.0027), indicating that cells fire asynchronously. The same is true in the control random network
(r̄ ≈ 0.0005; see Renart et al. (2010)). However, within SOC subgroups, spiking was substantially
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ing SOCs. (a) Top: raster plot of sponta-
neous spiking activity in the SOC. Only the
neurons in the first 5 subgroups (300 neurons)
are shown. Bottom: momentary activity of
the whole population (black), and of the sec-
ond (green) and third (magenta) subgroups.
Traces were smoothed using a Gaussian ker-
nel of 20 ms width. (b) Pairwise correlations
between instantaneous subgroup firing rates in
the SOC, as empirically measured from a 1’000
second-long simulation (x-axis) versus theoret-
ically predicted from a linear stochastic model
(y-axis). Rate traces were first smoothed us-
ing a Gaussian kernel (20 ms width) as in (a).
Distributions of pairwise correlations are shown
at the top, for the SOC (black) and for a con-
trol random network with equivalent synaptic
input statistics (brown; see Experimental Pro-
cedures). (c) Distributions of pairwise spike
correlations in the SOC (top) and in the con-
trol random network the random network (bot-
tom), between pairs of neurons belonging to the
same subgroup (blue), or to different subgroups
(black). Spike trains were first convolved with
a Gaussian kernel of width 100 ms. Gray curves
were obtained by shuffling the ISIs, thus de-
stroying correlations while preserving the ISI
distribution. (d) Distributions of subthreshold
membrane potential correlations. Colors have
the same meaning as in (c). Voltage traces were
cut off at the spike threshold. Gray curves cor-

respond to temporally shuffled traces. (e) Distributions of pairwise correlations between the slow excitatory and
inhibitory currents, taken in the same cell (red) or in two different cells (black). Data was binned for 10’000
such E/I current pairs for each histogram. (f) Full lagged cross-correlograms between the slow excitatory and
inhibitory currents, taken in the same cell (red) or in two different cells. Thick lines denote averages over 10’000
such E/I current pairs, and thin flanking lines indicate standard deviations. The peak at negative time lag
corresponds to E currents leading I currents.

correlated (Figure 8c, blue; r̄ ≈ 0.17), and particularly so on the 100 ms timescale. Not surprisingly,
membrane potentials followed a similar pattern of correlations (Figure 8d).

Importantly, the detailed balance prediction made above for the rate-based scenario (Figure 6f,g) remains
true on the level of single cells in the spiking network. Slow E and I inputs (corresponding to the
structured SOC recurrent synapes) to single neurons are substantially more correlated (r̄ ≈ 0.24) than
pairs of E and I currents taken from different neurons (r̄ ≈ 0.12; compare red and black in Figure 8e,f).
This is not true in the control random network, in which the balance of excitation is merely a reflection
of the synchronized fluctuations of the excitatory and inhibitory populations as a whole.

Discussion

The motor cortex data of Churchland et al. (2012) showcase two seemingly conflicting characteristics.
On the one hand, motor cortical areas appear to be precisely controllable during movement preparation,
and dynamically stable with firing rates evolving well below saturation during movement execution. In
most network models, such stability arises from weak recurrent interactions. On the other hand the
data shows rich transient amplification of specific initial conditions, a phenomenon that requires strong
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recurrent excitation. To reconcile these opposing aspects, we introduced and studied the concept of
“stability-optimized circuits” (SOCs), broadly defined as precisely balanced networks with strong and
complex recurrent excitatory pathways. In SOCs, strong excitation mediates fast activity break-outs
following appropriate input, while inhibition keeps track of the activity and acts as a retracting spring
force. In the presence of intricate excitatory recurrence, inhibition cannot instantaneously quench such
activity growth, leading to transient oscillations as excitation and inhibition waltz their way back to a
stable background state. This results in spatially and temporally rich firing rate responses, qualitatively
similar to those recorded by Churchland and colleagues (Churchland et al., 2012).

To build SOCs, we used progressive optimal refinement of the inhibitory synaptic connectivity within
a normative, control-theoretic framework. Our method makes use of recent techniques for stability
optimization (Vanbiervliet et al., 2009), and can in principle produce stability-optimized circuits from
any given excitatory connectivity. In simple terms, we iteratively refined both the absence/presence
and the strengths of the inhibitory connections to pull all the unstable eigenvalues of the network’s
connectivity matrix back into the stable regime (Figure 2b). Even though we constrained the procedure
to yield plausible network connectivity, notably one that respects Dale’s law (Dayan and Abbott (2001),
chap. 7), it does not constitute – and is not meant to be – a synaptic plasticity rule. However, the
phenomenology achieved by recent models of inhibitory synaptic plasticity (Vogels et al., 2011; Luz and
Shamir, 2012; Kullmann et al., 2012) is similar to, though more crude than, that of our SOCs. It raises the
possibility that nature solves the problem of network stabilization through a form of inhibitory plasticity,
potentially aided by appropriate pre- and re-wiring during development (Terauchi and Umemori, 2012).
The shortcut of minimizing the “smoothed spectral abscissa” (Experimental Procedures) that we used
here to stabilize the network may thus be difficult to observe experimentally in its current control-
theoretic variant, but may implemented through several sequential network mechanisms. It is also likely
to be of great use in future studies of feedback-mediated control in neuronal networks (see also Sussillo
and Abbott (2009); Hoerzer et al. (2012); Laje and Buonomano (2013)).

In a protocol qualitatively similar to the experimental design of Churchland et al. (2012) (Figure 1),
we could generate complex activity transients by forcing the SOC into one of a few specific preparatory
states through the delivery of appropriate inputs, which were then withdrawn to release the network
into free dynamics (Figure 4). Those “engine dynamics” (Shenoy et al., 2011; Churchland et al., 2012)
could easily be converted into actual muscle trajectories. Simple linear readouts, with weights optimized
through least-squares regression, were sufficient to produce fast and elaborate 2-dimensional movements
(Figure 5). Three aspects of the SOC dynamics make this possible. First, the firing rates strongly
deviate from baseline during the movement period, effectively increasing the signal-to-noise ratio in the
network response. Second, the transients are multiphasic (Figure 4b), as opposed to simple rise-and-
decay, allowing the readouts not to overfit on multi-curved movements. Third, the preferred initial
conditions of the SOC are converted into activity modes that are largely non-overlapping (Figure 6c).
Thus, not only is the system highly excitable from a large set of states, but those states produce responses
that are distinguishable from one another, ensuring that different motor commands can be mapped onto
distinct muscle trajectories (Figure 5).

The network activity during the transients displayed collective rotational behavior that was also present in
the multi-neuron data of Churchland et al. (2012). In strictly technical terms, this is due to a peculiarity of
the eigenvalues of random matrices. In the unstable network we started with, the rightmost eigenvalue is
a pair of complex conjugate eigenvalues and corresponds to activity modes of fastest expansion, or largest
“energy” growth (such a pair with large real and small imaginary parts is bound to exist, although it
may not be the rightmost one). These activity modes are to a large extent determined by the excitatory
connectivity, which is left untouched during the process of inhibitory stabilization. Thus, the large
responses of the SOC to one of its most preferred initial conditions (a1,a2) is likely related to the
dynamics of the original network in its principal eigenplane. In this eigenplane, the population activity
vector rotates slowly, at a speed governed by the imaginary part of the eigenvalue pair, and expands
exponentially at a rate given by the real part. In the SOC, since inhibition tends to quench neuronal
activity, the remaining observable effect is a transiently expanding rotation, as seen in Churchland et al.
(2012).
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To explore the properties of transient dynamics in SOCs, we were able to calculate and rank the max-
imally (or minimally) amplified initial states analytically in the linear regime. In the more realistic,
nonlinear model in which neurons can saturate at zero and maximum firing rates, the numerical ranking
of initial states remained nearly identical to the linear case, showing that it is predominantly the connec-
tivity of the network that determines the response to momentary disturbances. This is not surprising,
as the onset of amplification after a weak perturbation relies on the connectivity matrix of SOCs be-
ing mathematically “nonnormal”, which is a linear property (Ganguli et al. (2008); Murphy and Miller
(2009); Goldman (2009); Hennequin et al. (2012); see also our discussion of balanced amplification in
SOCs below).

Relation to balanced amplification and relevance to sensory circuits Transient amplification
in SOCs is in principle an extended, more intricate form of “balanced amplification”, first described by
Murphy and Miller (2009) in a model of V1 synaptic organization. There, the authors argued that,
in networks with strong excitation balanced by equally strong (or stronger) inhibition, small patterns
of spatial imbalance between excitation and inhibition (“difference modes”) can drive large activity
transients in which neighboring excitatory and inhibitory neurons fire in unison (“sum modes”). Due
to the absence of a topology in SOCs, it is impossible to tell which neuron is a neighbor to which,
making sum and difference modes difficult to define. Nevertheless, sum and difference modes can be
understood more broadly as patterns of average balance and imbalance in the excitatory and inhibitory
synaptic inputs to single cells. With this definition, we showed here (Figure 6a) that the phenomenology
of amplification in SOCs is similar to balanced amplification, i.e. small stimulations of difference modes
drive large activations of sum modes. This accounts for the large transient firing rate deflections of
individual neurons that follow appropriate initialization. A key difference between SOCs and Murphy
and Miller’s model of V1 is the apparent complexity in the lateral excitatory connections, which here
gave rise to dynamics that are richer than monophasic rise-and-decay responses (Figure 3 and Figure 4).
This made it possible to learn complex muscle trajectories in which the same direction of motion must be
encoded at several different times during the movement (Figure 5). Furthermore, although the “spring-
box” analogy may not apply directly to sensory cortices, SOCs (as inhibition-stabilized networks) could
still provide an appropriate conceptual framework for such cortical areas, as suggested by Ozeki et al.
(2009). Likewise, the method we have used here to build such circuits could prove useful in finding
conditions for inhibitory stabilization of known excitatory connectivities that are not easily reducible to
analytically tractable models (see e.g. Ahmadian et al. (2013)).

Relation to detailed excitation/inhibition balance SOCs make a strong prediction regarding how
excitation and inhibition interact in cortical networks: E and I synaptic inputs in single neurons should
be temporally correlated in a way that cannot be explained by the activity co-fluctuations that occur on
the level of the entire population.

During spontaneous activity in SOCs, balanced amplification of external noise (or intrinsically generated
chaos, as in our spiking SOC) results in strongly correlated E/I inputs in single units. This phenomenon
is a recurrent equivalent to what has been referred to as “detailed balance” in feedforward network
models (Vogels and Abbott, 2009; Vogels et al., 2011; Luz and Shamir, 2012), and cannot be attributed
to mere co-fluctuations of the overall activity of E and I neurons. Such co-variations can be substantial
in balanced networks (Vogels and Abbott, 2005; Kriener et al., 2008; Murphy and Miller, 2009), but
have been quenched here by requiring inhibitory synaptic connections to be three times stronger than
excitatory ones on average (Renart et al., 2010; Hennequin et al., 2012). The residual shared population
fluctuations accounted for only one third (rshared ' 0.26) of the total E/I input correlation (r ' 0.66,
Figure 6f,g). The excess correlation can only be explained by the comparatively large fluctuations
of balanced, zero-mean activity modes (the responses to the preferred initial conditions of the SOC;
Figure 6a).

A certain degree of such E/I balance has been observed in several brain areas, and on levels as different
as trial-averaged E and I synaptic input conductances in response to sensory stimuli (Wehr and Zador
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(2003); Mariño et al. (2005); Froemke et al. (2007); Dorrn et al. (2010); but see Haider et al. (2013))
single-trial synaptic responses in which the trial-average has been removed (“residuals”, Cafaro and
Rieke (2010)), and spontaneous activity (Okun and Lampl, 2008; Cafaro and Rieke, 2010). However,
experimental evidence for the relative contribution of shared population fluctuations to the E/I balance
is still inconclusive. Early evidence for precise excitatory-inhibitory input tracking during spontaneous
activity was collected in paired recordings of neighboring cells (Okun and Lampl, 2008) in the mouse
barrel cortex. Thus, by experimental design, only E/I correlations originating from population-level
fluctuations were measured. Conversely, a recent study in the mouse retina measured E and I input
conductances (near)-simultaneously in single cells, but did not perform cross-measurements in pairs of
different cells (Cafaro and Rieke, 2010). Hence, both experiments lacked the respective control measure
to assess the contribution of detailed vs. global balance of excitation and inhibition. If the former
dominates the network dynamics, SOCs are a plausible candidate structure.

Spiking models of SOCs The simplicity and analytical tractability of rate models make them ap-
pealing to theoretical studies such as ours. One may worry, however, that some fundamental aspects
of collective dynamics are being overseen when spiking events are reduced to their probabilities of oc-
curence, i.e. to rate variables. To verify our results, we embedded a SOC in a standard balanced spiking
network, in which millions of randomly assigned synapses connect two populations of excitatory and
inhibitory neurons. The SOC structure was embodied by additional connections between subgroups of
these neurons, each containing on the order of tens of spiking cells. The resulting network displayed si-
multaneous firing rate and spiking variability (Churchland and Abbott, 2012), thus phenomenologically
similar to the network of Litwin-Kumar and Doiron (2012), although the slow rate fluctuations here are
more graded and emerge through a different mechanism. The sea of random synapses in our network
induces strong excitatory and inhibitory inputs to single cells that cancel each other on average, leaving
large subthreshold fluctuations in membrane potential and therefore irregular spiking whose variability
is mostly “private” to each neuron. This feature is common to all traditional balanced network models
(van Vreeswijk and Sompolinsky, 1996; Brunel, 2000; Vogels et al., 2005; Renart et al., 2010). On the
level of subgroups of neurons, this source of variability is not entirely lost to averaging: although all
the cells in a given subgroup n fire at the same rate rn at any given time, receiver neurons in another
subgroup m will only “sense” a noisy sample estimate r̂n of this rate, because n connects onto m through
a finite number of synapses. Now, because the connectivity between subgroups is strong, but stabilized,
this intrinsic source of noise (the “residual” ξn = r̂n− rn) is continuously amplified into large, structured
firing rate fluctuations on the level of subgroups. The underlying mechanism is the same as for the rate
model, i.e. balanced amplification of noise (Murphy and Miller, 2009), with the notable difference that
the noise in the spiking network is intrinsically generated (the external excitatory drive that each neuron
receives was chosen constant here to make this point).

In order to match the timescale of the rate transients in our spiking SOC to those in the data of
Churchland et al. (2012), we assumed that the structured SOC synapses had slower time constants than
the random ones. Importantly, the nature of the phenomenon was not affected by the changes in time
constant. It just became slower. The existence of separate populations of fast/slow synapses in the
cortex could be motivated by recent experiments in which the distance from soma along the dendritic
arbor was shown to predict the magnitude of the NMDA component in the corresponding somatic PSPs
(Branco and Häusser, 2011). Thus, distal synapses tend to evoke slower PSPs than proximal ones. It is
in fact an interesting and testable prediction of our model that distal synapses are actively recruited in
motor cortex during movement preparation and generation.

Our current spiking implementation of a SOC implies that the “rate units” in the rate-based model of
Equation 1 are best thought of as describing the momentary activities of small groups of statistically
comparable spiking neurons. Similarly, our “random connectivity” on the level of rate variables (the ran-
dom E ↔ E connections in Fig 2a) is to be seen as a way of modelling “complex” interactions between
neuronal subgroups, and is conceptually different from the “random connectivity” that characterizes tra-
ditional balanced spiking networks (and part of ours). However, we used subgroups of neurons to encode
rate variables only because we were not able to run our SOC stabilization algorithm (O(N3) complexity)
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on a matrix larger than > 5′000 × 5′000, which would be required for a spiking implementation. This
structural assumption could be relaxed, as long as the network connectivity remains “low-rank”, thus
embedding strong effective interactions between only a handful of activity modes, (e.g. in the order of
100 in a network of size 10′000), which need not formally be “subgroups”. Without fine-tuned dynamic
inhibitory feedback, these interactions would drive the network unstable. Weaker connectivity may exist
among the thousands of remaining dimensions and generate the apparent chaos that characterizes single
spikes on fast timescales. This is a research question of its own (Stern et al., 2013; DePasquale et al.,
2013), and is beyond the scope of our work.

Summary In summary, we have shown that specific, recurrent inhibition is a powerful means of stabi-
lizing otherwise unstable, complex circuits. The resulting networks are collectively excitable, and display
rich transient responses to appropriate stimuli that resemble the activity recorded in the (pre-)motor
cortex (Churchland et al., 2012) on both single-neuron and populations levels. We found that SOCs
can be used as “spring loaded motor engines” to generate complicated and reliable movements. The
intriguing parallels to the detailed balance of excitatory and inhibitory inputs in cortical neurons, as well
as to recent theories that apply specifically to the visual cortex (Ozeki et al., 2009; Murphy and Miller,
2009), suggest cortical-wide relevance for this new class of cortical architectures.

Experimental Procedures

Network setup and dynamics

Single-neuron dynamics followed Equation 1, which we integrated using a standard fourth-order Runge-
Kutta method. Following Rajan et al. (2010), we used the gain function

g(x) =
{
r0 tanh [x/r0] if x < 0
(rmax − r0) tanh [x/(rmax − r0)] if x ≥ 0 (2)

with baseline firing rate r0 = 5 Hz and maximum rate rmax = 100 Hz (Figure 3e). Unless indicated
otherwise, the input I(t) = ξ(t) + S(t) included a noise term ξ(t), which we modelled as an independent
Ornstein-Uhlenbeck process for each neuron, with time constant τξ = 50 ms. We set the variance of
these processes to σ2

0(τ + τξ)/τξ, such that, in the limit of very weak synaptic connectivity, the firing
rate of each cell in the network fluctuated around baseline with a standard deviation σ0 = 0.2 Hz.

In order to set the initial network state x into a specific pattern ak, we used two different schemes.
For the mathematical analysis, we set S(t) to akδ(t) directly (Figures 3 and 6). For the comparison to
experimental data, we modelled the preparatory period explicitly by delivering a slowly ramping input
to each cell during ongoing activity (Figures 4 and 5). This input was delivered as vector S(t) = r(t)Pk,
in which r(t) denotes the ramp activation of the input pool k and Pk are the projection weights from
pool k onto the motor network (Figure 1b,c). The ramp r(t) had a slow exponential rise with time
constant 400 ms beginning with the target cue at t = −1sec, followed by a fast exponential decay with
time constant 2 ms after the go cue. The projection weights were set to Pk = ak −Wg(ak) in order to
guarantee x(t = 0) ' ak.

In Figure 4b, the 27 arm reaching movements in Churchland et al. (2012) were modeled as 27 different
initial conditions b1,b2, . . . ,b27 for the SOC. We chose each bk as a random linear combination of
the SOC’s first and second preferred initial conditions a1 and a2 (see next section). More precisely,
bk =

∑
`=1,2 sk`zk`a` where sk` is a random sign, and the zk` were drawn uniformly between 0.5 and 1.
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Preferred initial states

To find the preferred initial conditions of the SOC, we restricted ourselves to the linear regime in which
∆ri ' xi. To quantify the response evoked by some unit-norm initial condition ∆r(t = 0) ≡ a we defined
the “energy” E(a) of the response as

E(a) = 2
τ

∫ ∞
0
‖∆r(t)‖2 dt. (3)

We assumed that the network dynamics run freely without noise (ξ(t) = 0) from t = 0. Here 2/τ is a
normalizing factor such that E = 1 for an unconnected network (W = 0), irrespective of the (unit-norm)
initial condition a (in which case ‖∆r(t)‖2 = exp(−2t/τ)). Since the SOC is linearly stable, E is finite,
in the sense that any initial condition is bound to decay (exponentially) after sufficiently long periods of
time.

The “best” input direction is then defined as the initial condition a1 that maximizes E(a). In the linear
regime, this maximization can be performed analytically. Equation 3 can be rewritten as

E(a) = aT
[

2
τ

∫ ∞
0

dt e(WT−1)t/τ e(W−1)t/τ
]

a def= aT Q a (4)

where (·)T denotes the matrix transpose. The last equality defines Q as the matrix integral inside
square brackets. Q is a symmetric, positive-definite matrix, so its principal eigenvector is precisely
the initial condition a1 that maximizes the evoked energy, which is then given by the corresponding
principal eigenvalue of Q. In fact, the full eigenbasis of Q, ranked in decreasing order of the associated
eigenvalues, defines a collection (a1,a2, . . . ,aN ) of N orthogonal input states that each maximize the
evoked energy within the subspace orthogonal to all previous best input directions. Again, the eigenvalues
are the corresponding evoked energies. We use this energy formalism again below to explain the optimal
inhibitory stabilization algorithm. Note that in the linear regime, ak and −ak evoke the exact same
energy. In the non-linear network, this need not be the case, and we resolved this sign ambiguity by
picking the condition that evoked most energy. Note also that Q is the solution to the Lyapunov equation

(W− 1)T Q + Q (W− 1) = −2 · 1 (5)

which is easily solved numerically (Bartels and Stewart, 1972), e.g. using the Matlab function lyap.

Construction of the SOC architecture

Random connectivity matrices of size N = 2M , with M positive (excitatory) columns and M negative
(inhibitory) columns, were generated as in Hennequin et al. (2012) with connectivity density p = 0.1.
Non-zero excitatory (resp. inhibitory) weights were set to w0/

√
N (resp. −γw0/

√
N), where w0 =

R/
√
p(1− p)(1 + γ2)/2 and R is the desired spectral radius (before stability optimization, Rajan and

Abbott (2006)).

To generate a SOC, we generated such a random connectivity matrix with R = 10, producing unstable,
chaotic network behavior. After the creation of the initial W, all excitatory connections remained fixed.
To achieve robust linear stability of the dynamics, we refined the inhibitory synapses to minimize the
“smoothed spectral abscissa” α̃ε(W), a relaxation of the spectral abscissa (the largest real part in the
eigenvalues of W) that – among other advantages – leads to tractable optimization (Vanbiervliet et al.,
2009). We describe it in more details below, but in short, the inhibitory weights followed a gradient
descent on α̃ε(W), subject to three constraints. First, we constrained the inhibitory weights to remain
inhibitory, i.e. negative. Second, we enforced a constant ratio between the average magnitude of the
inhibitory weights, and its excitatory counterpart (γ = 3, see Discussion). Third, the density of inhibitory
connections was restricted to less than 40%. This constrained gradient descent usually converged within
a few hundred iterations.
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In more technical terms, the smoothed spectral abscissa can be introduced by way of considering, as
above, the energy evoked through linear network dynamics by some initial condition a:

E(W,a) = aTQ(1)a (6)

where Q(s) is defined more generally as

Q(s) = 2
τ

∫ ∞
0

e(WT−s1)t/τ e(W−s1)t/τ dt . (7)

For the network to be stable, the energy must remain finite for any initial condition a. It is easy to show
that for any a, E(W,a) is upper-bounded by the trace of Q(1). Thus, if tr [Q(1)] < ε−1 for some given
ε > 0, then the energy evoked by any a is less than ε−1, so the network dynamics of Equation 1 are
guaranteed to be stable. In a network that is not (yet) linearly stable, we ask: how far must the system
be “shifted”, W 7→W− s1 (cf. Equation 7), for tr [Q(s)] to become smaller than ε−1? The ε-smoothed
spectral abscissa answers this question. Mathematically, α̃ε(W) is the unique root of s 7→ tr [Q(s)]−ε−1,
which is a monotonically decreasing function of s. If the shift s is smaller than the spectral abscissa
α(W), some of the eigenvalues of W− s1 will have positive real parts, causing tr [Q(s)] to diverge. The
smoothed spectral abscissa α̃ε(W) is therefore necessarily greater than α(W), which means that stability
can be achieved by minimizing α̃ε(W) instead of α(W). This is an advantageous replacement as, unlike
α, α̃ε is a smooth function of the synaptic weights.

The tractability of the approach stems from the computability of α̃ε(W) and its derivatives w.r.t W.
For any s > α(W), the matrix Q(s) defined in Equation 7 is known to be the solution to the following
Lyapunov equation

(W− s1)T Q(s) + Q(s) (W− s1) = −2 · 1 (8)

Solving this equation numerically can be done efficiently (Bartels and Stewart, 1972). Knowing that
tr [Q(s)] − ε−1 is a decreasing function of s, one can apply standard root-finding methods to identify
α̃ε(W). Finally, Vanbiervliet et al. (2009) also provide its derivatives w.r.t the synaptic weights, needed
to perform our gradient-based minimization of α̃ε:

∂ α̃ε(W)
∂W = Q(α̃ε)P(α̃ε)

tr [Q(α̃ε)P(α̃ε)]
(9)

where
P(s) = 2

∫ ∞
0

et(W−s1) et(W−s1)T dt (10)

solves a Lyapunov equation analogous to Equation 8:

(W− s1) P(s) + P(s) (W− s1)T = −2 · 1 (11)

The iterative constrained gradient descent on α̃ε(W) entails the following steps:

1. Compute the current value of the smoothed spectral abscissa α̃ε(W). This implies multiple iter-
ations of a numerical root-finding method (e.g. bisection) on s 7→ tr[Q(s)] − ε−1. Each iteration
requires solving Equation 8 for Q(s), but we show below that this step can in fact be bypassed.

2. Solve Equation 8 and Equation 11 with s = α̃ε found in step 1. This gives matrices Q(α̃ε) and
P(α̃ε), which must be multiplied to form the desired gradient (Equation 9).

3. Move the inhibitory weights by a small amount in the direction of the negative gradient. That is,
for every existing inhibitory synapse wij (only 40% of all possible inhibitory connections exist at
any given time, see step 6), set wij ← wij − η [∂α̃ε/∂W]ij . Here η = 10 is a learning rate.

4. Enforce negativity constraint, by clipping all positive inhibitory weights to zero
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5. Enforce the constraint that inhibition must be γ = 3 times stronger than excitation on average.
This is done by writing the connectivity matrix W block-wise as

W =
(

WE→E WI→E

WE→I WI→I

)
, (12)

and multiplicatively rescaling both inhibitory blocks by −γWE→E
/WI→E and −γWE→I

/WI→I

respectively, where WX→Y denotes the average over all matrix elements. This step is not necessary
for stability optimization, but is essential to make sure that the high correlation of excitatory
and inhibitory input currents that emerges from optimization is not overwhelmed by the baseline
correlation contributed by shared population fluctuations (see Discussion, and Renart et al. (2010);
Hennequin et al. (2012)).

6. Enforce the maximum density of inhibitory connections, by removing any existing wij that step 4
may have set to zero, and replacing it by a new connection wik (which does not exist yet) where
inhibitory neuron k is chosen randomly. Set the strength of these new connections to zero initially.
Again, this constraint is not strictly required, but adds to the biological plausibility of the resulting
connectivity.

Steps 1 through 6 are then repeated until convergence of the spectral abscissa.

In this procedure, ε modulates the distance between the spectral abscissa α and its upper bound α̃ε: if
ε is decreased, α̃ε becomes a tighter upper bound to the spectral abscissa. In pilot studies, we realized
that stability could be reached much faster if ε was set to decrease progressively during the course of the
gradient descent. Empirically, it seemed a good idea to keep the ratio α̃ε/α constant, and to adjust ε
in every iteration to meet this need. Mathematically, this means that the cost function (W 7→ α̃ε(W))
keeps moving, but it becomes a progressively tighter upper bound on α, and crucially, we no longer need
to compute α̃ε in step 1! We thus capitalized on this observation and set α̃ε(W) = Cα(W) in every
iteration, with C = 1.5, empirically found to be a good choice. Note that this automatically constrains
ε to a value of 1/tr[Q(Cα)], where Q(·) is defined in Equation 7. Steps 2 to 6 are then performed as
prescribed above. Note that computationally, the cost is still of order K · N3, but the large constant
K implied by the iterative root-finding method of Step 1 is eliminated. Note also that Step 2 requires
solving Equation 8 and Equation 11, for which we need to compute a Schur decomposition of W only
once (Bartels and Stewart, 1972). As a byproduct, the Schur decomposition also returns the spectral
abscissa at no further cost, so α needs not be computed separately. The above simplified procedure is
very effective, except for one small detail. As α̃ε gets closer to α (which is bound to happen as learning
progresses, since α̃ε = Cα and α̃ε decreases), it also becomes increasingly non-smooth as a function of
W. For its gradient to remain well-behaved, we therefore kept α̃ε some safe margin away from α, by
setting α̃ε to Cα or α+B in every iteration, whichever was the greatest. We used B = 0.2.

Analysis of rotational dynamics

The plane of projection of Figure 4D was found with jPCA, a dynamical variant of principal component
analysis (Churchland et al., 2012) used to extract low-dimensional rotations from multidimensional time
series. Given data of the form (y(t), ẏ(t))), where ẏ(t) denotes the temporal derivative of y(t), jPCA
fits (through standard least-squares regression) a linear oscillatory model of the form

ẏ(t) = Mskewy(t) (13)

where Mskew is a skew-symmetric matrix, therefore one with purely imaginary eigenvalues. The two
leading eigenvectors of the best-fitting Mskew (associated with the largest conjugate pair of imaginary
eigenvalues) define the plane in which the trajectory rotates most strongly. Here we computed the jPC
projection exactly as prescribed in Churchland et al. (2012). Our model data consisted of the population
responses ∆r(t) during the first 200 ms following the go cue for each of our 27 initial conditions, sampled
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in 1 ms time steps. Note that the temporal derivatives are directly given by Equation 1, except in the
spiking network (see below) where we estimated those derivatives using a finite-difference approximation.
To make sure that the jPC projection captures enough of the data variance, that is, that the observed
rotational dynamics (if any) are significant, the data was first projected down to its top 6 standard
principal components (as in Churchland et al. (2012)).

Muscle activation through linear readouts

In Figure 5, a single pair of muscle readouts was learned from 200 training trials (100 trials for each of
the “snake” and “butterfly” movements). We assumed the following linear model:

zt = (m1; m2)T ∆rt + b + εt (14)

where zt (size 2) denotes the vector of target muscle activations at discrete time t, ∆rt is the N × 1
vector of momentary deviation from baseline firing rate in the network, and εt is the vector of residual
errors (size 2). The readout weights (column vectors mi, i = 1, 2) are parameters which we optimized
through simple least-squares regression, together with a pair of biases (b). The snake (resp. butterfly)
target trajectory was made of 58 points (resp. 26 points), equally spaced in time over 500 ms following
the go cue. Those points defined the discrete time variable t in Equation 14. The activity vector ∆rt
was sampled accordingly for each movement.

Spiking network simulations

We simulated a network of 15′000 neurons, composed of 12′000 excitatory and 3′000 inhibitory neurons,
with parameters listed in Table 1. This network was divided into 200 subgroups of excitatory neurons
and 200 subgroups of inhibitory neurons, which can be interpreted as the “rate units” we have focused
on until here.

Single-neuron model Single cells were modelled as leaky integrate-and-fire (LIF) neurons (e.g. Ger-
stner and Kistler (2002), chap. 4) according to

τm
dVm

(i)

dt = −V (i)
m + Vrest + h(i)

exc. + h
(i)
inh. + hext. (15)

Neuron i emitted a spike whenever V (i)
m crossed a threshold Vthresh from below. Following a spike, the

voltage was reset to Vreset and held constant for an absolute refractory period of τr. The excitatory
and inhititory synaptic inputs, h(i)

exc. and h(i)
inh. were sums of alpha-shaped post-synaptic currents (PSCs)

of the form c
[
exp

(
−t/τdecay)− exp

(
−t/τ rise)] where c is a synapse-type-specific scaling factor that

regulates peak excitatory and inhibitory postsynaptic potential (PSP) amplitudes after further membrane
integration through Equation 15 (Figure 7b).

Recurrent synapses Each neuron received input from 1′500 excitatory and 1′500 inhibitory network
neurons. For 50% of those recurrent connections (750 exc. and 750 inh. synapses), the presynaptic
partner was drawn randomly and uniformly from the corresponding population (exc. or inh.), providing
a sea of unspecific, random synapses that was instrumental in maintaining the network in a regime of
asynchronous and irregular firing. These connections were thought to target proximal dendritic zones
and therefore to evoke fast PSCs (parameter τdecay

fast in Table 1). The other half of the network synapses
were used to mirror the structure of the network of rate units described throughout the paper, and
were therefore drawn according to probabilities jointly determined by i) the subgroups that the pre- and
post-synaptic neurons belonged to, ii) an optimized SOC matrix W of size 400× 400 that described the
connectivity between subgroups.
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We first normalized the excitatory and inhibitory parts for each row of W, obtaining a matrix Ŵ of
connection probabilities. Then, for any cell i in group m (1 ≤ m ≤ 400, exc. or inh.), each of 750
exc. partners were chosen in two steps: first, a particular group n was picked with probability Ŵmn, and
second, a presynaptic neuron was picked at random from this group n. We applied the same procedure to
generate the second half of the inhibitory synapses (750 per neuron). These structured SOC connections
were given a slower PSC decay time constant τdecay

slow (c.f. Table 1), and can be interpreted as targeting
more distal dendritic parts.

Sample PSPs are shown in Figure 7b for all four types of synapses. The ratio between exc. and inh.
synaptic efficacies was set to achieve a stable background firing state of 5 Hz. Note that because of the
amplifying behavior of SOCs and the superlinear nature of the input-output function of LIF neurons,
the network ended up with a mean of ∼ 6 Hz instead (Figure 7c).

Each neuron also received a constant positive external input current hext., which was set to the mean
current a cell would receive from 5′000 independent Poisson sources at 5 Hz with fast synapses. We
boiled this input down to its mean to motivate that the slow, seemingly stochastic rate fluctuations we
observed in the spiking SOC (Figure 8a) did not require any external source of noise.

Generation of W SOC matrices for spiking networks were generated in a similar manner as described
above for rate-based networks, except for a few simple variations to account for the effective gains of the
excitatory and inhibitory synaptic pathways between subgroups. To calculate these gains, we isolated
two subgroups of neurons, n (sender) and m (receiver), and assumed that the rest of the network fired
with Poisson statistics at 5 Hz. We then numerically estimated the effect of small firing rate deviations
in group n, ∆n, on the firing rate ∆m of the receiver (thus linearizing the joint dynamics of subgroups
around the background state). Due do the E/I balance, d∆m

d∆n
is a roughly linear function of the connection

probability Ŵmn from group n to group m. Using a simple least-squares fit, we extracted the coefficients
of proportionality βexc. ' 5.2 and βinh. ' −21.9 for the two types of sender groups (exc. or inh.). These
constants were then used to rescale the excitatory and inhibitory parts of the normalized matrix of
connection probabilities, Ŵ, yielding an effective connectivity matrix W such that linear dynamics of
the form

τ
d∆r
dt = −∆r + W∆r + noise (16)

approximated the joint dynamics of our spiking subgroups. We used the smoothed spectral abscissa
method described above to modify the connections probabilities Ŵmn (200 < n ≤ 400) that involved
inhibitory presynaptic subgroups to achieve stability in an initially unstable, random sparse matrix. In
each gradient step, the inh. part of each row of Ŵ was re-normalized to sum to 1, to preserve the
probabilistic interpretation of Ŵ. Second, we used a straightforward application of the chain rule to
propagate the gradient of the smoothed spectral abscissa of W to Ŵ given the values of βexc. and βinh..

We used the effective weight matrix W to compute the preferred initial states of the spiking SOC,
akin to the rate-based case with ∆ri ∝ xi (i.e. assuming linear dynamics among subgroups given by

description name value unit
membrane time constant τm 20 ms

refractory period τr 2 ms
axonal transmission delay – 0.5 ms

resting potential Vrest -70 mV
spiking threshold Vrest -55 mV

voltage reset Vreset -60 mV
PSC rise time τ rise 1 ms

fast PSC decay time τdecay
fast 10 ms

slow PSC decay time τdecay
slow 100 ms

Table 1: Parameters used in the spiking model.
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Equation 16). During the preparatory period, each LIF neuron received a ramping input current that
depended only on the subgroup it belonged to.

Control random network The random network used for comparison in Figure 8 was identical in
every respect to the SOC, except that presynaptic partners for slow synapses were drawn completely
randomly (there was no notion of neuronal subgroups).

Simulations were custom-written in OCaml and parallelized onto 8 compute cores following the strategy
developed in Morrison et al. (2005), taking advantage of a finite axonal propagation delay which we set
to 0.5 ms. We used simple Euler integration of Equation 15 with a time step of 0.1 ms.
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target go cue
200 ms

5 Hz

Supplementary Figure 1: Diversity of single-cell transient responses in the spiking SOC. Shown
here are trial-averaged responses (1’000 trials) of the first cell for each of the first 18 subgroups (one panel per
subgroup). The preparatory period drives the network in one of 27 random combinations (color coded) of its top
2 preferred initial conditions. The color code is meaningless and not consistent across panels, but only intended
to ease visualization. Rate traces were smoothed using a Gaussian kernel of width 20 ms.
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Supplementary Figure 2: Control random net-
work. (a) Top: raster plot of spiking activity in the
control network. Middle: average momentary net-
work activity (black), and activities of the two col-
ored subgroups. Note that the concept of subgroups
is absent from the connectivity; subgroups are com-
pletely arbitrary here, and only meant to provide a
comparison with Figure 8. Bottom: voltage traces for
two randomly chosen cells. (b) Distribution of aver-
age firing rates in the random network (black) and in
the SOC (gray). Averate rates were computed from
1’000 second-long simulation. (c) Same as in (b), for
the CVs of the ISI distributions.
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Supplementary Movie 1 The eigenvalues of the original random balanced network are shown as
fixed gray dots in the complex plane. Roughly 50% of them lie to the right of the critical line defined
by Re(λ) = 1 (purple line), thus corresponding to unstable eigenmodes. The moving dots show the
evolution of the eigenvalues as the inhibitory connectivity is being refined to produce a SOC. Each frame
corresponds to one step of the gradient descent (cf. Experimental Procedures). Purple dots indicate
unstable eigenmodes.
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