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Abstract. An analytical model is proposed that can predict the shape of the poststimulus time histogram (PSTH)
response to a current pulse of a neuron subjected to uncorrelated background input. The model is based on an
explicit description of noise in the form of an escape rate and corresponding hazard function. Two forms of the
model are presented. The full model is nonlinear and can be integrated numerically, while the linearized version can
be solved analytically. In the linearized version, the PSTH response to a current input is proportional to a filtered
version of the input pulse. The bandwidth of the filter is determined by the amount of noise. In the limit of high
noise, the response is similar to the time course of the potential induced by the input pulse, while for low noise it is
proportional to its derivative. For low noise, a second peak occurs after one mean interval. The full nonlinear model
predicts an asymmetry between excitatory and inhibitory current inputs. We compare our results with simulations
of the integrate-and-fire model with stochastic background input. We predict that changes in PSTH shape due to
noise should be observable in many types of neurons in both subthreshold and suprathreshold regimes.
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1. Introduction

How are temporal signals transmitted by neurons in the
presence of noisy background input? In particular, what
is the typical response of a neuron to a single presy-
naptic spike? To answer this question, one experimental
approach has been to study the temporal response of
the a single neuron to an input current pulse that mim-
ics the time course of a postsynaptic current elicited
by an incoming spike (Fetz and Gustafsson, 1983;
Poliakov et al., 1996). Those studies clearly estab-
lished that background noise has an influence on the
response in tonically firing (suprathreshold) neurons.
However, the exact nature of this influence is not yet
fully understood.

In this article we present a theoretical approach de-
scribing the effect of noise on the response of a spiking
neuron that incorporates (1) an explicit noise model,
(2) a postsynaptic potential (PSP) of arbitrary shape,
and (3) the membrane potential trajectory following
a spike, including the afterhyperpolarization potential
(AHP). We then use the model to predict the responses
of an integrate-and-fire type neuron model with differ-
ent levels of diffusion noise. In the companion article
(Herrmann and Gerstner, forthcoming) we use a more
realistic spiking neuron model with parameters adapted
to motoneurons to compare our theoretical predictions
with published experimental data from motoneurons.

Experimentally, a neuron’s response to an input spike
generating a postsynaptic potential pulse is measured



136 Herrmann and Gerstner

with the peristimulus time histogram (PSTH)—that is,
the probability of firing as a function of time t since the
stimulus, here denoted PSTH(t). Physiologists have
long suspected that the shape of the PSTH response to a
pulse is determined by the amount of synaptic noise, the
time course of the postsynaptic potential (PSP), and its
derivative (Moore et al., 1970; Knox, 1974; Kirkwood
and Sears, 1978; Fetz and Gustafsson, 1983; Poliakov
et al., 1997; see also Abeles, 1991). The basic sce-
nario is illustrated in Fig. 1. The experimental record
documenting the effect of noise from stochastic back-
ground synaptic activity on the PSTH response ranges
from Aplysia to motoneurons in cat, and we believe the
underlying principles are even more generally applica-
ble. Briefly, theoretical analyses have been made for
two cases: a neuron in the subthreshold regime sub-
jected to substantial noise and a noiseless neuron in
the suprathreshold regime. By making simplifying as-
sumptions, the theories proposed were able to account

Figure 1. Effect of noise on the PSTH. A neuron responds to a current transient, I (t) = I0 + �I (t) (A, arbitrary units) with an increased
spiking probability, measured via the PSTH. Left column: “Low noise.” Right column: “High noise.” Row B, the noisy current input including
diffusive noise simulating uncorrelated background input. The time course of the noisy input current is the same in both columns; only the noise
amplitude σu has been changed. Row C, time course of the PSP derivative (arbitrary scale). Rows D and E, PSTHs obtained from a simulation of
a standard integrate-and-fire neuron with diffusive noise, Eq. (6) using the baseline input current levels I0 indicated in the plots. In row D, RI0

is above threshold and the neuron fires tonically; in row E, RI0 < ϑ and the neuron fires irregularly. Very high peak amplitudes can be observed
in low noise when the mean input is about 1 σu below threshold. In row E, left, the peak has been clipped; its amplitude is 1133 Hz. Simulation
parameters: threshold ϑ = 0, R = 1, τ = 4 ms, η0 = 1. “Low noise” σu = 2.2 10−5; “high noise” σu = 7.07 10−4. Input pulse amplitude
�I (t) = 0.001 (t/τr )exp(1 − t/τr ), where τr = 0.5 ms. Time step 0.1 ms averaged to 0.2 ms; 50,000 stimulus presentations.

qualitatively for the observed changes in the PSTH but
do not explain fully the experimental record (Poliakov
et al., 1996, 1997) or allow the PSTH to be predicted
for a given noise level. In this article, we develop a
general theoretical framework to answer this question.
We illustrate the approach with the standard integrate-
and-fire neuron. Because of its single time constant,
an integrate-and-fire model can only capture a limited
range of the behavior of a real neuron. In the companion
article we will apply our theoretical results to a more
detailed spiking neuron model to compare our results
with published experimental data.

Briefly, our approach may be summarized in the fol-
lowing three steps. First, noise due to stochastic back-
ground activity is modeled as diffusion noise (Stein,
1967). In neurons with diffusion noise, the noise level
appears to control the relative influence of the PSP
and its derivative on the shape of the PSTH profile in
the same way as in the (suprathreshold) motoneuron
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experiments. As a reference model, we study the
integrate-and-fire model. Second, to avoid the math-
ematical difficulties of diffusion noise, we replace it
by escape-rate noise (Plesser and Gerstner, 2000). We
identify an escape-rate function that gives a good match
to diffusion noise over a wide range of mean inputs and
demonstrate how it can be used to predict the PSTH.
Finally, using a linearized version of the full model
we show analytically how the noise level controls the
response.

Figure 1 gives an overview. For t < 0, a neuron is
subjected to diffusion noise superimposed on a con-
stant current. It fires randomly with a mean level of
activity given by A0 (spikes/sec); the mean interspike
interval is the inverse of the mean firing rate—that is,
T0 = 1/A0. At time t = 0, a current pulse I (t) is ap-
plied. The resulting postsynaptic potential PSP(t) may
or may not drive the neuron to threshold, causing a
spike to be fired. Repetition of this process yields the
PSTH, an estimate of the probability PSTH(t) of an
extra spike following the pulse.

The size and shape of the PSTH depend on the noise
level. Increasing the noise amplitude increases the
baseline firing rate and decreases the amplitude of the
PSTH peak. For high noise, the function PSTH(t) ap-
pears approximately proportional to PSP(t) (see Fig. 1,
right column). For low noise, PSTH(t) is reminiscent of
the PSP derivative, PSP′(t), which features a trough fol-
lowing the peak; however, the time courses of PSP′(t)
and PSTH(t) are frequently different (Poliakov et al.,
1996). This effect of noise on the time course of the
PSTH is what we explain with a theory.

2. Methods

In this section, we begin by defining a general, deter-
ministic neuron model, the spike-response model. We
then define a noise model based on escape rates, which
allows us to calculate the interval distribution and sur-
vivor function. In Section 3 we will apply these func-
tions to obtain a theory predicting the PSTH of a single
neuron responding to a small pulse; to illustrate our
findings, we apply the theory to integrate-and-fire neu-
rons with diffusion noise and compare our theoretical
predictions to simulations.

2.1. Neuron Model: The Spike-Response Model

The spike-response model (Gerstner, 1995, 1999,
2000) consists of a threshold ϑ , a refractory function η,

Figure 2. The spike-response model (solid curve) approximates a
spike and its afterpotential (dashed) using a template-like refractory
kernel, η(t − t̂ ) (inset). The refractory kernel is applied whenever the
membrane potential u(t) reaches the threshold ϑ , causing a spike.
In the example shown here (which corresponds to the integrate-and-
fire model), the spike at time t̂ is a formal event, and its form has
been reduced to a delta function. The kernel η causes the membrane
potential u to be reset and then to decay exponentially. Other kernels,
not presented here, can provide better approximations to real action
potentials and afterhyperpolarizations (Kistler et al., 1997).

and a response kernel ε describing the response of the
membrane potential to an external current input I (t).

The refractory function η(t − t̂ ) generates the after-
hyperpotential following a spike at time t̂ (Fig. 2). The
kernel ε(t − t̂, s) describes the response of the mem-
brane to a small fluctuation at s = 0; the t − t̂ depen-
dence allows spike-dependent conductance changes to
be represented. The net input potential

h(t | t̂ ) =
∫ ∞

0
ε(t − t̂, s)I (t − s) ds (1)

integrates the current input I (t). The resulting mem-
brane potential u(t) is the sum of the (negative) refrac-
tory potential and the net input potential,

u(t) = η(t − t̂ ) + h(t | t̂ ), (2)

where t̂ is the last firing time of the neuron. When the
membrane potential exceeds the threshold, a spike is
emitted and the potential is reset by setting t̂ = t in
Eq. (2). With an appropriate choice of the kernels ε

and η, the spike-response model can reproduce the dy-
namics of the Hodgkin-Huxley model to a high degree
of accuracy (Kistler et al., 1997).
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The following exponential kernels result in a neu-
ron equivalent to the standard integrate-and-fire model
(Gerstner, 1995, 2000):

η(t − t̂ ) = −η0e− (t−t̂ )

τm H(t − t̂ ) (3)

ε(t − t̂, s) = R

τm
e− s

τm H(s)H(t − t̂ − s), (4)

where τm is the membrane time constant, R is the in-
put resistance, η0 is a scale factor for the refractory
function, and H(·) is the Heaviside step function with
H(x) = 0 for x ≤ 0 and H(x) = 1 for x > 0. The mem-
brane time constant τm and input resistance R would be
determined experimentally from the response to small
currents. With this choice of kernels the deterministic
membrane potential evolves between spikes accord-
ing to the standard integrate-and-fire equation:

−τm
d

dt
u(t) = u(t) + RI (t). (5)

Following a spike the membrane potential is reset to
u(t̂ ) = −η0. For constant input I0, the input potential
is h0(t | t̂ ) = RI0(1−exp[−(t − t̂ )/τm]); in this article,
we sometimes write h0 (with no arguments), meaning
h0 = h0(t, −∞) = RI0.

Although we use exponential kernels for the purpose
of illustration, we emphasize that the spike-response
model is more general. In principle, the refractory and
PSP kernels η and ε can take any form and can, for
example, accomodate an absolute refractory period or
synaptic delay or be fit to more realistic models (Kistler
et al., 1997). The model does not include effects arising
from adaptation, which we exclude to study neuronal
behavior close to a steady state.

2.2. Noise Models

Taken by itself, the spike-response model is com-
pletely deterministic. Now we investigate the effect of
adding noise. Our starting point is diffusion noise, mo-
tivated by stochastic spike arrival (Stein, 1967). For the
standard integrate-and-fire model with diffusion noise,
the steady state can be treated analytically (Tuckwell,
1989), but the distribution of firing times is not known.
Our goal in this section is to identify a second noise
model for which the interval distribution can be calcu-
lated and that matches the diffusion noise model to a
high degree of accuracy. Thus we consider two differ-
ent ways to add noise to our model: first, the standard

Figure 3. Two ways of adding noise to an integrate-and-fire model.
A: In noisy integration, diffusion noise is added to the membrane
potential during the integration process. The actual trajectory (solid
line) drifts away from the noise-free reference trajectory (dashed).
When the potential reaches threshold, a spike is generated and the po-
tential is reset. Spike occurences are symbolized by the solid upward
arrows. B: In an escape-rate formulation, noise is represented through
a hazard function: the neuron can spike even when the membrane
potential is below threshold. The probability of firing ρ(t) (large
arrow) depends on the instantaneous distance to threshold. When a
spike occurs, the membrane potential is reset and follows the refer-
ence trajectory until the next spike. Both diagrams are for constant
input current I (t) = I0.

diffusion (noisy integration) process; next, an escape-
rate process, represented in Fig. 3.

2.2.1. Noisy Integration (Diffusion Model). In this
first noise model, which we present for reference, noise
is added to the integration process of an integrate-and-
fire model (Stein, 1967; Tuckwell, 1989) according to
the stochastic differential equation

τm
du

dt
= −u(t) + R[I (t) + ξ(t)], (6)

where ξ(t) represents Gaussian white noise with zero
mean and autocorrelation 〈ξ(t)ξ(t ′)〉 = σ 2

I δ(t −t ′) (and
we have taken R = 1); this is an Ornstein-Uhlenbeck
process (Uhlenbeck and Ornstein, 1930). If there were
no threshold, the possible trajectories would have a
Gaussian distribution about the noise-free reference
trajectory, with variance σ 2

u (t) = (Rσ 2
I /(2τm))[1 −

exp(−2t/τm)] (Tuckwell, 1989). With a threshold,
however, the distribution of trajectories is non-
Gaussian (due to the absorbing boundary at u = ϑ).
The interval distribution P(t | t̂) given by the distri-
bution of first passage times is known to be hard to
calculate.

For constant input current I (t) = I0, however, it is
possible to calculate the mean interval and hence to
determine the effect of varying the mean potential
h0 = RI0 on the mean rate. For integrate-and-fire neu-
rons with diffusion noise, the mean interval 〈T 〉 in
the stationary state is given by (Johannesma, 1968;
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Tuckwell, 1989; Brunel and Hakim, 1999)

〈T 〉 :=
∫

s P(s | 0) ds

= τm

∫ ∞

0
dv

e−v2

v
[e2vu0 − e2vr ], (7)

where u0 = (ϑ − h0)/σ0 and r = (ηreset − h0)/σ0 with
σ0 = RσI /

√
τm . The rate is simply A0 = 1/〈T 〉.

Although we do not have an analytical result for the
response to nonstationary inputs, 1 we can observe it in
simulations by randomly applying a pulse to a neuron
and accumulating the firing times into a PSTH. Each
time the pulse is applied, there is an increased chance
of a spike resulting in a peak in the PSTH after t = 0. In
Fig. 1, rows D and E show PSTHs derived from simula-
tions of integrate-and-fire neurons with diffusion noise.
We see that the shape of the PSTH response to a current
pulse depends on the noise level. Before the pulse the
neuron spikes at a constant mean firing rate determined
by the mean input I0 and the noise level. In the figure,
the PSTH in row D, left column, was obtained at a low
noise level with a mean input that is above threshold.
The input pulse increases the probability of spiking, re-
sulting in a peak in the PSTH just after t = 0. A trough
is visible immediately following the peak. The neuron
fires tonically with a period of about 30 Hz; a secondary
peak occurs at t = 33 ms. Increasing the level of noise
increases the baseline firing rate and decreases both the
PSTH peak amplitude and the depth of the trough (row
D, right column). For sufficiently high noise, the trough
disappears. When the mean input is below threshold,
a similar effect is observed (row E, left-hand column,
low noise; upper trace in the right-hand column, high
noise for the same I0 as at left). Note that the changes
in the peak and trough are not due to the change in
baseline firing rate. To show this, we have readjusted
the bias current I0 in the high-noise regime to produce
the same mean rate A0 as in the low-noise regime (row
E, right, lower trace). As can be seen by comparing the
two traces, the shape and size of the peak hardly change
(the secondary peak shifts as expected because of the
change in the mean period).

2.2.2. Noisy Threshold (Escape-Rate Model). We
have seen that the noisy integration model displays the
behavior we are trying to investigate but is difficult to
analyze in the general case. We now introduce escape-
rate noise models, which can be analyzed. After briefly
describing a very simple model, the linear escape-rate

noise model, we will present a noise model that behaves
very much like the diffusion noise model.

Rather than adding noise explicitly to the membrane
potential, we could simply view the spike-generation
process itself as being stochastic. The escape-rate for-
mulation provides a convenient way of doing this. In-
tuitively speaking, the probability of a spike at time t
depends on the distance between the membrane poten-
tial and the threshold. More precisely, we introduce an
escape rate f , which may be a function of the mem-
brane potential u and of its derivative. Thus we can
write ρh(t | t̂ ), the hazard function given the net input
potential h(t | t̂ ) and the time of the last spike t̂ , in terms
of f (Plesser and Gerstner, 2000):

ρh(t | t̂ ) = f [u(t); u̇(t)], (8)

where u(t) = η(t − t̂ )+h(t | t̂ ). This noise model may
be viewed as corresponding to a stochastic threshold.
Two specific escape-rate functions f are presented in
the following subsections. Before examining them we
pause to make some general observations.

First we note that we may calculate the potential
u(t) = η(t − t̂ )+h(t | t̂ ) if the last firing time t̂ and the
input current I (t) are known (Eq. (1)). The advantage
of this way of describing noise is that if we know the
escape function f , we can calculate the hazard function
ρ and hence the interval distribution (i.e., the probabil-
ity density of firing at time t given that the last spike
was at t̂ , in the presence of the input h(t)):

Ph(t | t̂ ) = ρh(t | t̂ ) exp

(
−

∫ t

t̂
ρh(t

′ | t̂ ) dt ′
)

. (9)

This probability density depends implicitly on t̂
through Eqs. (2) and (8). The dependence on t̂ en-
ables us to take refractoriness into account. This model
belongs to the class of renewal models; we can read-
ily calculate the survivor function (Perkel et al., 1967;
Cox, 1962) (i.e., the probability that a neuron does not
fire between t̂ and t) in the presence of the input h,
Sh(t | t̂ ) = exp(−∫ t

t̂ ρ(t ′ | t̂ ) dt ′). For later use, we now
define S0(t − t̂ ), the survivor function for a constant
input h0 = RI0. Then S0(t − t̂ ) is completely deter-
mined by the escape function f , the mean input poten-
tial h0, and the refractory function η(t − t̂ ). Examples
of the interval distribution Ph(t | t̂ ) and survivor func-
tion Sh(t − t̂ ) are shown in Fig. 4 for the “Gaussian
ISI” escape-rate model described later in this article.
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Figure 4. A: Escape rate as a function of the normalized potential distance to threshold (u − ϑ)/(
√

2σu), calculated using Eq. (17). Dotted,
u′ = 1; dashed, u′ = 0.5; solid, u′ = 0. B: Interval distributions Ph(t | t̂ ). C: Survivor functions Sh(t − t̂ ) for the integrate-and-fire neuron
calculated using the Gaussian ISI escape rate, Eq. (17). Dashed lines, high noise (σu = 1); solid lines, low noise (σu = 0.005). The threshold is
0 in both cases; the input potential level h0 was adjusted to give the same mean firing rate for both noise levels A0 ≈ 30 Hz.

2.2.3. Linear Escape-Rate Noise Model. In the linear
escape-rate model, the function f is piecewise linear.
We express f in terms of the threshold ϑ and a rate ρ1

of increase in firing rate above threshold:

f (u) =
{

ρmin for u(t) < ϑ

ρmin + ρ1(u − ϑ) for u(t) ≥ ϑ.
(10)

In the case of constant input RI0 ≥ ϑ , the hazard func-
tion is

ρh(t | t̂ )

=
{

ρmin for t − t̂ < trefr

ρmin + ρ1[η(t − t̂ ) + h0(t − t̂ ) − ϑ] for t − t̂ ≥ trefr,

(11)

where trefr is given by the condition η(trefr) +
h0(t − t̂ ) = ϑ . For t → ∞ we find ρh(t | t̂ ) → ρ0 :=
ρmin + ρ1(RI0 − ϑ).

Figure 5 shows the relations between the escape rate
f , the potential u, and the hazard function ρ. Variants
of the linear escape-rate model correspond to a single-
memory Markov point process and are commonly used
to describe the spike generation process, such as in
auditory nerve fibers (Siebert and Gray, 1963; Miller
and Mark, 1992). Above threshold, the linear escape-

rate model can give a good approximation of diffusion
noise. The escape rate introduced in the next section is
asymptotically linear for u � ϑ .

2.2.4. Gaussian-ISI Escape-Rate Noise Model. This
noise model gives a good approximation to the diffu-
sion noise model. It is similar to the Arrhenius and
Current noise model (Plesser and Gerstner, 2000) but
is not restricted to the subthreshold regime.

To motivate this escape rate, we first examine
the case in which a neuron is subjected to constant
suprathreshold stimulation and its reference trajectory
approaches threshold with nearly constant slope. This
is, in fact, the typical situation in which experimental
measurements of the effect of noise on the PSTH are
carried out (Fetz and Gustafsson, 1983; Poliakov et al.,
1996). The ISI distribution P(t | t̂ ) will be very nearly
Gaussian. Accordingly, we seek an escape-rate func-
tion that yields a Gaussian distribution of interspike
intervals,

P(t | t̂ ) = 1

σt

√
2π

exp

[
− (t − t̂ − t0)

2

2σ 2
t

]
(12)

.= G(t − t̂ − t0, σt ), (13)
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Figure 5. A: Escape function f (u). B: Membrane potential after
a spike u(t). C: Hazard function ρ(t) in the presence of a constant
input h0 = RI0. Top row, the input is below threshold, h0 < ϑ . Bot-
tom row, h0 > ϑ . A: Thick curves: In the linear escape function
f (u), the firing rate is ρmin below threshold; for u > ϑ it increases
with u, with slope ρ1. Thin curves: nonlinear, diffusion-like escape
function. A constant input potential h0 results in a “background fir-
ing level” f (h0). For the linear escape function, when h0 < ϑ (top),
f (h0) = ρmin. B: An example of a membrane potential trajectory
u(t). A spike occurs at time t̂ , generating a refractory potential.
C: The resulting hazard function ρh(t | t̂). Thick curves: For the
linear escape function, when h0 < ϑ (top), the hazard function does
not change after a spike; when h0 > ϑ (bottom), the hazard function
is clamped at ρmin following the spike until the membrane potential
u again crosses threshold. Thin curves: The hazard function for the
nonlinear, diffusion-like escape function is modulated by the refrac-
tory function, but only weakly for RI0 < ϑ .

where t0 is the mean interval and σt is the width
parameter of the temporal distribution. Making use
of the relation d

dx (Erfc( x√
2σt

)) = −2G(x, σt ) where
Erfc(x) = 1 − Erf(x) is the complementary error func-
tion, we find the survivor function

S(t − t̂ ) = 1

2
Erfc

(
t − t̂ − t0√

2σt

)
. (14)

From renewal theory, the hazard function must satisfy
S(t − t̂ ) = exp[− ∫ t

t̂ ρ(t ′) dt ′] from which we find

ρ(t − t̂ − t0) = 2
G(t − t̂ − t0, σt )

Erfc
( t−t̂−t0√

2σt

) . (15)

To obtain the escape rate in terms of (u − θ)

instead of t − t̂ − t0, we make the following lin-
ear approximation near threshold. Suppose that
the membrane potential passes threshold at t0—
that is, u(t0) = ϑ . Then u(t − t̂) = ϑ − (du/dt) | t0
(t − t̂ − t0) ⇒ t − t̂ − t0 = (u − θ)/(du/dt) | t0 . Hence

the desired escape rate is of the form

f (u − θ) = 2
du

dt

∣∣∣∣
t0

G(u − θ, σu)

Erfc
(

u−θ√
2σu

) (16)

(using σu = σt (du/dt) | t0 ). In the limit of u � ϑ , f
asymptotically approaches (u − θ)(du/dt) | t0/σ

2
u .

Equation (16) has been motivated above for the sup-
rathreshold regime. In the subthreshold regime the es-
cape rate is expected to be proportional to G(u −θ, σu)

—that is, the free density at threshold (Plesser and
Gerstner, 2000). If we divide G by Erfc, the es-
cape rate continues to increase above threshold as it
should.

Taking together both the above Gaussian escape rate
and the term on the right-hand side of Eq. (16), we
arrive at the escape rate

f (u−θ) = w

(
1

τ
+2u′ H [u′]

)
G(u − θ, σu)

Erfc
(

u−θ√
2σu

) , (17)

which we will use throughout this article, where
u′ = (du/dt) evaluated at t and w is a parameter. The
first term describes the escape rate for constant sub-
threshold or slowly varying inputs; the second term
gives the escape rate for rapidly varying or suprathresh-
old inputs; and the constant w is an overall factor to be
optimized. The H [u′] term precludes firing on down-
ward strokes. Optimization was performed using the
procedure described in Plesser and Gerstner (2000):
the median value was chosen from the optimal weights
determined for a large set of periodic and aperiodic
stimuli; the optimal value is w = 1.21 (H.E. Plesser,
private communication). Figure 4 shows the escape
rate as a function of membrane potential.

3. Results

Using the noisy neuron model defined above we can
predict the probability of a spike given the input and
the initial conditions. How do we predict the PSTH?
Recall that in experiments the PSTH is measured for a
single neuron as follows: a stimulus is presented many
times and the histogram of spike times or PSTH is
calculated and expressed as a firing rate. Each time the
stimulus is presented, the initial condition of the neu-
ron is not known. Thus, the PSTH is the probability
of a spike given random initial conditions. In the fol-
lowing section we apply a theory of population activity
that allows us to move from known to random initial
conditions and so to predict the PSTH. We then apply
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this theoretical result to the integrate-and-fire neuron
model. In Section 3.2.2 we compare theoretical pre-
dictions with simulations.

3.1. Theoretical Results

3.1.1. From a Noisy Population to the PSTH of a Sin-
gle Noisy Neuron. Consider a homogeneous popula-
tion of N unconnected, noisy neurons initialized with
random initial conditions, all receiving the same in-
put. Since the neurons are fully independent and their
phases are unsynchronized (incoherent state), the ac-
tivity of the population as a whole in response to a given
stimulus is equivalent to the PSTH compiled from the
response of a single noisy neuron to N repeated pre-
sentations of the same stimulus. Hence, we can ap-
ply theoretical results for the activity of homogeneous
populations to the PSTH of an individual neuron. This
section summarizes the theory.

The theory in Gerstner (1995, 2000) describes the
proportion A(t) of active neurons in a population of
size N (i.e., the population-averaged activity) of a large,
homogeneous, randomly initialized population of neu-
rons. Formally, we define

A(t) = lim
�t→0

1

�t

nact(t; t + �t)

N
, (18)

where nact(t; t + �t) is the number of neurons that
emitted a spike between t and t + �t ; N is the total
number of neurons in the population. The population
dynamics are given in terms of (1) the net input poten-
tial generated by the input applied to the entire popula-
tion and (2) the previous activity of the population, in
the following integral equation:

A(t) =
∫ t

−∞
Ph(t | t̂ )A(t̂ ) dt̂, (19)

where Ph(t | t̂ ) is the probability density describing the
probability of firing for each neuron at time t , given that
the neuron has fired at a previous time t̂ , driven by the
net input potential h(t | t̂ ). Experimentally, Ph(t | t̂ ) is
estimated using the ISI (inter-spike interval) histogram.
In the escape noise model, Ph(t | t̂ ) is given by Eq. (9).

Equation (19) gives the exact response and is nonlin-
ear. It may be evaluated numerically for specific choices
of noise models and neuron models. An algorithm for
calculating the full response for the integrate-and-fire
neuron with an escape rate noise model is given in the

Appendix. However, the relation between the response
and the input is not explicitly clear. Fortunately, as we
show next, expansion of Eq. (19) to first order in the
signal �I yields a fair approximation of the response
explicitly in terms of the postsynaptic potential.

Consider a single neuron to which a constant in-
put I0 is applied, producing a mean firing rate A0.
If we now add a small current pulse �I (t), the
membrane potential will be perturbed by an amount
�h(t | t̂ ) = ∫ ∞

0 ε(t − t̂, s)�I (t − s) ds. Since this per-
turbation can be identified with the postsynaptic po-
tential we write PSP(t | t̂ ) for �h(t | t̂ ). Notice that it
explicitly depends on the last firing time t̂ .

We are going to determine the PSTH of the neu-
ron by calculating A(t) = A0 + �A(t). Thus A0 is the
baseline firing level of the PSTH and �A(t) describes
the peak.

3.1.2. Constant Input. The reference point A0 of the
linearization is the mean activity of a population receiv-
ing a constant input.2 Let us denote the interval distri-
bution in this case by P0(t | t̂ ). We can write the mean
activity as the inverse of the mean interval—that is,

A0 =
{ ∫ ∞

0
s P0(t̂ + s | t̂ ) ds

}−1

. (20)

Figure 6 plots the mean firing rates for the integrate-
and-fire neuron with the Gaussian ISI noise model, for
high and low noise. They are compared with the rates
for the noisy integration model (see Eq. (6)).

3.1.3. Impulse Response. Now we add a fluctua-
tion to the previously constant input. The fluctua-
tion could be a postsynaptic current pulse. In terms
of the input current, we write I (t) = I0 + �I (t).
The input potential becomes h(t | t̂ ) = h0(t | t̂ ) +
PSP(t | t̂ ), where PSP(t | t̂ ) = �h(t | t̂). The popula-
tion activity will respond by undergoing a transient
A(t) = A0 + �A(t) before decaying back to the origi-
nal level A0. The shape of the transient �A(t) depends
on the size (and duration) of the input pulse, the par-
ticular noise model, and the population activity itself
(Gerstner, 2000):

�PSTH(t) = (influence of past perturbations)

+ d

dt
(a filtered version of the potential)
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Figure 6. Theoretical mean firing rate A0 as a function of the input potential h0 = RI0 for an integrate-and-fire neuron with Gaussian ISI
escape noise compared with the noisy integration model it approximates. A: High noise (σu = 1). B: Low noise (σu = 0.005). Thin continuous
line, Gaussian ISI noise model. Thick dashed line, the theoretical value calculated for diffusion noise using the mean-rate equation (see Eq. (7)).
Parameters: τ = 4 ms, η0 = 1, ϑ = 0.

or

�A(t) =
∫ t

−∞
dt̂ Ph0(t | t̂ ) �A(t̂ )

+ A0
d

dt

{ ∫ t

−∞
dt1

∫ t

−∞
dt̂ PSP(t1 | t̂ )

×F(t − t̂, t1 − t̂ )

}
, (21)

where F(t − t̂, t1 − t̂ ) = ∂Sh(t | t̂ )

∂PSP(t1 | t̂ )
|PSP = 0.

3.2. Application to Integrate-and-Fire Neurons

The above is a very general result and needs to be eval-
uated for a specific model. In this section we apply it to
the integrate-and-fire neuron model using the Gaussian
ISI escape-rate noise model and compare theory with
simulations.

3.2.1. Interpretation of Theoretical Results. For the
integrate-and-fire neuron the impulse response may be
written in the following form (Gerstner, 2000):

�A(t) =
∫ t

−∞
dt̂ Ph0(t | t̂ ) �A(t̂ )

+ A0
d

dt

[ ∫ ∞

0
dx L(x) PSP(t − x)

]
,

(22)

where PSP(t) is the postsynaptic potential for a neu-
ron whose last firing time t̂ = −∞ [that is, PSP(t) =∫ ∞

0 ε(∞, s)�I (t − s) ds = ∫ ∞
0 exp(−s/τm) �I (t −

s) ds]. Note that the t̂ has disappeared from the second

term, which now is a simple convolution of the PSP
with the filter L .

For the Gaussian ISI noise model (cf. Eq. (17))
with the neuron described in Section 2.1, we have
L(x) = L1(x) + L2(x) · d

dt , where

L1(x)

=
∫ ∞

x

∂ f

∂u
[u0(x̂ − x); u′

0(x̂ − x)] S0(x̂) dx̂

−S0(x)

∫ x

0
e−x̂/τm

∂ f

∂u
[u0(x̂ − x); u′

0(x̂ − x)] dx̂,

L2(x)

=
∫ ∞

x

∂ f

∂u′ [u0(x̂ − x); u′
0(x̂ − x)] S0(x̂) dx̂

−S0(x)

∫ x

0
e−x̂/τm

∂ f

∂u′ [u0(x̂ − x); u′
0(x̂ − x)] dx̂ .

(23)

Here u0 refers to the unperturbed membrane potential,
u0(t−t̂ ) = η(t−t̂ ) + h0, and S0 is the prepulse survivor
function defined in Section 2.2.2. These integrals can
be evaluated numerically using the derivatives ∂ f/∂u
and ∂ f/∂u′ obtained from the definition of the escape
rate, and S0 defined in Section 2.2.2, also calculated
from the escape rate. The response can conveniently be
calculated numerically from Eq. (22) using fast Fourier
transforms. For the calculation of ∂ f/∂u′ we neglect
the step function H(u′) in order to have a truly linear
theory (rather than a piecewise linear theory).

Equation (22) is the central result of our theory. It
relates the form of the predicted PSTH, PSTH(t), to
the form of the PSP. It may be helpful to refer back to
Fig. 1 to understand this relation.

In Eq. (22), the first term on the right-hand side de-
scribes the influence of past perturbations. When the
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noise level is low and stimulation strong, this term can
generate a small secondary peak at a delay correspond-
ing to the mean period 1/A0.

The contribution of the second term of Eq. (22) to
the response is determined by the filter L . The sharp-
ness of L depends on the noise level via the stationary
survivor function S0. To simplify the discussion let us
neglect the term L2. If there is no noise, L is a δ-function
and the second term in (22) becomes proportional to
d
dt PSP(t) (left column, center trace in Fig. 1); a trough
appears following the primary peak because neurons
that fired during the peak are refractory. Note that if
the slope of the membrane trajectory u′ is constant be-
tween spikes, in the noiseless case this term reduces to
A0

d
dt PSP(t)/u′. If there is a lot of noise, L becomes

broad, effectively canceling the derivative. The term
becomes more like PSP(t) (right column, center trace
in Fig. 1) and the trough disappears. For intermediate
noise levels the behavior is somewhere between these
extremes (see the right-hand simulation of Fig. 1).

3.2.2. Comparison with Simulations. Numerically
calculated filters L are shown for various levels of noise
in Fig. 7. These were used to predict the responses to
α-function shaped pulses of external current. Figure 8
compares the predictions made using the linear fil-
ter calculated for the integrate-and-fire neuron and the
Gaussian ISI noise model with simulations of the same
model together with predictions obtained from the full
nonlinear model (Eq. (19)) using the algorithm out-
lined in the Appendix. It can be seen that although the
full model produces asymmetric responses to symmet-
ric positive and negative input pulses, the linear filter

Figure 7. Linear filters describing the population response to arbitrary small fluctuations. The two components of the filter for an integrate-
and-fire neuron with Gaussian ISI escape noise are shown. A: Low noise σu = 0.005. B: High noise σu = 1. Solid lines correspond to L1 and
dashed lines to L2. Note the different vertical scales.

produces symmetric responses. Figure 9 compares the
linear predictions made using the filter calculated for
the Gaussian ISI noise model with simulations made
using the noisy integration model (Eq. (6)). The linear
model reproduces the essential features we wanted to
explain. In particular, for both models simulated, the
activity in high noise has a peak resembling the PSP,
whereas activity in the low-noise cases clearly shows
the characteristic trough following the peak from the
influence of the PSP derivative.

We explored the domain of validity of the linear
model defined by Eq. (22) by simulating input pulses of
various sizes and measuring the height of the resulting
peaks for the noisy integration model. We found good
agreement between theory and simulations for positive
pulses, summarized in Fig. 10. Nonlinear effects can
be observed: the response to excitatory and inhibitory
PSPs is not symmetric (also in Fig. 9). These nonlin-
earities are described accurately by the full nonlinear
theory. A similar asymmetry is seen in motoneuron ex-
periments (Fetz and Gustafsson, 1983; Poliakov et al.,
1997).

We also explored the effect of varying the mean
input level I0 on the peak amplitude |�A| at different
noise levels. The relationships between I0 and both
the background rate A0 and |�A| are summarized in
Fig. 11. Over the input range shown, the amplitude of
the peak is fairly sensitive to the noise level σu , but rel-
atively insensitive to the drive level I0. The low-noise
response has a maximum at about RI0 = ϑ − σu , sim-
ilar to results reported previously for oscillatory input
(Kempter et al., 1998; Plesser and Tanaka, 1997) and
suggesting the possibility of a stochastic resonance ef-
fect (Gammaitoni et al., 1998).
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Figure 8. Integrate-and-fire neurons with Gaussian ISI escape noise. Population activities in response to positive and negative α-pulses (top,
arbitrary scale; rise time 2 ms) at two different noise levels and baseline firing rates. Simulations (thin stepped lines) compared to theoretical
responses: the full escape noise model (thick solid curve) integrated numerically using the algorithm in the Appendix and the linear approximation
(dashed). A: High noise, σu = 1. B: Low noise, σu = 0.005. I0 was adjusted to compensate for the change in mean activity resulting from the
difference in noise levels so that A0 ≈ 100 Hz (top row) or ≈ 30 Hz (bottom row). The curves for the 100 Hz low-noise responses are offset
for clarity. Adjusting I0 has a small effect on the amplitude of the peak compared to changing the noise level; cf. Fig. 1 (e, right-hand col.) and
Fig. 11. In the response calculated with the full model, a discontinuity caused by the H(u′) term in the escape rate is seen as a small bump in
the bottom left plot. Neuron parameters: τ = 4 ms, η0 = 1, ϑ = 0. Simulation parameters: N = 500,000 neurons at 100 Hz/N = 300,000
neurons at 30 Hz; time step 0.1 ms (averaged to 0.2 ms in the plots). Input pulse amplitudes were chosen to produce peaks of comparable size,
�A ≈ 6 Hz: at A0 = 30 Hz, |�I | = 0.001153 (low noise) and 0.1562 (high noise); at A0 = 100 Hz, |�I | = 0.003888 (low noise) and 0.06061
(high noise). The integration time step for the full model was 0.05 ms.

To summarize, the analytical results calculated for
the Gaussian ISI escape-rate model give a good fit to
simulated noisy integration model responses to pulse
inputs, across a wide range of noise conditions. The
asymmetric response of the noisy integration model is
captured in the full nonlinear model (Eq. (19)) but not
in the linear filter approximation.

4. Discussion

A number of studies have documented the effect of
noise on the probability of firing following a stim-
ulus (which could be a presynaptic spike, a current,
or a PSP) (Midroni and Ashby, 1989; Kenyon et al.,

1992). However, no theory has been proposed to date
explicitly incorporating both a noise model and arbi-
trary functions for the PSP and afterhyperpotential.

4.1. General Theory

We have developed a theory based on a rather general
neuron model that can accomodate arbitrary forms for
the input, the membrane response and the spike after-
potential. However, the theory incorporates a voltage
threshold that is not accurate in case of very slowly
varying input (see, e.g., Koch (1999)). Variations in
spike threshold have been observed experimentally in
motoneurons (Calvin, 1974; Schwindt and Crill, 1982;
Powers and Binder, 1996). Threshold variations that
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Figure 9. Integrate-and-fire neurons with diffusion noise. Population activities in response to positive and negative α-pulses (top curve,
arbitrary scale; rise time 2 ms) at two different noise levels and baseline firing rates. Simulations (thin, stepped lines) compared with the
theoretical responses (dashed) predicted using the Gaussian ISI escape noise model. A: High noise, σu = 1. B: Low noise, σu = 0.005. As in the
previous figure, I0 was adjusted to compensate for the change in mean activity resulting from the difference in noise levels so that A0 ≈ 100 Hz
(top row) or ≈30 Hz (bottom row). The curves for the 100 Hz low-noise negative-going pulse have been offset for clarity. Neuron parameters:
τ = 4 ms, η0 = 1, ϑ = 0. Simulation parameters: N = 500,000 neurons, time step 0.1 ms (averaged to 0.2 ms). Input amplitudes as in Fig. 8.

depend on the last firing time t̂ can be accomodated in
the spike-response model by incorporating them into
the η-kernel; input-dependent threshold changes, how-
ever, cannot. In particular, adaptation is not taken into
account in the spike-response model.

The linear filter theory allows a clear interpretation of
the relation between the shape of the PSTH and the PSP.
Since it is based on a linearization of the response to a
small pulse, it cannot account for observed departures
from linearity such as asymmetric responses to positive
and negative pulses (Fig. 10). Our full nonlinear theory,
however, captures these asymmetries.

4.2. Limitations of the Integrate-and-Fire Model

To illustrate our results, we have reduced the com-
plexity of the model to a minimum to show that the
phenomenon of noise dependence of the PSTH re-

sponse to an input pulse does not depend on detailed
cell properties with particular parameter values. The
integrate-and-fire model has only one time constant;
choosing its value to be the experimentally measured
passive time constant produces highly unrealistic mem-
brane potential trajectories for tonic firing (when the
mean input is suprathreshold). In the companion arti-
cle (Herrmann and Gerstner, 2000) we study a simple
extension of the integrate-and-fire neuron with three
time constants, yielding more realistic behavior.

It has been shown theoretically and experimentally
that uncorrelated input affects the electrical properties
(Barrett, 1975; Holmes and Woody, 1989; Bernander
et al., 1991; Rapp et al., 1992; Amit and Tsodyks, 1992;
Shadlen and Newsome 1994; Paré et al., 1998) of in-
dividual neurons. Changes in the physiological param-
eters may be represented using “effective” parameter
values determined phenomenologically. In this article
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Figure 10. Comparison of the linear approximation with responses from simulations of integrate-and-fire neurons with diffusion noise.
Responses to α-shaped input pulses (rise time 2 ms) of different amplitudes. Neuron parameters: time constant τ = 4 ms, η0 = 1, ϑ = 0.
Simulation time step 0.1 ms. A: High noise, σu = 1, symmetric input pulse sizes �I = ±0.417. Simulations of N = 500,000 neurons, thin
stepped lines; full escape noise model, thick solid curve; linear approximation, dashed. B: As above but with low noise, σu = 0.005; symmetric
input pulse sizes �I = ±0.00308. C: Peak amplitude of the simulated PSTH as a function of input pulse amplitude at different noise levels.
Solid lines, prediction according to Eq. (14) for the Gaussian ISI model; symbol shapes, data estimated from simulation results. In the limit
�I → 0, the slopes of the simulated responses converge to the theoretical values. An asymmetry is visible: in the diffusion model, the response
to negative pulses is often smaller than for positive pulses of the same magnitude. The arrows indicate the points corresponding to plots a and b.
Due to a scaling artifact, the lower-noise responses appear to fit the linear approximations better than the higher-noise responses, but in fact all
noise levels show the same degree of asymmetry (see A and B). Estimated peak amplitudes obtained from the peaks of theoretical curves from
the linear model fitted to 60 ms of simulation data from N = 100,000 neurons.

Figure 11. How mean drive level affects the PSTH baseline firing rate (left) and the PSTH peak height (center). The PSTH peak height |�A|
was calculated for an α-pulse of amplitude 0.2 nA and risetime 2 ms using the linear filter approximation with the Gaussian-ISI noise model.
A: The PSTH baseline A0 as a function of drive I0 is shown at three noise levels. The drive level RI0 is scaled in units of noise amplitude
σu . The three curves intersect the A0 = 30 Hz level (diamonds) at different drive levels (black triangles). B: PSTH peak height |�A| varies
nonlinearly as a function of drive level. The diamonds indicate the peak heights corresponding to the A0 = 30 Hz drive levels highlighted at left.
C: Predicted PSTHs at three different noise levels, for the drive levels that give A0 = 30 Hz. (The curve segment that peaks at about t = 40 ms
is the secondary peak for low noise σu = 0.005; it occurs at about 1 mean period after the initial response.) Neuron parameters: Time constant
τ = 4 ms, η0 = 1; threshold θ = 0.
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we have chosen τm = 4 ms; we interpret this as an ef-
fective membrane time constant during spontaneous
activity (Bernander et al., 1991).

A further limitation of the model is that the de-
scription of the synaptic input by current pulses ne-
glects the influence of the synaptic reversal potential.
In our integrate-and-fire model, the current pulse has
the same effect whether the membrane potential is at
rest or close to threshold. In the slow recovery model
presented in the companion paper, the postsynaptic po-
tential ε(t − t̂, s) depends on the time elapsed since the
last spike, t− t̂ , and mimics conductance changes along
the membrane potential trajectory.

4.3. Predictions of the Model

With the analysis presented here we explain some ex-
perimental results obtained for tonic firing in motoneu-
rons. Poliakov et al. (1996) This is because the only ex-
periments we are aware of in which PSTHs are recorded
under controlled noise conditions have been performed
on motoneurons. We make specific predictions about
motoneurons in the companion paper (Herrmann and
Gerstner, forthcoming). However, because our neuron
description is so general, we predict that the effect of
noise on the PSTH response to input spikes should be
observable in most types of neurons. Specifically, ob-
servable effects are

• The shape of the PSTH response to an input spike
can be predicted using the method presented in this
article using experimentally measured kernels of the
spike-response model, subject to the limitations dis-
cussed above. The kernels can be determined using
the methods in Kistler et al. (1997).

• Noise affects the PSTH as follows: In low noise, the
shape of the PSTH should exhibit a trough following
the main peak due to refractoriness; if the mean input
is kept constant, increasing the noise level increases
the mean firing rate and decreases the amplitude of
the peak and the trough. If the mean input is ad-
justed so that the mean firing rate stays the same, the
amplitude of the peak and trough also decrease. Fur-
thermore, this effect should be observable both for
tonic and irregular firing modes (above and below
threshold).

• At low noise levels, the PSTH peak amplitude
reaches a maximum when the mean input is below
threshold and the neuron is firing irregularly; if the
mean input decreases further, the PSTH peak falls off

rapidly. Increasing the amount of noise can extend
the range of response below threshold.

5. Conclusions

In simulations we have shown that in integrate-and-fire
model neurons with diffusion noise (noisy integration),
the amount of background noise affects the shape of the
PSTH response to an input spike in the same way as in
analogous experiments with motoneurons. To under-
stand the process, we developed an escape-rate noise
model that approximates noisy integration. This model
allows the form of the response to be predicted based
on the shape of the postsynaptic current pulse. The re-
sults show good agreement with the noisy integration
model and demonstrate that it is possible to take into
account both the amount of noise and the shape of the
membrane trajectory. For low noise levels, the response
clearly has a strong component from the derivative of
the postsynaptic potential: the primary peak is followed
by a distinct trough and secondary peaks, even when
the neuron is not firing tonically. For higher noise lev-
els, the trough and secondary peaks disappear and the
PSTH resembles the PSP rather than its derivative.

Thus by using the spike response formalism to de-
scribe neuronal dynamics, an escape rate noise model,
and population theory to map the single-trial response
to the PSTH, we were able to show how the noise level
controls the shape of the PSTH. We obtained results that
are analogous to the experimental results of Poliakov
et al. (1996) in motoneurons in the suprathreshold
regime and predict that they should extend to the sub-
threshold regime, and to other neurons as well.

Appendix

We present here an algorithm for calculating the pre-
dicted PSTH of an integrate-and-fire neuron with es-
cape rate noise responding to an input pulse superim-
posed on a constant background level. This algorithm,
based on the procedure outlined in Appendix A of
Gerstner (2000), is derived from the integral population
equation repeated here for convenience:

A(t) =
∫ t

−∞
Ph(t | t̂ )A(t̂ ) dt̂ . (24)

To evaluate this integral we shall (1) determine the in-
terval distribution Ph(t | t̂ ) in terms of the input cur-
rent I (t) using the escape-rate noise model and spike
response neuron model and (2) transform the above
infinite integral into a finite one, then discretize it.
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For an escape-rate noise model, the interval distri-
bution may be written in terms of the escape rate and
the survivor function, Ph(t | t̂ ) = f [u(t | t̂ )]Sh(t | t̂ ).

We have defined the integrate-and-fire neuron in the
form u(t− t̂ ) = η(t− t̂ )+h(t | t̂ ). The input potential is
related to the input current through h(t | t̂ ) = hfree(t)+
hfree(t̂ ) exp[−(t − t̂ )], where hfree(t) = ∫ ∞

0 ε(s)I (t −
s) ds does not depend on the last spike time (Gerstner,
2000).

Noting that the refractory function η vanishes if we
wait long enough after a spike, we define a time inter-
val �free such that η(t − t̂ ) ≈ 0 and h(t | t̂ ) ≈ hfree(t)
for t − t̂ > �free. In this case, since the membrane
potential no longer depends on the time of the last
spike, the hazard function does not either, and we can
write Ph(t | t̂ ) → f [hfree(t)]Sh(t | t̂ ) for t − t̂ > �free.
We therefore decompose the population equation into
refractory and postrefractory (“free”) epochs:

A(t) =
∫ t−�free

−∞
Ph(t | t̂ )A(t̂ ) dt̂

+
∫ t

t−�free

Ph(t | t̂ )A(t̂ ) dt̂

= f [hfree(t)]
∫ t−�free

−∞
Sh(t | t̂ )A(t̂ ) dt̂

+
∫ t

t−�free

f [u(t | t̂ )]Sh(t | t̂ )A(t̂ ) dt̂ . (25)

One last transformation must be made. Applying the
normalization

∫ t
∞ Sh(t | t̂)A(t̂) dt̂ = 1 (Gerstner, 2000),

we obtain the finite integral (see also (Wilson and
Cowan, 1972):

A(t) = f [hfree(t)]

{
1 −

∫ t

t−�free

Sh(t | t̂ )A(t̂ ) dt̂

}

+
∫ t

t−�free

f [u(t | t̂ )]Sh(t | t̂ )A(t̂ ) dt̂ . (26)

We now discretize into time steps ti of length dt ;
for each ti we define the j th “delay” � j = j dt so that
ti − t̂ j = j dt = � j . We identify the following quanti-
ties to evaluate at each ti :

• Pfree(ti ) = {1 − exp(−f [h(ti ), h′(ti )])} dt , the prob-
ability of firing in the time interval at ti for neurons
that are post, refractory

and the vectors

• P(� j ) = {1 − exp(−f [u(ti | t̂ j ), u′(ti | t̂ j )])} dt , the
probability of firing in the time interval at ti for neu-
rons that last fired at time t̂ j = ti − � j ,

• n(� j ) = Sh(ti | ti −� j )A(t̂ j ) dt , the fraction of neu-
rons that fired last at time t̂ j = ti − � j , and

• m(� j ) = P(� j )n(� j ) dt , the fraction of neurons
having last fired at t̂ = ti − � j that fire at time ti ,

where the delay � j ranges from 0 to �free in steps dt .
Note that n must always satisfy

∑
� j

n(� j ) = 1, and
m(0) = 0. The algorithm consists of iteratively evalu-
ating the discretized version of Eq. (26),

A(ti ) dt = f [hfree(ti )] dt

(
1 −

∑
� j

n(� j )

)

+
∑
� j

m(� j ), (27)

as follows:

1. Determine �free such that η(t−t̂ ) ≈ 0 and h(t | t̂ ) ≈
hfree(t) for t − t̂ ≥ �free.

2. Initialize ti = t0. Initialize the vector hfree(� j ) for
the delays 0 ≤ t j < �free using hfree(ti < t0) =
hfree(t0).

3. Compute the vectors η(� j ) = −η0 exp(−� j/τm)

and h(� j ) = hfree(� j ) [1 − exp(−� j/τm))] for
neurons that last fired at t0 − � j .

4. Initialize the activity vector n(� j ) using u0(� j ) =
h(� j )+η(� j ), u′

0(� j ) = [η(� j )−η(� j−1)]/dt ,
and the stationary survivor function S0 as follows:

a. Compute the vector S0(� j ):
S0(0) = 1; for 0 < (� j ) < �free,
S0(� j ) = {1 − dt f [u0(� j ), u′

0(� j )]}S0(� j−1).
b. A0 = [

∑
� j

S0(� j ) dt]−1.
c. n(� j ) = A0 S0(� j ) dt .

5. For each time step ti :

a. For each � j , update the vectors:

i. hfree(� j ) from the input I (ti ) as defined
above, using:
hfree(0) = hfree(0)(1 − dt/τm) + (dt/τm)

I (ti ); for 0 < � j < �free, hfree(� j ) = hfree

(� j−1)

ii. h(� j )=hfree(ti ) − exp(−� j/τm)hfree(ti−
� j )

iii. P(� j ) as defined above, using u(� j ) =
h(� j ) + η(� j ) and du = h(ti ) − h(ti−1) +
η(ti ) − η(ti−1)

iv. m(� j ) as defined above.

b. Update Pfree(ti ) as defined above.
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c. Compute A(ti ) = Pfree(ti )[1 − ∑
� j

n(� j )] +∑
� j

m(� j ).
d. Update the vector n(� j ):

n(0) = A(ti ); for 0 < � j < �free, n(� j ) =
n(� j−1) − m(� j−1).

Our implementation of the above algorithm on a
Pentium-II class computer simulates 100 ms of popu-
lation activity ms in under 3 seconds of computer time
using dt = 0.05.

Notes

1. In standard integrate-and-fire neurons, the response to low-
amplitude inputs could, in principle, be calculated using the meth-
ods as in Brunel and Hakim (1999).

2. Even if the population is not initialized to have a constant activ-
ity A0, provided the neuron model includes sufficient noise, the
noise will eventually suppress oscillations and the activity of the
population will become practically constant (for N sufficiently
large).
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