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Visual backward masking is a versatile tool for understanding principles and limitations of visual information
processing in the human brain. However, the mechanisms underlying masking are still poorly understood. In
the current contribution, the authors show that a structurally simple mathematical model can explain many
spatial and temporal effects in visual masking, such as spatial layout effects on pattern masking and B-type
masking. Specifically, the authors show that lateral excitation and inhibition on different length scales, in
combination with the typical time scales, are capable of producing a rich, dynamic behavior that explains this
multitude of masking phenomena in a single, biophysically motivated model.
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Perception is not immediate. The brain processes visual informa-
tion from a scene over a considerable time before a conscious percept
is formed. A remarkable demonstration of this time-consuming pro-
cessing comes from visual masking, in which performance on a target
can be affected by a mask trailing the target by several hundred
milliseconds (for a review, see Breitmeyer & Öğmen, 2006). Because
of these long lasting effects, visual masking is an important technique
in studying the dynamics of perception.

In addition, masking is a widely used tool in many other
research areas. Bachmann (1994) estimated that in 14% of the
articles in vision research and psychology, either masking by itself
is investigated or masking is used as a tool to curtail the processing
time of the target. A recent survey yielded a very similar estimate
(Enns & Di Lollo, 2000). In spite of the large numbers of studies
on visual masking, the underlying mechanisms are still only poorly
understood, possibly due to the complex timing issues involved.

Visual masking can be classified along various directions. First,
in forward masking, the mask precedes the target, whereas in
backward masking, the mask follows the target. Second, a mask
that spatially overlaps with the target is called a pattern mask,
whereas a mask that does not overlap with the target is termed a

metacontrast mask. Third, in A-type masking, masking is strongest
when the target and the mask are presented simultaneously and
becomes weaker once the mask is delayed with respect to the
target. In B-type masking, the strongest masking occurs for inter-
mediate stimulus onset asynchronies (SOAs). This means that in
A-type masking, the masking curve, plotting performance as a
function of SOA, is a monotonic function, whereas in B-type
masking, the masking curve shows a dip at intermediate SOAs and
is therefore nonmonotonic.

Visual masking research shows an interesting dichotomy. When
masking itself is under investigation, B-type masking and meta-
contrast masks are of primary interest both in experimental and in
modeling work. To account for the complex and nonlinear aspects
of visual masking, researchers proposed several models. In one
class of models, two processing pathways are assumed, one faster
than the other. The mask signals in the faster pathway catch up
with the target signals in the slower pathway, and thus, the mask
signals have their strongest impact at a nonzero SOA (e.g., Bach-
mann, 1994; Breitmeyer & Ganz, 1976; Öğmen, 1993). Other
types of models make use of recurrent connections to explain the
complex characteristics of temporal masking (Di Lollo, Enns, &
Rensink, 2000).

If masking is used as a tool, A-type masking is often implicitly
assumed to prevail, and pattern masks are used. Surprisingly, in
this research area, there are hardly any quantitative models to
explain how the pattern mask interacts with target processing.

The main focus in all kinds of temporal masking is, as the name
suggests, on the temporal aspects. Investigations of spatial aspects
were restricted to basic dimensions, such as the spatial distance
between the target and the mask or the similarity between the
target and the mask (e.g., Parlee, 1969; Sekuler, 1965; Wehrhahn,
Li, & Westheimer, 1996). There are only a few studies in which
more complex spatial aspects were investigated (e.g., Werner,
1935; Williams & Weisstein, 1981, 1984), whereas this topic is
more intensively studied in simultaneous masking. However, in
simultaneous masking, as the word suggests, the temporal dimen-
sion is lacking. It was only recently that the effects of the spatial
layout of pattern and metacontrast masks were investigated sys-
tematically in temporal masking. In these studies, temporal and
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spatial aspects were combined (Cho & Francis, 2005; Duangudom,
Francis, & Herzog, 2007; Francis & Cho, 2005) or complex spatial
aspects, such as the overall structure of the mask (Herzog & Fahle,
2002; Herzog & Koch, 2001), were varied.

In some of these more recent investigations, a vernier target was
followed by a grating consisting of aligned verniers (shine-through
effect; Herzog, Fahle, & Koch, 2001; Herzog & Koch, 2001).
Surprisingly, gratings with 25 aligned verniers yielded weaker
masking than did smaller gratings with, for example, 5 elements
(see also Sturr, Frumkes, & Veneruso, 1965; Wehrhahn et al.,
1996; Westheimer, 1967). However, it is not the sheer number of
elements of the mask that determines the masking strength, but the
overall spatial layout of the mask. For example, removing 2 lines
from the weak 25-element grating, thereby creating an irregularity
by means of gaps, makes vernier offset discrimination as difficult
as with the 5-element grating (Herzog et al., 2001). In general, any
kind of mask irregularity near the vernier position deteriorates
performance (Hermens & Herzog, 2007; Herzog & Fahle, 2002).
Moreover, masking functions can be changed from A-type to
B-type and vice versa just by changing the spatial layout of the
mask (Duangudom et al., 2007).

On the basis of these findings, it was proposed that purely
temporal as well as purely spatial approaches to masking and to
vision in general are both insufficient. Models have to combine
both spatial and temporal processing (see also Herzog, 2007). In
explaining temporal and spatial aspects of masking, different de-
scription levels may be used. For example, up to now, we de-
scribed masking effects on a stimulus description level (removing
elements) and in terms of perceptual organization (creating gaps;
irregularities). In addition, explanations based on grouping mech-
anisms (Herzog, Dependahl, Schmonsees, & Fahle, 2004; Herzog
& Fahle, 2002) were proposed.

However, masking effects may also be explained on other
description levels, for example, on a neural description level. We

recently proposed that particularly the strong masking with the
small (5-element) grating and the gap (25-element grating with 2
elements removed) grating can be explained by dynamic lateral
inhibition. For this explanation (Hermens & Ernst, 2007; Herzog,
Ernst, Etzold, & Eurich, 2003), we used a simple one-dimensional
neural network model inspired by the work of Wilson and Cowan
(1973). Here, we extend this structurally simple one-dimensional
model to a two-dimensional model to explain how even more
complex arrangements of the spatial layout of a mask determine its
masking strength. In addition, we show that our extended model is
also capable of explaining many important temporal effects in
masking, such as B-type masking.

The model that we propose is possibly one of the structurally
simplest models that can explain such a large range of experimen-
tal findings on masking. Given the complexity of the human brain,
it is not entirely surprising that a simple two-layer network cannot
explain the entire range of masking phenomena. Because they are
informative for model development, we also show the shortcom-
ings of the model.

Model

Structure and Dynamics of the Model

We performed simulations with a two-dimensional version of a
neural network model comprising an excitatory and an inhibitory
layer of mutually interconnected neurons. The structure of the
model is illustrated in Figure 1. The input I from a time-varying
stimulus S, presented in the visual field, feeds into both an exci-
tatory and an inhibitory layer via a Mexican-hat input kernel V,
acting effectively as a low-pass filter. Neurons in both layers
mutually interact with excitatory couplings We and inhibitory
couplings Wi. The strength of both inhibitory and excitatory inter-
actions decays with the distance between neural populations, fol-
lowing a Gaussian shape. The length scales are larger for inhibi-
tory weights, which establish a typical Mexican-hat shape of the
combined couplings We–Wi, serving the process of edge enhance-
ment (Grossberg, 1982; Wilson & Cowan, 1973). The excitatory
and inhibitory layers have the same size as the input map.

The dynamics of the model are described by a set of partial
differential equations for the population activities Ae and Ai. These
are simplified versions of the equations originally introduced by
Wilson and Cowan (1973):

�e

�Ae�x,t�

�t
� �Ae�x,t� � he�wee�Ae � We��x,t� �

� wie�Ai � Wi��x,t� � I�x,t�� (1)

and

� i

�Ai�x,t�

�t
� �Ai�x,t� � hi�wei�Ae � We��x,t� �

�wii�Ai � Wi��x,t� � I�x,t��. (2)

The parameters �e and �i denote time constants; wee, wei, wie, and
wii are coupling strengths; x denotes a two-dimensional position
vector in one of the neural layers; and t parameterizes time. he and
hi are defined as

Figure 1. Setup of the model. The stimulus is fed through a filter (V) into
an inhibitory and an excitatory layer. Interactions of neural activity be-
tween and within layers are mediated by kernels Wi and We.
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he,i�x� � � se,i � x for x � 0
0 otherwise, (3)

with neuronal gain constants se and si.
The coupling structures are defined as

We,i�x � x	� �
1

2
�e,i
2 exp�� �x � x	�2

2�e,i
2 � , (4)

for excitatory and inhibitory interactions, respectively, whereas
�e,i represents the widths of the interaction kernels. The convolu-
tion, denoted by a star (�), is a shorthand notation for

wee�Ae � We��x,t� � wee�
��

��
��

�

Ae�x	,t�We�x � x	�dx	. (5)

This equation operates as a filter weighting the activation across
the layer.

The input to both populations is computed from

I�x,t� � �S � V��x,t� � �
��

��
��

�

S�x	,t�V�x � x	�dx	, (6)

with the input kernel defined as

V�x � x	� �
1

2
�E
2 exp�� �x � x	�2

2�E
2 �

�
1

2
�I
2 exp�� �x � x	�2

2�I
2 � , (7)

with �E and �I representing the widths of the input kernel. The
values of the different constants in the model are listed in the
Appendix table.

Linking Model Output to Perception

A linking hypothesis relates one or more model values to the
experimentally obtained values. For example, the activity of a set
of neurons in the model is mapped onto the percentage of correct
responses or a threshold value. In our particular implementation of
the model, we linked the activation in the excitatory layer corre-
sponding to the target position to a measure of performance (such
as a threshold or the percentage of correct responses). In detail, we
determined the activation of the excitatory neurons 80 ms after
target onset.1 From the activation in the excitatory layer, we took
only the activation of cells at the exact position of the vernier
target. The activation at those positions was then summed. This
procedure is summarized by the following equation, computing the
target-related activation T:

T � �
x

Ae�x,r0� � ST�x�dx, (8)

where ST is the representation of the target vernier, r0 is the
read-out time of the excitatory activity (80 ms after target onset in
our implementation of the model), x is the spatial coordinate, and
Ae denotes the activation in the excitatory layer.

For experiments related to the shine-through effect, we con-
verted the target-related activation T to a predicted threshold value

that we then compared with the corresponding psychophysical
discrimination threshold. This psychophysical threshold is defined
as the offset (in arc seconds, i.e., a measure of angular distance)
between the upper and the lower segment of the vernier, for which
75% correct responses are obtained. For the conversion, we used a
sigmoid function that takes into account the fact that thresholds for
a masked vernier were generally not below 15 arc seconds and that
performance was truncated to a maximal threshold of 350 arc
seconds in the psychophysical experiments,


̂ � 15 �
335

1 � exp� � a � �T25 grating � T� � s�
. (9)

The free parameters a and s were determined once by means of a
least-squares fit of the data of one selected experiment (training
data set; for details of this experiment, see the Varying mask width
subsection). For predicting the results of all other experiments (test
data set), this function was held fixed. To obtain positive numbers
for a and s, we subtracted T for each mask from T for the
25-element mask, which served as a baseline, because it typically
yielded the weakest masking. To allow for an evaluation of the
model fit, we always plotted the model predictions and the exper-
imental thresholds in one graph. For an optimal fit, we expected
the predicted thresholds to be within the confidence interval of the
experimental thresholds.

We used the simplest linking hypothesis possible, namely, com-
paring the network activation directly with the target template. We
also considered more complex linking hypotheses. Most yield
comparable results (see Appendix for more discussion).

Results

The Results section is divided into two parts; in the first part, we
consider spatial aspects of masking, whereas in the second one, we
investigate temporal aspects of masking. We start by describing a
particular set of experiments on the shine-through effect. One of
these experiments also served to determine the threshold predic-
tor’s parameters a and s.

Spatial Aspects

Basic model behavior and the shine-through effect. If a vernier
target, displayed for about 20 ms, is followed immediately by a
5-element grating mask (illustrated to the left of Figure 2), the
vernier is rendered invisible. However, much weaker masking
occurs for a mask consisting of 25 aligned verniers. In this con-
dition, participants report seeing the vernier target shining through
the mask (Herzog et al., 2001). This effect might be related to the
sheer number of mask elements: The larger the mask size, the
weaker the masking. However, if only 2 elements are removed
from the central part of the mask (gap grating; bottom left illus-
tration of Figure 2), masking is as strong with a 5-element mask.

In recent publications (Herzog et al., 2004; Herzog & Fahle,
2002), we argued that these results can be explained in terms of
perceptual organization by the Gestalt cue of proximity. Inserting
gaps into the 25-element grating changes the grouping of the mask

1 The exact value of this moment in time proved not to be critical: Other
values ranging from 60 ms to 120 ms yielded very similar results.
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elements: Three smaller gratings are perceived, not one large
grating with gaps. Because the central grating of the three gratings
consists of 5 elements, it masks the vernier as strongly as the
5-element grating presented alone. Hence, it seems that the group-
ing of the grating elements determines the strength of masking.
These explanations, in terms of perceptual organization, leave
open explanations on other description levels, for example, on a
neural description level.

Often grouping operations are thought to be accomplished by
higher cortical mechanisms dedicated to grouping (for a review,
see Palmer, Brooks, & Nelson, 2003). We show that our model
demonstrates that some of these grouping aspects can be entirely
explained by low-level neural interactions. This is an interesting
finding, because the model was not explicitly developed to explain
grouping. It is important to note that propositions at the various
description levels are independent, just as, for example, micro
theories and macro theories are independent from each other in the
sense that either one can be true or false.

To understand the mechanisms that may underlie the suggested
grouping in an intuitive way, we compare the activation of the
excitatory layer at three different points in time for three different
masks (Figure 2). In the simulations, we used a vernier target
consisting of two elements each of 600 arc seconds (10 arc
minutes) in height and 20 arc seconds in width. The elements were
separated by a vertical gap of 60 arc seconds (1 arc minute) and a
horizontal displacement of 40 arc seconds. The grating elements
were similar to those in the vernier target (with a height of 600 arc

seconds, a width of 20 arc seconds, and a vertical gap of 60 arc
seconds). The only difference was that the segments of each
grating element were aligned (no vernier offset).

Figure 2 shows that the Mexican-hat input filter and the two
interaction kernels strengthen the edges of the grating mask,
thereby suppressing the individual elements inside the mask. The
highlighted edges of the 5-element grating dynamically suppress
the target vernier signal. However, no such suppression occurs for
the 25-element grating, because the edges of this grating are too
remote from the target. When 2 elements from such a large mask
are left out (25 with gaps), the elements making up the gaps are
strongly activated, suppressing the vernier signals as efficiently as
the edges of the 5-element grating.

This intuitive understanding of the basic mechanisms in the
model can be formalized in mathematical terms by means of a
stability analysis, which links critical sizes of the mask to the
typical length scales of the intracortical interactions, revealing
which spatial modes become enhanced or suppressed by recurrent
activity (see the Appendix). Our simulation results agree well with
those of Herzog, Ernst, et al. (2003), in which a one-dimensional
version of the model was used and which indicated that the
generalization of the model to two dimensions left its properties
intact.

Varying mask width: Calibrating the linking hypothesis. If the
number of elements in the grating mask is systematically varied
from 3 to 25 (Herzog, Harms, et al., 2003), while keeping the
spacing between the elements constant at 200 arc seconds (3.3 arc

Figure 2. Activation Ae(x, t0) of the excitatory layer at three points in time: t0 � 24 ms, t0 � 30 ms, and t0 �
80 ms after vernier onset. Three masks were used for the simulations (see the illustrations on the left): a grating
consisting of 5 elements (5 grating), a grating consisting of 25 elements (25 grating), and a gap grating, that is,
a grating of 25 elements from which 2 elements were removed (25 with gaps). Arrows indicate the positions of
the vernier target and the strongly activated edges. Arrows next to Time indicate the direction of time. For
graphic purposes, only the center 15 elements of the grating are shown in the illustrations. Movies of the different
simulations, showing the time course of activation, can be found at http://froukehe.googlepages.com/simulations.
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minutes), strongest masking is found for a mask consisting of 5
elements (open squares in Figure 3). Our neural network model is
qualitatively capable of explaining this finding. We now use the
empirical discrimination thresholds to calibrate the free parameters
of our linking hypothesis, obtaining a � 0.4419 and s � 1.7547.
A very good fit is obtained for this calibration data set (Figure 3),
showing an accurate match between the predicted thresholds
(filled circles) with the experimentally observed ones (measured in
seconds of arc, open squares).

Gaps in the grating. The simulations with the gap grating as a
mask (Figure 2) suggested that the model is very sensitive to
irregularities in the mask’s structure. To quantify this observation,
the size of the gap was increased from 200 arc seconds (normal
spacing) to 600 arc seconds (3 times the spacing; Herzog et al.,
2001). Figure 4A shows the predictions by the model (solid cir-
cles) together with the experimentally observed thresholds (open
squares). The increase of thresholds with gap size was correctly
predicted by the model, although the linear shape of the experi-
mentally obtained curve could not be reproduced.

To improve our understanding of how a gap in a grating is
processed, lines of various lengths were inserted in the gaps,
thereby morphing the gap grating into a grating in which all
elements have the same length. Figure 4B shows how the length of
the gap element affects the predicted masking strength (solid
circles), together with the experimental observations (open
squares, Herzog et al., 2001). The model predictions match the
experimental observations very well. Data and predictions indicate
that a small element inside the gap yields almost as strong a
masking as a full gap grating. Only when the size of the element
increases beyond 300 arc seconds (5 arc minutes) do thresholds
decrease and approach the level of the standard 25-element grating.

This data set demonstrates the need for a two-dimensional
model. Without a complete representation of the structure of the
mask, it is impossible to show that even small irregularities in the
grating strongly suppress the vernier-related activity in good ac-
cordance with the experimental findings.

Contextual modulation. In the previous paragraphs, we
showed that nonhomogeneities in the mask, such as gaps or
changes in the length of elements, can strongly affect masking
strength, pointing to complex spatial processing. Herzog, Schmon-
sees, and Fahle (2003) showed that also contextual lines outside
the mask could strongly modulate masking strength (Figure 5A,

Figure 3. Vernier target offset discrimination thresholds (open squares;
data replotted from “Extending the Shine-Through Effect to Classical
Making Paradigms,” by M. H. Herzog, M. Harms, U. Ernst, C. Eurich, S.
Mahmud, & M. Fahle, 2003, Vision Research, 43, Figure 7, p. 2664.
Copyright 2003 by Elsevier) displayed as a function of the number of
aligned verniers in the successively presented mask (an example of the
stimulus sequence is shown in the inset). In comparison, the predicted
threshold (filled circles) is shown. Error bars represent the standard error of
the mean across participants for the experimentally observed thresholds.

Figure 4. Model predictions (solid circles) shown together with experi-
mental data (open squares; replotted from “Spatial Aspects of Object
Formation Revealed by a New Illusion, Shine-Through,” by M. H. Herzog,
M. Fahle, & C. Koch, 2001, Vision Research, 41, Figures 5 & 7, pp.
2331–2332. Copyright 2001 by Elsevier) for masks with gaps (gap grat-
ing). A: Shows the dependence of thresholds on the gap width between the
mask elements (see inset). B: Shows the dependence of thresholds on the
size of the elements at the location of the gaps between the mask elements
(see inset). The error bars represent the standard error of the mean across
participants.
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open squares). The spatial range across which these contextual
elements have an effect is surprisingly large. Even at a distance of
2,400 arc seconds (40 arc minutes) to the vernier (4 times the
height of a vernier segment), the contextual elements still modulate
performance.

The model correctly predicts that contextual lines increase the
masking strength (collinear inhibition; Figure 5A, solid circles). It

also correctly predicts that increasing the distance between the
contextual elements and the grating makes masking weaker. How-
ever, the contextual effects at very long spatial distances could not
be reproduced (the curve reaches the baseline, indicated by the
dotted line, for a separation around 500 arc seconds), which
probably reflects the limited spatial range of the kernels in the
model. This issue might be resolved by the use of a bank of kernels
of various widths. However, we chose not to do so to keep the
model as simple as possible.

Besides the distance of the contextual element, the number of
contextual lines strongly affects the masking strength (Herzog,
Schmonsees, & Fahle, 2003). Surprisingly, even though the overall
intensity of the mask (Luminance � Surface � Duration) in-
creased due to the additional elements, less masking was obtained
when the number of contextual lines was increased (Figure 5B,
open squares). In this respect, the contextual elements have a
similar effect on the masking strength as the elements of the
grating itself.

The model correctly predicts that adding contextual elements
weakens masking (Figure 5B, solid circles). However, the decre-
ment of the masking strength is clearly underestimated. Moreover,
an asymptotic masking strength stronger than that of the 25-
element grating is predicted, which clearly contradicts the exper-
imental findings. This might again reflect a too limited range of the
model kernels, which we discuss in more detail in the general
discussion.

Forward and backward masking sequences. The number of
elements in the mask also strongly affects masking strength in
sequences comprising a vernier target and two masks. In the first
experiment, the vernier was followed by a briefly presented grating
of a variable number of elements, which was then followed by a
second grating of 25 elements (backward masking sequence; Fig-
ure 6A, illustration). A strong effect of the number of lines in the
first grating on the vernier offset discrimination was found, with
strongest masking at a grating size of 5 elements (Figure 6A, open
squares).

A temporal variation of this sequence shows an entirely differ-
ent pattern. If the briefly presented grating serves as a forward
mask to the vernier target, which is then backwardly masked by a
25-element grating for 280 ms (forward masking sequence; Figure
6B, illustration), strong masking is found for almost all grating
sizes (Figure 6B, open squares).

Although accurate model predictions are found for the backward
masking sequence (Figure 6A, solid circles), the model completely
fails to predict the data of the forward sequence (Figure 6B, solid
circles). In contrast to the experimental observation, the model
predicts strong facilitation with a forward mask with thresholds
around that of a target without a mask. This incorrect prediction
can be understood from the summation of the activation corre-
sponding to the target and the mask. The energy in the forward
mask adds to the target-related energy instead of suppressing it.
This problem is likely to appear in all models that do not separate
the energy of the target and the mask into different channels. We
elaborate on this issue in the general discussion.

A closer analysis of the kernel widths of the model shows why
the model could explain the finding that a backward mask of 3
elements masked the vernier less than did a mask of 5 elements. In
Figure 7, the model kernel widths are plotted, centered at the
vernier position and at the mask edges, superimposed on the

Figure 5. Model predictions (solid circles) shown together with experi-
mental data (open squares; replotted from “Collinear Contextual Suppres-
sion,” by M. H. Herzog, U. Schmonsees, & M. Fahle, 2003, Vision
Research, 43, Figures 2 & 4, pp. 2917–2918. Copyright 2003 by Elsevier)
for masks in which single contextual lines were added above and below a
standard 25-element mask. A: Shows the dependence of thresholds on the
contextual element’s distances (see inset). B: Shows the dependence of
thresholds on the number of contextual elements (for a stimulus example
with 5 elements, see inset). The dashed and the dotted lines show, respec-
tively, observed and predicted performance for a 25-element grating, which
served as the baseline. Arrows indicate that the distance between the
contextual elements and the grating was varied. Error bars represent the
standard error of the mean across participants.
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activation of the excitatory layer at 33 ms after vernier onset. The
smaller discs (solid lines) show the size (2 times the standard
deviation) of the excitatory kernels, whereas larger discs (dotted
lines) represent the size of the inhibitory kernels. For a 5-element
grating, only the inhibitory kernels at the edges overlap with the

target vernier, which explains why this mask yields the strongest
masking. With 3 elements in the grating, the edges of the mask
both excite and inhibit the target vernier, which results in a higher
overall activation than when only inhibition takes place. For a
25-element grating, the edges of the grating are so remote that they
hardly affect the vernier target, which is therefore clearly visible.

Temporal Aspects

Masking curves: Shape of the curve. Previous modeling of
visual masking strongly focused on explaining the various shapes
of the masking function. In A-type masking, performance in-
creases monotonically with an increasing SOA between the target
and the mask, as is intuitively expected: The later the mask is
presented, the weaker is its effect. In B-type masking, strongest
masking occurs at a nonzero SOA. This type of masking is also
referred to as U-shaped masking, which reflects the shape of the
curve when percentage correct is plotted against SOA. Several
studies have found, if the spatial layout of the mask is kept
constant, A-type masking with high mask-target intensity ratios,
and B-type masking occurs with low mask-target intensity ratios
(Breitmeyer & Öğmen, 2006). Moreover, B-type masking is typ-
ically observed with masks that do not overlap spatially with the
target (metacontrast masks).

For our simulations of the effect of SOA on performance, we
used a spatially nonoverlapping metacontrast mask. As the target,
we used a filled square, and for the mask, we used a square outline
(Figure 8). The target measured 400 arc seconds (6.7 arc min-

Figure 7. Illustration of the kernel size centered around the vernier
position and the grating’s edges. The smaller discs (solid lines) represent
the excitatory kernels, whereas the larger discs (dotted lines) show the
inhibitory kernels. Individual subplots show the activation after 33 ms for
the 3-, 5-, and 25-element grating, respectively.

Figure 6. Model predictions (solid circles) are shown together with
experimental data replotted from “Grouping in the Shine-Through Effect,”
by M. H. Herzog, U. Schmonsees, J. M. Boesenberg, T. Mertins, & M.
Fahle, 2007 (Copyright 2007 by M. H. Herzog, U. Schmonsees, J. M.
Boesenberg, T. Mertins, & M. Fahle), for backward and forward masking
sequences (see insets). A: Shows dependence of thresholds on the number
of lines in the first mask. The sequence consisted of a target vernier
followed by a grating of a variable number of lines, followed by a
25-element mask. B: Shows dependence of thresholds on the number of
lines in the forward mask. The sequence consisted of a grating of a variable
number of lines, followed by the target vernier, followed by a 25-element
grating. Error bars represent the standard error of the mean across partic-
ipants.
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utes) � 400 arc seconds, whereas the mask outline surrounded the
center of the display at 1,440 arc seconds (24 arc minutes) and was
80 arc seconds (1.3 arc minutes) in width. The target and the mask
were both presented for 12 ms. We varied the SOA between the
target and the mask from 0 ms to 84 ms. Mask intensities, I(x,t) in
the model, of 0.7 (weak), 1.1 (intermediate), and 2.5 (strong) were
used. The intensity of the target was kept constant at 0.5. As a
measure of performance, we report T (Equation 8), which is
monotonically related to the percentage of correct responses.

In accordance with previous experimental findings and model-
ing results (Bridgeman, 2001; Francis, 1997), the SOA yielding
strongest masking is predicted to shift to lower values when the
mask intensity is increased (Figure 8). For high intensity masks,
strongest masking is found for an SOA of 0 ms, which means that
the curve has become monotonic; that is, A-type masking occurs.

For SOAs shorter than 12 ms, in which the target and mask
overlap in time, a small nonlinearity can be observed. This is
probably the result of the gradual build-up of activation in the
model, which contrasts with the immediate build-up of activation
in other models (e.g., Anbar & Anbar, 1982).

Wilson and Cowan (1973) reported that they could not obtain a
U-shaped masking curve with their model. At this point, it is
unclear what difference between their model and ours caused this
discrepancy. For our model, we used only slightly modified equa-
tions as well as a different linking hypothesis. An analysis in which
we used a linking hypothesis that integrates the activity in the
excitatory layer over time, which better matches the linking hy-
pothesis used by Wilson and Cowan, also yielded B-type masking,
suggesting that the discrepancy in results might have resulted from
the difference in equations.

Masking curves: Spatial separation. The spatial distance be-
tween the target and a metacontrast mask has been explored in
many experiments (see Francis, 2003, for an overview) and with
several models (e.g., Bridgeman, 2001; Francis, 2003). Generally,
the effect of a metacontrast mask weakens with an increase in the

spatial distance to the target. However, how the SOA with strong-
est masking changes with increasing target–mask distance is not
well established (for an overview of results, see Francis, 2003).
Model predictions of the effect of the spatial separation also vary.
The boundary contour system model (Francis, 1997) predicts only
a very weak effect of the spatial separation on the SOA with
maximum masking, whereas the efficient masking model (Francis,
2003) predicts a strong shift of the optimal SOA. Here, we present
the predictions of our model and compare them with previous
model predictions and experimental data.

To investigate the effects of target–mask distance on the pre-
dicted masking curve, we performed simulations with a 400 arc
seconds (6.7 arc minutes) by 400 arc seconds square target and two
flanking bars, each 400 arc seconds in height and 200 arc seconds
in width. The distance between target and mask was varied in steps
from 200 to 1,800 arc seconds. The input strength, I(x,t), was set
to 0.5 for the target and 0.7 for the mask. The target and the mask
were both presented for 12 ms.

Figure 9 shows that the model correctly predicts that masking is
weaker for larger spatial separations between the target and the mask.
Moreover, in agreement with the psychophysical results of Growney
(1978), strongest masking (indicated by a larger symbol in the curve)
is predicted to shift to longer SOAs with an increasing separation
between target and mask. Our model predictions also agree with those
of the efficient masking model (Francis, 2003).

Masking curves: Effects of practice. Hogben and Di Lollo
(1984) showed that the strength of a metacontrast mask weakens
with practice (see also Ventura, 1980). At the same time, the SOA
yielding strongest masking remains constant. A possible effect of
practice may be an increased attention to the target. This increased
attention might be modeled by assuming that the intensity of the
target in the neural representation increases. Such an increase of
target intensity, however, cannot explain why the SOA with
strongest masking remains constant. This is because, as Francis
(2003) pointed out, most of the existing models, all sharing a
similar underlying mechanism, predict a shift of the bottom of
the masking curve when the relative intensity of the target is
increased. This also holds for our model (Figure 8).

Instead, we suggest that the effect of practice can be modeled
by decreasing the read-out time. If participants are well trained
at the task, they might be able to read out the activation in the
excitatory layer at an earlier point in time. Such a change in the
read-out time would be similar to Bridgeman’s (1971) assump-
tion that the effect of task difficulty can be modeled by varying
the integration time.

To investigate whether read-out time could explain the upward
or downward shift of the masking curve, without changing the
SOA when maximal masking occurs, we performed simulations
with the stimuli from Figure 8. The input strength was set to 0.5 for
the target and to 0.7 for the mask.

Figure 10 shows three masking curves for three different read-
out times. In agreement with the data of Hogben and Di Lollo
(1984), masking becomes weaker with practice, and the SOA with
strongest masking does not change. Model predictions deviate
from the experimentally obtained results at two points: First, at
short and long SOAs, the experimentally obtained curves con-
verge, whereas the simulated curves remain at an almost constant
distance. This discrepancy is probably the result from not scaling
the target-related activation to percentages, for which a sigmoid

Figure 8. Target-related excitatory activation (T) as a function of the
stimulus onset asynchrony (SOA) between target and mask for three
different mask intensities. The inset illustrates the stimulus sequence. ISI �
interstimulus interval.
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linking function could be used. Such a linking function brings the
curves together for near-perfect performance. Second, the value of
the SOA with strongest masking is not reproduced. Experimen-
tally, masking was strongest at an SOA of 80 ms, whereas in the
model, masking was strongest at an SOA of 40 ms. Many factors
could be underlying this discrepancy, such as the particular read-
out time used in the model, the exact shape of the stimuli, or the
response required from the participant. Because our aim here was
to investigate whether we could reproduce the pattern of results
rather than to provide an exact fit of the experimental data, we
leave this issue to future work.

The effect of changing the read-out time in our model is differ-
ent from that of changing the integration time in the lateral inhi-
bition model (Bridgeman, 1978). A change in the integration time
in the lateral inhibition model results in a shift of the SOA yielding
the strongest masking, whereas no such shift was found when
decreasing the read-out time in our model. This suggests that
changes in read-out time can explain the effects of practice,
whereas changes in the integration times in the lateral inhibition
model cannot.

Common onset masking. In the common onset masking para-
digm (Di Lollo et al., 2000), the target and the mask are presented
on the screen together. After some time, the target is removed from
the display, whereas the mask remains on for a variable duration.
Performance is plotted as a function of mask duration and the
resulting curves typically show a decrease in performance with
increasing mask duration (Di Lollo et al., 2000; Di Lollo, Von
Mühlenen, Enns, & Bridgeman, 2004). Moreover, masking
strength is strongly affected by the number of distractor elements
in the display. This effect is usually explained in terms of attention.
A single target followed by the mask (attention is focused) results
in only weak masking. However, increasing the number of possi-
ble targets in the display (attention is distributed) strongly impairs
performance (Figure 11C). Common onset masking under these
conditions of divided attention is also known as object substitution
masking, which refers to the mechanism assumed to underlie this
type of masking (Enns, 2004).

Common onset masking can be modeled by many of the existing
feed-forward and lateral inhibition models of masking (Bischof &
Di Lollo, 1995; Francis, 1997; Francis & Hermens, 2002) and by

Figure 9. A: Two examples of masking curves as a function of spatial separation. The left set of curves is
adapted from “Metacontrast as a Function of the Spatial Frequency Composition of the Target and Mask,” by
R. Growney, 1978, Vision Research, 18, Figure 1, p. 1119. Copyright 1978 by Elsevier. The right set of curves
is adapted from “Metacontrast as a Function of Spatial Separation With Narrow Line Targets and Masks,” by
R. Growney, N. Weisstein, and S. Cox, 1977, Vision Research, 17, Figure 1, p. 1207. Copyright 1977 by
Elsevier. B: Simulation results of the effect of an increasing spatial separation between target and mask (see
legend for size of separation). The stimulus onset asynchrony (SOA) with strongest masking is indicated by
larger symbols. The RS and SC abbreviations indicate names of participants in the Growney (1978) and
Growney et al. (1977) experiments. ISI � interstimulus interval.
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a recurrent model (Di Lollo et al., 2000). The effects of distributed
attention have been modeled in two ways: Either the time to find
the target in the search display is assumed to increase with the
number of elements (Di Lollo et al., 2000) or the strength of the
mask is assumed to vary with the number of distractors (Francis &
Hermens, 2002). Here, we show the simulation results for our
model in which we varied the intensity of the mask, which pro-
vided a slightly better match with the experimental data than a
variation in the read-out time (comparable with the search time in
the model by Di Lollo et al., 2000). Simulation results for both
methods to model the effects of attention are shown on our website
at http://lpsy.epfl.ch/Masking_Model/.

A target Landolt C (radius of 200 arc seconds) was presented to
the model among three distractor Landolt Cs (Figure 11B; Enns &
Di Lollo, 2000). The mask consisted of four dots positioned at the
corners of an imaginary square (720 arc seconds � 720 arc
seconds) around each Landolt C. To model the effects of attention,
we used mask intensities of 0.2 (weak), 0.5 (intermediate), and 0.8
(strong). The intensity of the target was set to 1.0. The target was
presented for 12 ms, and mask duration was varied in steps of 6 ms
from 0 ms to 54 ms.

Both common onset masking and effect of distributed attention
could be explained well by our model (Figure 11C). Predicted
masking strength is higher with both increased durations of the
mask and higher intensities of the mask (modeling the effects of
distributed attention).

General Discussion

We showed that a simple neural network model could explain a
broad spectrum of masking phenomena, including both spatial and

temporal aspects. It is interesting to note that the model does not
rely on multiple channels (Breitmeyer & Öğmen, 2000; Weisstein,
1968) or feedback connections between different layers (Di Lollo
et al., 2000) and comprises only two layers in contrast to, for
example, the boundary contour system model that comprises six
layers (Francis, 1997). Given this simplicity, the range of experi-
mental results that can be explained is remarkable.

Spatial Aspects

Traditionally, masking research has focused on temporal aspects.
However, more recently, it was also shown that the spatial layout of
a mask strongly affects the masking strength of both pattern (Herzog
et al., 2004; Herzog & Fahle, 2002; Herzog, Harms, et al., 2003;
Herzog, Schmonsees, & Fahle, 2003) and metacontrast masks (Du-
angudom et al., 2007; Williams & Weisstein, 1981, 1984). These
spatial aspects turned out to be more important than traditional mea-
sures, such as the overall mask and the target energy (Luminance �
Duration � Surface) ratio, once thought to be the most crucial
component to explain the masking strength (e.g., Breitmeyer & Öğ-
men, 2006). The importance of the spatial layout becomes clear in
Figure 3, in which a grating consisting of 5 elements (having a low
overall mask energy) masks a vernier target more strongly than a
similar grating with 25 elements (having a high overall energy, see
also Herzog, Harms, et al., 2003).

More important, it is not the sheer number of elements in the
mask that determines the masking strength but rather its complex
spatial layout. If only 2 lines are left out of the 25-element mask,
thereby creating two gaps, performance drops to a level compara-
ble with that of the 5-element grating. On a description level of
perceptual organization, the results can be explained by assuming

Figure 10. The effect of a decrease of the read-out time on the masking curve, simulating the effect of practice.
The small inset shows a representation of the experimental results from “Practice Reduces Suppression in
Metacontrast and in Apparent Motion,” by J. H. Hogben & V. Di Lollo, 1984, Perception & Psychophysics, 35,
p. 44. Copyright 1984 by The Psychonomic Society. Numbers 1–5 indicate the different repeated blocks of the
experiment.
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that the gaps group the center 5 elements into one grating and the
other elements into two peripheral gratings (due to grouping by
proximity). In terms of neural processing, our model simulations
show that a first step of this grouping may be explained by a neural
highlighting of irregularities, such as gaps in the grating.

We therefore believe that our results bridge the usually separate
research areas of temporal and spatial vision by showing how
spatial vision emerges over time, which suggests that masking
cannot be explained solely by temporal explanations. Spatial vi-
sion needs to incorporate temporal aspects, and temporal vision
needs to incorporate spatial ones (Herzog, 2007). Our model
suggests that although complex grouping mechanisms seem to be
at work, the experimental findings can be explained without ex-
plicitly implementing such grouping mechanisms and instead can
be explained by relying on basic neural lateral interactions only.

To proceed to more complex spatial processing, our simulations
show that contextual elements may affect target processing, fol-
lowing the same principles as described for irregularities in the
masking gratings (Figure 5; Herzog, Schmonsees, & Fahle, 2003).
Single collinear lines deteriorate performance because their neural
activity interferes with that of the vernier. Contextual gratings,
which contain multiple contextual lines, have less impact because
their inner elements are inhibited before they can interfere with the
vernier. This again indicates that regularity plays an important role
in masking and contextual modulation. Our model suggests that
the inner parts of regular structures are strongly inhibited. It is
interesting to note that there are experimental data providing
evidence for such inhibition: A vernier offset inside a grating is
much more difficult to discriminate than one at the edges of the

grating (Malania, Herzog, & Westheimer, 2007; Sharikadze,
Fahle, & Herzog, 2005).

These findings are not only of theoretical interest but can also
aid in constructing masks of varying strengths. For example, as a
rule of thumb, to create a strong mask one should include irregular
elements such as gaps (Herzog et al., 2001) or contextual elements
(Herzog, Schmonsees, & Fahle, 2003) near the target.

Temporal Aspects

Whereas we primarily focused on modeling spatial processing,
we found that the model could also explain the most prominent
temporal aspects of masking, such as B-type masking and common
onset masking. Although it has been shown that these aspects can
be explained with fairly simple models (Bridgeman, 1978; Francis
& Cho, 2005; Francis & Hermens, 2002), often more complex
mechanisms were assumed to be necessary, such as dual-channel
interactions (Bachmann, 1994; Breitmeyer & Ganz, 1976; Öğmen,
1993) or recurrent processing (Di Lollo et al., 2000; Enns & Di
Lollo, 2000). Our results show once more that many temporal
aspects of masking can be explained with a simple model structure.

An analysis by Francis (2000) revealed that although models of
masking differ in their structure (Anbar & Anbar, 1982; Bridge-
man, 1971; Francis, 1997), they in fact rely on a common mech-
anism that he termed mask blocking. In mask blocking, B-type
masking occurs when the target elicits a relatively strong response
with respect to the mask. Such a strong target response prevents
the mask signals from influencing the target signals for a simul-
taneous presentation of the target and mask. For the mask to affect

Figure 11. A: Simulation results of common onset masking shown as a function of trailing mask duration for
different mask intensities (see legend and main text). B: Illustration of the sequence of target and mask used for
the simulations. C: Representation of the experimental data (Di Lollo et al., 2000) with the numbers near the
graphs indicating the number of possible targets.
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the target, the strong signals of the target have to decay. Hence, the
mask can only be effective after a delay between the target and the
mask. Because at even later presentations of the mask, the mask
will come in too late to have an effect, such a scheme results in
strongest masking for an intermediate SOA, that is, a B-type mask.
It is difficult to prove that our model is a mask blocking system;
however, it reveals similar characteristics.

Alternative Approaches and Models

Fourier analysis. Our experiments demonstrate that minor
changes in the spatial arrangement of the masks can lead to strong
performance differences when these changes modify the percep-
tual organization of the mask. Particularly, the regularity of the
mask seems to be a determining factor for the shine-through effect.
Our model provides an explanation as to why a regular mask yields
weak masking.

An alternative approach to explain the effects of mask regularity
may be based on a Fourier analysis of the stimuli. The rationale is
that a regular mask, such as the 25-element grating, activates a
smaller range of frequency detectors, concentrated at lower fre-
quencies, than does an irregular mask, such as the gap grating. For
this reason, irregular masks that activate a larger range of fre-
quency detectors, comprising also higher frequencies, are more
likely to inhibit those detectors that are important for target pro-
cessing (Weisstein, Harris, Berbaum, Tangney, & Williams,
1977), which could result in an increase of offset discrimination
thresholds. It should be mentioned that although such a Fourier
approach could possibly explain spatial aspects, it does not address
the temporal issues involved in masking.

To test such a Fourier approach, we converted several of our
masks related to the shine-through effect to Fourier space. We then
quantified the difference between the pairs of masks in Fourier
space by applying an appropriate distance measure.

In particular, if a mask i was given by a two-dimensional,
real-valued function, Mi(x) of position x, the Fourier transform
F[. . .] gave a complex function, M̃i(k)�F[Mi(x)], of frequency
k. The difference ��ij between two Fourier-transformed masks i
and j was quantified as an integral over their absolute values,
normalized by the overall luminance of the original stimulus. The
corresponding equations read

�� ij � �
k

dk Dij �k�

Dij�k� � �
�M̃i�k��

�
x�

dx	Mi�x	�

�
�M̃j�k��

�
x	

dx	Mj�x	�� (10)

This procedure did not show obvious relations between the differ-
ences ��ij of any two masks considered in Fourier space and the
differences in the thresholds (�). This is exemplified in Figure 12
for four selected masks, suggesting that simply comparing the
Fourier spectra of the masks cannot explain the experimental
findings (see also Hermens & Herzog, 2007).

Alternative models of masking. Several models have been pro-
posed to explain visual masking. In Table 1, we provide a possibly
incomplete overview. One important characteristic to distinguish the

various models is the number of spatial dimensions in which the input
can be coded. For example, the model by Weisstein (1968) represents
the target as input to one target detector neuron, which means that
zero spatial dimensions of the stimuli are coded.

Bridgeman’s (1978) model allows for a vector input that de-
scribes the stimulus in one dimension. The model, in principle, can
be extended to handle two-dimensional input, although it is not
clear at this point exactly how this should be done. The weighting
of the inhibition between the neurons depends on the distance to
the receptor neuron. In two dimensions, one has to decide how this
distance is computed (city block, Euclidean, etc.). Moreover, we
recently showed that Bridgeman’s (1978) model has difficulties
explaining the effects of the number of elements of a grating mask
(5 or 25) as well as the effect of two gaps in the 25-element mask
(Figure 7 of Hermens & Ernst, 2007). The difference in simulation
outcomes of the Bridgeman (1978) model and our model, which
both apply lateral inhibition, is probably the result of the interac-
tion kernels used. Our model applies both an excitatory kernel and
an inhibitory kernel that interact by means of two separate layers,
whereas the model by Bridgeman only uses lateral inhibition
within one layer. It is probably the combination of the two kernels
that allows for a precise explanation of the effects of the size of a
grating and the effects of the gaps.

A few models, such as the models by Francis (1997) and by
Öğmen (1993) allow for coding in two dimensions. However,
these models are so complex that simplifications to the models’
structure are often needed to be able to perform the simulations on
a standard computer (see Francis, 1997). Some of these simplifi-
cations involve representing the input structure in a single dimen-
sion. However, because the models, in principle, can handle two-
dimensional input, we classified them as two-dimensional models.

A model that can probably explain most of our current results is the
model by Zhaoping (1999, 2000, 2003), which is structurally very
similar to the model presented here. However, because of the collinear
facilitation used in that model, it probably cannot explain the observed
collinear suppression (Figure 5 in Herzog, Schmonsees, & Fahle,
2003) that is captured by our model. Moreover, the two models differ
in their complexity. For example, Zhaoping’s (1999, 2000, 2003)
model uses different types of cells, such as orientation-sensitive cells,
whereas the neurons in our model are not selective to orientation. We
chose to build a model that is as simple as possible, to be able to
clearly work out the important mathematical mechanisms (see Ap-
pendix) while keeping the number of free parameters to a minimum
(avoiding overfitting of the data).

Spatial aspects explained by alternative models. One aspect of
visual backward masking that has been modeled with several
models is the effect of the spatial distance between the target and
a metacontrast mask. This has been simulated with the lateral
inhibition model (Bridgeman, 1978), the boundary contour model
(Francis, 1997), the efficient masking model (Francis, 2003), and
the dual channel model (Breitmeyer & Ganz, 1976).

At least two models have been applied to other spatial aspects as
well. The lateral inhibition model (Bridgeman, 1978) was used to
simulate the effects of the size of the mask and the difference
between spatially overlapping and nonoverlapping masks, in ad-
dition to the spatial separation. The boundary contour system
(Francis, 1997) was also shown to explain the influence of the
distribution of the contour of the mask. Our current simulations
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add to this work by providing an explanation of a broad set of
results involving both spatial and temporal aspects.

Limitations of the Current Approach

Energy summation. One important limitation of the current
model concerns the summation of target-related and mask-related
energy. Activation related to both stimuli enters the same layers,
which results in a summation of the energy. As a consequence, the
model incorrectly predicts that if the target is followed by a

spatially overlapping regular mask, the target will be better visible
than if presented without a mask.

This is an important problem that is likely to show up for all
modeling of spatially overlapping pattern masks in which the
target and the mask are processed in the same channel. It is
therefore not surprising that hardly any modeling of pattern mask-
ing was performed up to now.

Although there are several possible ways to solve the energy
summation problem, such as the use of reset signals (Francis,
1997; Öğmen, 1993) or gain control (Grossberg, 1982), they all

Figure 12. For four pairs of masks, the difference in Fourier power spectra (��) was computed and compared
with the psychophysical thresholds (�). Each subgraph depicts a mask i (top third of each panel) and a mask j
(middle of each panel), together with the absolute difference in Fourier power (lower third of each panel). Note
that the difference in power for masks pairs C and D is very small, resulting in only faint traces in the difference
spectrum. In A–C, we compare the masks with 25 elements, 5 elements, and the 25 elements with gaps to each
other. In D, we compare the 25-element mask with a mask comprising alternating short and long elements
(Hermens & Herzog, 2007). In subgraphs A and D, the difference in thresholds seems to be related to ��ij (i.e.,
��ij is large when the difference in thresholds is large and small when the difference in thresholds is small).
Subgraphs B and C, however, clearly demonstrate the opposite relation.
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increase the complexity of the model. Because we tried to keep the
model as simple as possible, we decided not to incorporate these
mechanisms in the current version.

Long-range contextual effects. Our model incorrectly predicts
that contextual elements only have an effect when they are rela-
tively close to the mask (Herzog, Schmonsees, & Fahle, 2003). To
incorporate the observed long-distance effects, long-range neural
connections could be introduced.

A related issue involves the scaling of the stimuli. If the target
and the mask are simply increased in size, this hardly affects
masking (Figure 4d, Herzog & Fahle, 2002), which is in contra-
diction to the model’s predictions. The model fails at this point,
because only one fixed set of kernel widths is used. A more
complex version of the model could incorporate multiple sets of
kernel widths or adaptive kernel widths.

Intersecting masking curves. Francis and Herzog (2004) have
shown that models that rely on mask blocking predict that for all
SOAs, B-type masking is weaker than A-type masking when the
target and the task remain constant (whereas the mask changes
across conditions). For example, vernier thresholds are predicted
to be lower for B-type masking than for A-type masking for all
SOAs. From this, it follows that A- and B-type masking curves
must never intersect. At the same time, Francis and Herzog (2004)
showed that this prediction can be violated experimentally: Mask-
ing curves can intersect. Up to this point, no simulation with our
model has ever shown intersecting masking curves. It seems,
therefore, that our model shares a shortcoming with all other
quantitative models considered so far. Because our model incor-
porates spatial aspects, this indicates that adding spatial aspects to
a temporal model alone is not sufficient to obtain intersecting

masking curves (for a discussion, see Francis, 2007). Therefore,
the solution might lie in postulating at least two separate process-
ing mechanisms (Reeves, 1982).

Conclusion

We demonstrated that many effects of visual masking could be
explained with a relatively simple neural network model. These
results aid our understanding of visual information processing in
general by showing why temporal aspects are important for spatial
vision and spatial aspects for temporal vision—a relationship that
seems to have been largely neglected in the past. We argue
therefore that both aspects of vision should be considered in one
model. Practically, our results may guide the construction of masks
used as a tool in many research areas.
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Appendix

Appendix Details of the Model, Its Parameters, and Its Dynamics

General Setup

For most of our simulations, we presented the stimuli on a visual
field that was 6,000 arc seconds (100 arc minutes) in width and
2,800 arc seconds (46.7 arc minutes) in height (a larger field was
used for simulating the effects of contextual elements). For the
numerical approximation of integrals and for the representation of
the stimulus, we used a spatial discretization of 20 arc seconds. In
the input map, S(x,t), the pixels belonging to the stimulus were
coded as 1, whereas background pixels were set to 0 unless stated
otherwise.

Table A1 gives an overview of the parameters used in the
model. These parameters are the same as those used by Herzog,
Ernst, et al. (2003) in their simulations of a one-dimensional
version of the neural population model, except for a few minor
changes. First, the interaction weights were reduced from 1.0 to
0.5. Second, for the numerical approximation of the solutions of
the differential equations, a first-order Euler method was used,
instead of the computationally more demanding fourth-order
Runge-Kutta method used before. Third, the size of the time
steps in the simulations was set to 2/3 ms, which allowed faster
simulations. We realize that with this relatively large step size,
a precise approximation of the solution of the differential equa-
tions cannot be obtained. However, because the general behav-
ior of the model remained intact for these settings (see the Basic
model behavior and the shine-through effect subsection), we
decided to favor fast computations over a precise approximation
of the original differential equations. The parameter values
were kept constant across all simulations.

Linking Hypothesis

Most models of masking (Bridgeman, 1978; Francis, 1997)
integrate target-related evidence over some period of time. We
chose, instead, to read out the target-related activity from the
excitatory layer at one specific moment (80 ms after target onset),
because this yielded slightly better model predictions (similar to

the mechanism used by Di Lollo et al., 2000). This, however, does
not mean that integration does not take place in our model.
Because the neural activity is a function of the neural activity in
the past, the model implicitly integrates activity over time. The
main difference between a linking hypothesis that applies integra-
tion and one that does not is that the integrated activation is always
a positive number, which increases over time, whereas the activity
at a particular read-out time can approach zero if enough time is
allowed to pass.

To determine whether the model predictions depend on whether
an integration operation is used in the linking hypothesis, we
performed simulations for both types of linking hypotheses. These
simulations showed that predicted thresholds hardly depend on
whether integration is used in the linking hypothesis. In general,
we tested a variety of linking hypotheses that with a few excep-
tions yielded roughly comparable results.2 An overview of these
simulations and their results can be found at our website at http://
lpsy.epfl.ch/Masking_Model/

Stability Analysis

Here, we show mathematically how our network model re-
produces the experimentally observed efficacy of the different
masks. For this purpose, we analyze the interplay between the
typical length scales expressed in a specific mask with the
length scales of both the feed-forward connections and the
recurrent interactions in the model network. This analysis takes
place in Fourier space, where the layout of a mask or the
influence of the neuronal interactions are studied in terms of
their modes k, each representing a certain length scale x � 2
/k
in retinal space.

Feed-Forward Input

The visual input is first passed through feed-forward filter
kernel V, which resembles the on–off structuring of lateral genic-
ulate nucleus receptive fields. According to the convolution theo-
rem, in Fourier space this filter operation can be performed by a
simple multiplication of the Fourier-transformed kernel with the
Fourier-transformed visual input,

I�x,t� � �S � V��x,t�

3 F�I��k,t� � 2
F�S��k,t�F�V��k,t�. (A1)

Note that the spatial coordinate undergoes a Fourier transforma-
tion, but not the temporal one. As an instructive example depicted
in Figure A1 Panel A, we show the Fourier transform of a stimulus
comprising an infinite number of aligned verniers with a periodic
distance of d � 200 arc seconds. This stimulus S and its Fourier
transform F[S] are described by the following expressions:

2 We thank Claus Bundesen for suggesting this extended analysis of
possible linking hypotheses.

Table A1
Parameters in the Model

Parameter Description Value

�e Time constant excitatory neurons 16 ms
�i Time constant inhibitory neurons 4 ms
se Slope excitatory transfer function 3
si Slope inhibitory transfer function 5.4
�e Scale excitatory interaction

kernel
150 arc seconds

�i Scale inhibitory interaction
kernel

250 arc seconds

wee, wei Interaction weights e3 e, e3 i 0.5
wii, wie Interaction weights i3 i, i3 e �0.5
�E Scale excitatory afferent kernel 100 arc seconds
�I Scale inhibitory afferent kernel 200 arc seconds
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S�x� � �
j���

��

��x � jd�

F�S��k� � const. �
j���

��

��k � 2
j/d�. (A2)

That is, frequency components are at the basic frequency (k �
2
/d) and at higher harmonics but not at any other frequencies.

Note that in Figure A1 we plot the Fourier transform as function
of 1/k rather than k. Thus, high spatial frequencies (periodicity
with a short length scale) are to the left (close to zero) and low
spatial frequencies (periodicity with a long length scale) are to the
right. For the sake of comparison, we plot in the same graph the
Fourier transform of the feed-forward kernel F[V], using the pa-
rameters chosen for our simulations. A comparison of the two
curves in Figure A1 with Equation A1 shows that the chosen
feed-forward kernel actually suppresses all frequency components
with a periodicity of less than d � 200 arc seconds (i.e., all higher
frequencies). Therefore, for a stimulus that is composed of a
regular arrangement of aligned verniers at d � 200 arc seconds,
mainly its envelope is transferred by the feed-forward connections

as an input I(x, t) to the two neuronal layers, while the interior of
regular structure is largely suppressed.

Recurrent Interactions

Once a filtered input, I(x,t), is given to the network, activity
is dynamically exchanged between the two neuronal layers. The
nonlinearity of the system excludes an analytical solution of the
response to arbitrary spatio-temporal stimuli as the ones used in
the experiments. Instead, we use a linear stability analysis to
investigate some of the basic properties of our neuronal net-
work, which dominate the processing of complex, time-varying
stimuli.

For this purpose, we analyze how the network reacts to arbitrary
perturbations (i.e., feed-forward inputs), when it is in a spatially
homogeneous steady state. Such a steady state is characterized by
a spatially constant activation of all excitatory and inhibitory
neuronal populations, Ae(x, t) � Ae0 and Ai(x, t) � Ai0, in response
to a constant input I(x, t) � constant. With the parameters chosen
for our model, this steady state is stable; that is, any transient
perturbation in the input I will lead to an exponentially decaying
response of the network, which after some time settles back into its
steady state. In the following, we quantify how fast this decay will
be, given a perturbation with a typical length scale k.

(Appendix continues)

Figure A1. A: Fourier-transforms of an infinitely wide grating of aligned verniers F[S] (solid lines) and of the
feed-forward input kernel V, F[V] (dashed lines), respectively. B: Characteristic exponents �� (solid line) and
�- (dashed line). The maximum of both exponents is marked with a vertical line. A and B are both shown in
dependence of retinal space x, expressed in arc seconds.
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We first express Ae and Ai as the steady activations Ae0 and Ai0

plus some (small but arbitrary) perturbations �Ae and �Ai:

Ae(x, t) � Ae0 � �Ae(x, t),

and

Ai(x, t) � Ai0 � �Ai(x, t).

Inserting these expressions into the differential equations describ-
ing the model’s dynamics (Equations 1 and 2) and linearizing the
gain functions he and hi yields

�e

�

�t
�Ae�x,t� � � �Ae�x,t� � se�wee��Ae � We��x,t�

� wie��Ai � Wi��x,t�}

� i

�

�t
�Ai�x,t� � � �Ai�x,t� � si�wei��Ae � We��x,t�

� wii��Ai � Wi��x,t�}. (A3)

These equations are transformed into Fourier space with respect to
x (we denote the Fourier transform with a bar placed over the
corresponding variable), obtaining the characteristic equation

�

�t
�̃A � L�� Ã, (A4)

where �̃A � {� Ãe, �̃Ai} denotes the vector composed of the
Fourier-transformed perturbations, and L describes the Jacobi-
matrix of this system of partial differential equations with the
corresponding coefficients

L � � l11 l12

l21 l22
	 �



1

�e
�2
seweeW̃e�k� � 1�

1

�e
�2
sewieW̃i�k��

1

�i
�2
siweiW̃e�k��

1

�i
�2
siwiiW̃i�k� � 1� � . (A5)

The eigenvalues of L are the characteristic exponents ��(k) of our
dynamic system that read

���k� � ���l11 � l22�
2

4
� l21l12 � l11l22 �

l11 � l22

2
. (A6)

These characteristic exponents determine the network behavior in
the vicinity of its steady state: Positive exponents for a mode k
would signal that perturbations with a length scale of x � 2
/k
grow exponentially with time, actually destabilizing the steady
state. Negative exponents signal an exponential decay of the cor-
responding mode in a perturbation, whereas exponents with an
imaginary part reveal that the system tends to develop oscillations.

In Figure A1 Panel B, we show the two characteristic exponents
in dependence on the spatial scale of an arbitrary perturbation in
the system. First, we observe that the exponents are both negative
for all x, confirming that the system is inherently stable: In the
regime in which our linear stability analysis is valid, recurrent
excitation never leads to activity exponentially increasing over all
bounds. Thus, the maximum exponent determines which pertur-
bation decays slowest. Second, we realize that the exponent �� is,
for 2
/k � 700, significantly smaller than ��. While relaxing into
its steady state, the system’s dynamics will therefore be dominated
by the exponent ��, which has a maximum at approximately x �
860 arc seconds.

In the final step of our analysis, we consider the transient
presentation of a mask pattern as a spatio-temporal perturbation of
our network. This means that features of a mask with a typical
length scale of 860 arc seconds will dominate the network’s
activity. For example, the mask with 5 elements or the 25-element
mask with the gaps, inserted at the element positions �3, have
discontinuities at roughly this length scale. The outer elements of
a 5-element grating, or the gaps, are separated by a distance of 800
arc seconds and therefore are dominant in the mask’s representa-
tion within the network activation. Consequently, stimuli lying in
between these dominant features, such as the remaining activity
from the vernier, are rigorously suppressed. In this way, the
stability analysis confirms the intuitive understanding of the net-
work’s behavior presented in the Results section.
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