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Abstract. A generalized version of the integrate-and-fire model is presented that qualitatively reproduces firing
rates and membrane trajectories of motoneurons. The description is based on the spike-response model and includes
three different time constants: the passive membrane time constant, a recovery time of the input conductance
after each spike, and a time constant of the spike afterpotential. The effect of stochastic background input on the
peristimulus time histogram (PSTH) response to spike input is calculated analytically. Model results are compared
with the experimental data of Poliakov et al. (1996). The linearized theory shows that the PSTH response to an input
spike is proportional to a filtered version of the postsynaptic potential generated by the input spike. The shape of
the filter depends on the background activity. The full nonlinear theory is in close agreement with simulated PSTH

data.
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1. Introduction

What is the typical response of a neuron to an in-
put spike? In the companion paper (Herrmann and
Gerstner, 2000), we developed a theoretical framework
for studying the effect of stochastic background input
(modeled as diffusive noise) on the peristimulus time
histogram (PSTH). The theory was illustrated using a
standard integrate-and-fire neuron. A major shortcom-
ing of the integrate-fire model is that it has only one
time constant. Especially for tonic firing, it produces
an unrealistic membrane trajectory if the experimen-

*To read Part I of this article please refer to Volume 11, Number 2,
pages 135-151.

**Current address: Ecole d’Ingénieurs de I’Etat de Vaud (EIVD),
Yverdon-les-Bains, Switzerland.

tally measured passive time constant is used because
the recovery processes during refractoriness following
an action potential are not modeled at all. However, ex-
perimental studies of the effect of noise on the PSTH are
generally conducted on tonically firing neurons (Fetz
and Gustafsson, 1983; Poliakov et al., 1996, 1997). The
goal of this paper is to show that the effect of noise on
the PSTH demonstrated for the integrate-and-fire neu-
ron in the companion paper can also be obtained using
a model with a more realistic membrane trajectory, but
without incorporating further biological details such as
specific ionic conductances or adaptation.

In Poliakov et al. (1996, 1997), PSTH responses
to Poisson-distributed trains of current pulses were
recorded. The pulses were injected into the soma of rat
hypoglossal motoneurons during repetitive discharge.
The time course of the pulses was chosen to mimic
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Effect of noise on the PSTH response of a rat hypoglossal motoneuron. A Poisson train of excitatory alpha-shaped current pulses

of amplitude 0.2 nA was injected into the soma of a rat hypoglossal motoneuron, superimposed on a long 1 nA current step inducing repetitive
firing. In the “high” noise condition, this input was combined with an additional noise waveform. A: PSTH *high” noise (noise power level 30
nA? us). B: “Low” noise (courtesy of M. Binder; data from Poliakov et al., 1996).

postsynaptic currents generated by presynaptic spike
arrival. PSTHs of motoneuron discharge occurrences
were compiled when the pulse trains were delivered
either with or without additional current noise which
simulated noisy background input. Figure 1 shows
examples of responses from a rat motoneuron taken
from the work of Poliakov et al. (1996). The effect
of adding noise can be seen clearly: the low-noise
peak is followed by a marked trough, whereas the
high-noise PSTH has a reduced amplitude and a much
smaller trough. We show in this article that simula-
tions of our motoneuron model produce low- and high-
noise PSTHs similar to the experimental ones. Further-
more, the PSTH responses can be predicted analyti-
cally. Figure 2 shows PSTHs produced by simulations
of our model (thin, stepped lines) and responses pre-
dicted from the theory (thick solid and dashed lines; see
figure caption for details) using the same current pulses
and noise levels as in the experiments. The neuron pa-
rameters we used were chosen ad hoc from the range
of values described as typical by Poliakov et al. (1996)
and are probably not the same as those of the motoneu-

ron in Fig. 1. Consequently, the PSTH peak amplitudes
and timecourses are somewhat different. Nevertheless,
itis clear that the effect of noise is the same: in both the
simulations and the experiments, current noise with a
power level of 30 nA? us reduces the amplitude of the
low-noise peak by about half.

2. Methods

In order to obtain a realistic membrane trajectory in
a tonically firing neuron (subjected to suprathreshold
stimulation), we use the spike-response model frame-
work summarized below.
2.1.  General Spike-Response Model
The spike-response model (Gerstner, 1995, 2000,
2001) consists of a threshold @, a refractory function
n, and a response kernel ¢ describing the response of
the neuron to an external current input I (¢).

The refractory function n(t — ) generates the after-
hyperpotential following a spike at time 7. The kernel
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Figure 2. PSTH response to an alpha-shaped input pulse (rise time 0.5 ms) at + = 0. All responses incorporate a 1 ms delay introduced to
simulate the time taken for spike initiation and spike detection in real neurons (Poliakov et al., 1996). Thin stepped lines, simulation results
equivalent to 5,000 trials (time step 0.1 ms averaged to 0.2 ms). Thick dashed curves, theoretical predictions using the linear approximation.
Thick solid curves, theoretical predictions using the full escape noise model; a discontinuity visible at the beginning of the trough stems from
the H[u'] term in the escape rate, Eq. (7). Left, “high” noise (noise power level 30 nA2 us). Right, “low” noise (noise power level 5 nA2 us).

&(t — 1, s) describes the response of the membrane to
small fluctuations; the t — 7 dependence allows spike-
time dependent conductance changes to be represented.
The net input potential

h(t|f)=/ e(t—1,8)I(t —s)ds (D
0

integrates the current input /(¢). The resulting mem-
brane potential u(¢) is the sum of the (negative) refrac-
tory potential and the net input potential,

u(t) =n(t —1) +h(t 1) (@)

where 7 is the last firing time of the neuron. When the
membrane potential exceeds the threshold, a spike is
emitted and the potential is reset by setting 7 = ¢ in
Eq. (2).

2.2.  Neuron Model with Slow Recovery

A simple version of the spike-response model equiva-
lent to the standard integrate-and-fire model was stud-
ied in the companion paper (Herrmann and Gerstner,
2000). The standard integrate-and-fire model is char-
acterized by a single time constant—i.e., the passive
membrane time constant t,. By adding two further
time constants we obtain a model that behaves more
reasonably when physiologically plausible parameter
values are used but that can still be reduced to the stan-
dard integrate-and-fire model in a certain limit.

In order to compare with motoneuron experiments,
we want a neuron model that retains the general features
of a tonically firing motoneuron in the primary range,

while remaining as simple as possible. The key features
of the membrane potential dynamics to be preserved
are: a parallel RC-circuit-like passive membrane re-
sponse to small signals; a slow exponential return to
the resting potential following a spike in the absence of
further stimulation; and a roughly linear trajectory of
membrane potential when approaching threshold dur-
ing tonic firing.

To achieve this, we will use the spike-response model
with the following kernels:

. _u=h .
n(t—1t)=—noe = H(t —1) (3)
A R 1—i s ~
et —1,5) = —(1 - e*%) e W H(s) Hit — 1 — 5)
Tn’l
4

where 1, is the effective passive membrane time con-
stant (Bernander et al., 1991) (see also Section 4.2), R
is the input resistance, Ty is the “refractory” time con-
stant, T, is the “response recovery” time constant, 7 is
a scale factor for the refractory function, and H(-) is the
Heaviside step function with H(x) = 0 for x < 0 and
H(x) = 1for x > 0. Experimentally, the passive mem-
brane time constant 7, and input resistance R would be
determined from the responses to small current pulses.
The refractory function n describes the return of the
membrane potential to baseline after an action poten-
tial. It is characterized by a slow time constant 7. The
parameters 1y and T, would be chosen to fit the mem-
brane trajectory following a single spike, in the absence
of any further current input after the action potential has
been triggered (see Fig. 3). Thus ts would normally
be much longer than t,,.
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Figure 3. Determination of model time constants in a hypothetical experiment: /(¢), input current; u(¢), membrane potential. Dashed trace,
measured trajectory; thick trace, fitted trajectory. At left, the refractory time constant s is measured by fitting an exponential to the membrane
trajectory following a single spike, when the input is set to 0 immediately after the spike. Once the potential has reached its resting value,
the membrane time constant 7, is determined from the response to a small current pulse. At right, the response recovery time constant Trec
is determined from the response to a pulse train applied during tonic firing. Immediately after the action potential, the responses have smaller
amplitude; the response amplitude recovers with a time constant Ty (bottom).

For the e¢-kernel we use a decaying exponential in
s with time constant 7,,, modulated by the “recovery”
factor (1 —exp[—(f —17)/Trec]). This minics a spike-time
dependent scaling of the input conductance;! T is ex-
pected to be longer than t,. In the simulations in this
article, we use the same time constant as for the refrac-
tory function n—i.e. we take Tiefr = Tree = 100 ms. The
remaining parameter values are listed in Table 1. For a
constant current Iy = 1.0 nA, this gives a membrane
potential trajectory whose slope near threshold is 0.26
mV/ms; the mean interspike interval is 7y ~ 80 ms.
These values are similar to those reported for rat hy-
poglossal motoneurons (Poliakov et al., 1996).

The effect of the modulation of the input conduc-
tance on the response to small pulses is depicted in
Fig. 4. Experimental support for a roughly exponen-
tial time course of the recovery of the input conduc-
tance of motoneurons can be found in Schwindt and
Calvin (1973) and Powers and Binder (1996). The im-
portant effect of this extra factor is to lengthen the inter-
spike interval during tonic firing relative to the standard
integrate-and-fire model, as shown in Fig. 5.

To relate our model to the integrate-and-fire model,
we can write out the membrane potential. Between

Table 1. Parameter values used in the slow recovery model to
simulate motoneurons.

R 24 no Tm Trec Trefr

36 MQ 10 mV 22 mV 4 ms 100 ms 100 ms

spikes, the deterministic membrane potential evolves
according to

u(t) =n(t —f)—i-/oos(t —1,8)I(t —s)ds
0

_ =D

=—1pe€ ’refrH(l‘—i)

()

R =t
+_(1_g*m)/ e ml(t—ys)ds. (5
0

Tm

Time since spike (ms)

Figure 4. Effect of recovery time constant 7yec. The membrane po-
tential response (thick line) to an input pulse train (thin line) clearly
shows that the response amplitude decreases as a function of the time
since the last spike. Input pulses have rise time 0.5 ms, amplitude
0.5 nA.
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Figure 5. Lengthening of the ISI resulting from the conductance
modulation term. Thick solid line, membrane trajectory following
a spike using the model defined in Eq. (5) and the parameters indi-
cated in the text, with constant input current /o = 1 nA. Thick dashed
line, the trajectory for Ip =0 asymptotically approaches zero. (This
trajectory is equal to the time course of the refractory function 7).
Thin dashed line, trajectory if the conductance modulation is re-
moved (tec = 0, “instant recovery”). Thin solid line, trajectory of
the integrate-and-fire reduction (Trefr = T, = 4 ms).

After each spike, the new initial condition or “reset” is
u(f) = no. In the limit 7. — 0 (“instant recovery”),
(1 — exp[—(t — #)/Tec]) — 1; after taking the time
derivative and setting 7. = T,,, we recover the standard
integrate-and-fire equation: 7, u’(t) = —u(t) + RI(z).
A second reduction is possible that emphasizes the
long time constants T.s and T.c. Let us define a re-
covery state variable, r(t — ) = exp[—(t — )/ Trc] and
the free potential Agee(f) = R/ T fooo exp(—s/Tu)(t —
s) ds. Taking the derivatives of Eq. (5), we arrive at the
following set of three differential equations:

Trec

Trefru/(t) = _u(t) + hfree(t)l:l - trefr:|

T

1= ()] fﬁle

1 1
—r(t) hfree(t)[l — rrefr<_ + _)}
Tm Trec

Trecr/(t) = _r([)
Tm /free(t) = _hfree(t) + Rl(t)’ (6)

with the reset conditions 7(f)=1, hgee(f)=0 and
u(f) = ng as before. This defines a system in three vari-
ables: the variable with fast dynamics is /.. With time
constant 7,,; the slow variables r and u have respective
time constants T and T.c. The system of differential
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Eq. (6) is equivalent to Eq. (5) but leads to a faster
numerical implementation.

2.3. Noise Model

To represent the effect of noisy background input, we
use escape noise (Gerstner, 2000; Plesser and Gerstner,
2000). Rather than explicitly adding noise to the input
current, we consider that the probability of spiking de-
pends on the distance to threshold of the membrane
potential. In this article we use the Gaussian ISI es-
cape rate function motivated in Herrmann and Gerstner
(2000), defined as

G —9,04)
u—">9> ’
Erfc(\[TJ“)

where G(x, o) is the Gaussian (ax/ﬂ)’l exp[—xz/
(20%)], Erfc(x) = 1 — Erf(x) is the complementary er-
ror function, and u" = (du/dt) evaluated at t. With
this function and u’ = 0, the probability of a spike
increases as the potential approaches threshold from
below; above threshold, it is asymptotically linear.

Using this formulation, the time-dependent hazard
function (probability of spiking as a function of time
since 7) is simply p(¢|7) = flu(t — D), u'(t — D]
where u is given by Eq. (2). We can also determine
the survivor function S;, for a given input 4 (i.e., the
probability that a neuron does not fire between 7 and ¢
when £ is applied), since the survivor function is related
to the hazard function p(t | #) (Perkel et al., 1967; Cox,
1962):

fu —19):1.21|:% +2u/H(u’)i| @)

Sp(t|f) = exp[—f o' | D) dt/:|. (8)

For constant input A, the survivor function is denoted
So(t — f)

3. Results

Using the neuron model and noise model defined
above, we apply the theory presented in the compan-
ion paper (Herrmann and Gerstner, 2000) to obtain an
analytical prediction of the PSTH response to an input
pulse. In the next section we apply the theory to the
neuron model defined by Eq. (5). In Section 3.2 we
compare our predictions with simulations.
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3.1. Theoretical Results

In Herrmann and Gerstner (2000) we argue that the
PSTH, expressed as a firing rate, is equivalent to the
population-averaged activity A(f) of a homogeneous,
asynchronous population of neurons. Therefore, the
theory of population dynamics for neurons with es-
cape noise (Gerstner, 2000) can be applied by identi-
fying the time course of the PSTH as A(¢). When a
pulse I(t) = Iy + AI(z) is applied, the activity under-
goes a perturbation from its stationary state A(t) =
Ap + AA(¢). In PSTH terms, Ay is the baseline fir-
ing rate while A A(?) gives the time course of the peak
following the applied pulse. The theory provides the
means to calculate A(t) numerically for a given input
1(¢) based on the survivor function. In addition, the the-
ory can be used to obtain a first-order approximation of
A(t), which directly relates the form of the peak A A(?)
to the postsynaptic potential resulting from /(¢) via a
noise-dependent linear filter.

The mean rate Ay can be found as the inverse of the
mean interval. In the noiseless case, the neuron fires
periodically and the interval can be computed from
Eq. (2) by setting u = . With noise, the mean interval
can be computed as the integral of the survivor func-
tion: 1/Ay = fooo S(s)ds. Figure 6 shows gain (f-1)
curves for the model neuron using the survivor function
for the specific noise model defined above in Eq. (7).
Above threshold, the response is essentially linear, sim-
ilar to that of a motoneuron in the primary firing range.
Adding noise shifts the response to the left and extends
the response range downward.

The dynamics of the activity of a population can be
computed if the distribution of firing intervals P, (¢ | 7)

20 -

104
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Figure 6. Gain (f-I) curves for the neuron model, parameter val-
ues as specified in the text. Solid: No noise. Dotted: noise level
oy (defined in Eq. (7)) 0.1 mV; dashed: o, = 1 mV; dot-dashed,
o, = 10 mV. The corresponding equivalent power levels for Gaus-
sian current noise with 10 KHz bandwidth are 0.06, 6, and 600 nA2
s, respectively.

is known (i.e., the probability of firing for each neuron
at time ¢, given that the neuron last fired at time 7, when
the net input potential is A (z | 7)). The activity evolves
according to Gerstner (2000)

At) = / Pyt | DA@) di. ©)

[ee]

This nonlinear equation may be integrated numerically
for certain choices of noise models and neuron mod-
els. For the integrate-and-fire neuron with slow recov-
ery, we can apply the algorithm given in Herrmann and
Gerstner (2000, app. A) with only slight modification.?
However, the relation between the form of the PSTH
and the input is not explicit in Eq. (9). As for the stan-
dard integrate-and-fire neuron studied in Herrmann and
Gerstner (2000), we perform a first-order expansion of
Eq. (9) to obtain an explicit relation between AA(¢)
and the “free” input potential Agee. In the Appendix it
is shown that for the kernels of Egs. (3) and (4), the
form of the PSTH may be approximated using a linear
filter:

AA(t) = / di P, (t11) AAQ)

d oo
+ Ap— dxL(x)Ah(t —x)|. (10)
il )
In the above equation, the second term on the right is
simply a convolution of the postsynaptic potential Ak
with a noise-dependent filter L. If there is no noise
and the slope of the membrane trajectory u’ is constant
between spikes, this term reduces to Ag %PSP(t) Ju’.

For our noise model and neuron, the filter is L(x) =
Li(x) 4 La(x) - &, where

*9
Litr)= / %[Mo(ﬁ ) u(® — )] So(®)dt

* ;0
= sut) [ e L Lo 0y — vl
0 u

~ 9
L2(x)=/ a—i,[uo(ff = x); up(® — x)] So(%) d

foaof o
— So(x) | €T - [uo(f — x);
0 du
ug( —x)1dx. (11)
Here ug(t — ) is the unperturbed membrane poten-

tial and Sy is the unperturbed survivor function defined
above.
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Figure 7. A: PSTH peak amplitudes as a function of noise level, for alpha-shaped input pulses (rise time 0.5 ms) at ¢ = 0, with different
positive input pulse amplitudes |A/|. The predicted PSTHs corresponding to the four indicated points b, ¢, d, e are shown in the plots at right
(B-E) (solid lines). Also shown in the plots at right are the predicted responses for negative pulses of the same amplitude (dashed); the responses
are highly unsymmetric (not shown in the left-hand plot). The PSTHs were calculated by numerically integrating Eq. (9) using the full model

with escape noise as indicated in the text.

The integrals in Eq. (11) may be evaluated numeri-
cally. The derivatives df/0u and 9f/0u’ are obtained
from the definition of the escape rate f(u — ¢), and
S is also calculated from the escape rate. These filters
have the same form as those obtained for the standard
integrate-and-fire neuron in Herrmann and Gerstner
(2000); the difference is that the membrane potential u
is calculated using the new kernels, Egs. (3) and (4).

3.2.  Simulations

We performed simulations of model neurons subjected
to stochastic background input (diffusive noise) using
the parameters in Table 1. Figure 2 shows simulated
PSTHs obtained using the model with the parameters
specified above, and inputs and noise levels similar to
those applied to rat hypoglossal motoneurons in the
experiments of Poliakov et al. (1996). The simulations
produce PSTHs that are qualitatively similar to the ex-
periments, especially considering the ad hoc nature of
the parameter values and kernels we used. As in the ex-
periments of Poliakov et al. (1996), applying 30 nA? us
reduces the low-noise peak amplitude by about half; the
following trough is also reduced.

To evaluate the linear approximation for the escape
noise model (Eq. (10)), we calculated the filters and
used them to predict the PSTH responses of model
neurons to the same inputs and noise conditions as for
the simulations. These are also shown in Fig. 2, along
with responses predicted using the full nonlinear model
Eq. (9). Compared to the full model, the linear approx-
imation overestimates the peak amplitude somewhat
for these parameters. This is consistent with the results
obtained above threshold in the companion article for
the standard integrate-and-fire model.

Figure 7 shows theoretically calculated PSTH am-
plitudes as a function of noise level and input ampli-
tude, for a range of inputs and noise levels including
those used in the experiments of Poliakov et al. (1996).
The results are in good qualitative agreement with their
findings (see Poliakov et al., 1996, Fig. 3(c)).

Finally, we investigated how noise affects respon-
siveness to sub-threshold impulses in our model by
measuring PSTH peak amplitudes predicted using our
theory, again for a range of inputs and noise levels that
includes those used in the experiments of Poliakov et
al. (1996). In the companion paper, we had found that
for the integrate-and-fire model, the highest response
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Figure 8. PSTH peak amplitudes as a function of baseline input
current [y for alpha-shaped input pulses of amplitude 0.2 nA (rise
time 0.5 ms) using the same noise levels as in Fig. 7. From top to
bottom, the noise levels are: 0, =0.32 mV, 0.9 mV, 1.28 mV, 1.§ mV,
and 2.25 mV. The corresponding equivalent noise power levels for
Gaussian current noise with 10 KHz bandwidth are 0.6, 5, 10, 20,
and 30 nA? ps. The noise-free current threshold for the parameters
usedis Iy = ©¥/R = 0.278 nA, indicated by the vertical dashed line.
The vertical dotted line indicates the level below which no response
is possible if there is no noise. Peak amplitudes were measured from
theoretical PSTHs calculated by numerically integrating Eq. (9) us-
ing the full model with escape noise as indicated in the text.

amplitudes could be obtained in low noise when the
mean input potential is below threshold and that adding
noise can extend the range of responsiveness to sub-
threshold inputs. As shown in Fig. 8, our results indicate
that a similar effect occurs with the neuron model stud-
ied here. Without noise, no response can occur when
the mean potential is more than one PSP amplitude
below threshold; the corresponding minimum current
level is indicated by the vertical dot-dashed line. With
the parameters used here and for input pulses of am-
plitude 0.2 nA, the minimum current for a response is
about I, = 0.23 nA. With a noise level equivalent
to 30 nA? us, this minimum is lowered: at 0.1 nA,
when the mean firing rate is only 1.4 Hz, a 12-Hz peak
amplitude is predicted.

4. Discussion

In this section, we review some findings by other re-
searchers about the neurophysiology of motoneurons
that can be understood using our model. First, we sur-
vey previous work pertaining to measurements of mo-
toneuron response to current transients using the PSTH
and relate it to our own results. After briefly summa-
rizing experimental results establishing the principal
source of noise in motoneurons, we discuss the limi-

tations and predictions of our model. A nice overview
of the problems and main theoretical argument can be
found in Sections 4.4 and 4.5 of Abeles (1991).

4.1. Estimates of the Motoneuron Input-Output
Transform P(spike)

The PSTH is used in physiological experiments to esti-
mate the motoneuron input-output transform—i.e., the
firing probability in response to a stimulus, P(spike)
(Moore et al., 1966). If the stimulus is a presynaptic
spike, the measurement is called a cross-correlogram.
It has been used extensively (Fetz and Gustafsson,
1983; Kirkwood and Sears, 1978; Knox, 1974; Moore
etal., 1970; Poliakov et al., 1997; Poliakov et al., 1996)
to document the input-output transform of motoneu-
rons. The characteristics of the background noise can
be as important as the PSP shape itself (Kirkwood and
Sears, 1979), which has implications for the interpre-
tation of the form of the PSTH or cross-correlogram;
the amount of noisy background input must be taken
into account when making comparisons (Kirkwood and
Sears, 1991).

Early physiological studies of motoneuron responses
seemed to indicate that the shape of the PSTH response
to a presynaptic pulse resembled the PSP, to the extent
that it was possible to actually measure the PSP (Moore
et al., 1970, in Aplysia; Lindsley and Gerstein, 1979,
in crayfish claw motoneurons). Moore et al. (1970) ar-
gued that to first approximation, this type of PSP-like
response was to be expected given a firing rate inversely
proportional to the distance between the potential and
the threshold. Note that their intuitive ideas are con-
sistent with the threshold-based escape noise models
discussed in this article in the subthreshold regime.
Our theory predicts the same results in the limit of high
noise. Moore et al. (1970) predicted that additional sec-
ondary peaks would appear if the postsynaptic cell was
firing regularly, as we also find in our theory.

Subsequently, Knox (1974) calculated the distribu-
tion of the membrane potential for a leaky integrator
without noise or refractoriness, with a single presy-
naptic input consisting of a stationary Poisson train of
identical, exponentially decaying PSPs. He found that
P (spike) in this case would be proportional to the tem-
poral derivative of the PSP; see Abeles (1991) for a
review of the argument. Our theory predicts the same
behavior in the low-noise limit. Knox’s model, how-
ever, holds only for low output rates (when refractori-
ness can be neglected).



Combining these two views, Kirkwood and Sears
(1978) proposed that P(spike) be a linear combina-
tion of the PSP and the PSP derivative. They found
results consistent with this model in intercostal mus-
cle afferents and ventral root afferents during respira-
tion, but were limited to using excitatory PSPs (EPSPs)
recorded in separate experiments. Fetz and Gustafsson
(1983) were able to record the PSPs simultaneously
with the action potential response of cat motoneurons.
They found that while the linear combination can de-
scribe the appearance of the PSTH under some condi-
tions, in which case the PSP derivative dominates the
response, synaptic noise affects the relative contribu-
tions of the two components and that the inhibitory PSP
(IPSP) response is not well described. They analyzed
a noiseless threshold-crossing model of the tonically
firing motoneuron in which the membrane trajectory
and PSP shape are approximated using linear segments.
According to this model, for larger PSPs, motoneuron
firing probability is proportional not only to the deriva-
tive of the PSP but also inversely to the slope of the
membrane trajectory,

PSP
u/

APSTH « (12)
As in the Knox model, the only noise is in the random
phase of the tonically firing neuron before the stimulus.
In the low-noise limit, Eq. (12) is consistent with our
theory.

In experiments on cat spinal motoneurons,
Gustafsson and McCrea (1984) studied smaller PSPs
with various noise levels, finding support for the idea
that the relative weighting of the two linear terms might
be a function of the ratio of PSP amplitude to noise
amplitude, with the PSP fraction increasing with noise
level. Kirkwood and Sears (1991) reported the results
of a calculation by H. B. Bostock in which this is also
the case, for a model in which both the membrane po-
tential and its derivative are Gaussian-distributed below
threshold about a stationary mean potential i. Bostock
found that the probability of firing is, to first order in
PSP and PSP":

_ a2
P[spike] o exp(—%)

x [(ﬁ = psp(r) + lPSP/(;)]
o 2

U/

where the standard deviations of the membrane poten-
tial and its derivative are o and o’ respectively;  is the
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threshold. However, a required assumption in obtain-
ing the above is that the mean distance below threshold
is large compared to the amplitude of the PSP. While
the structure of the formula is reminiscent of our es-
cape rate in Eq. (7), we have not yet been able to find a
situation in which our formula for the PSTH, Eq. (10),
would reduce to Bostock’s formula. Indeed, in a later
study, Poliakov et al. (1996) noted that this model pre-
dicts peak rise and fall times much shorter than those
observed, implying that the time scale of the response
peak is not simply the same as that of the PSP derivative.

Midroni and Ashby (1989) performed simulations of
the Fetz and Gustafsson model, using regular and then
irregular “noise PSP” spacing. They proposed that the
form of the PSTH peak is a combination of two terms.
One term describes the response without background
1put,

PSP'(t)
— ° PSP >0
APSTH o | 0 OFu =03

0 otherwise

where u’ is the slope of the reference trajectory, and
PSP’ is the time derivative of the PSP, which is remi-
niscent of our results in the lownoise limit. They argue
that additional background input pulses that arrive at
intervals A, can shift the potential across threshold,
which motivates a second term of the form

1
APSTH o - —PSP(1), (14)

n

where 1/A, is the “noise frequency.” If the noise fre-
quency is increased (A, — 0), the term in Eq. (14)
dominates over Eq. (13). Hence, the position of the
peak of the PSTH should depend on the noise fre-
quency, which does not correspond to physiological ob-
servations (Poliakov et al., 1996). As an aside we note
that our escape noise model assumes white noise—i.e.,
there is no cutoff frequency for the noise.

Poliakov et al. (1996, 1997) applied a more complete
set of current stimuli injected into the soma of both
rat hypoglossal and cat lumbar motoneurons, confirm-
ing these findings and also showing that higher-order
interactions (dependent on the time of the preceding
spike) were also not represented in the Kirkwood and
Sears proposal. In particular, the fitting coefficients of
the linear-combination model cannot reproduce the full
range of PSTH profiles observed for a given motoneu-
ron at different firing rates (Poliakov et al., 1997).
They then focused on a Wiener kernel description
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(Poliakov et al., 1997); the first-order (linear) ker-
nel successfully captures both the peak delay and
peak/trough shape, while the second-order kernel is re-
quired to model the inhibitory response and the history
dependence. However, although it produces a success-
ful description under fixed conditions, their Wiener-
kernel approach does not allow predictions to be made
about the response under different noise conditions.

In a theoretical study, Poliakov (1991) analyzed a
model based on a linear approximation to the mem-
brane trajectory of the tonically firing motoneuron,
with noise being added to the membrane potential after
integration. This model predicts that increasing the
noise level results in an increased time-to-peak. Later,
Poliakov et al. (1996) systematically studied the effect
of noise level on the response of rat and cat motoneu-
rons and confirmed that the Fetz-Gustafsson threshold-
crossing model did not adequately describe the PSTH
shape under low noise conditions. The experiments
showed that under low-noise conditions, the typical
PSTH exhibited a peak followed by a trough of equal
area; increasing the noise level reduced the size of the
peak and decreased the depth of the trough following
the peak, but the peak did not shift to a later time.

To summarize, a number of studies have documented
the effect of noise on the shape of the PSTH response to
a stimulus (which could be a presynaptic spike, a cur-
rent, or a PSP). Previous models of the effect of noise
on the shape of the PSTH have serious restrictions con-
cerning the shape of the membrane potential trajectory.
While some models neglect refractoriness completely
(Knox, 1974; Moore et al., 1970; Gustafsson and
McCrea, 1984; Kirkwood and Sears, 1991), other mod-
els (Kirkwood and Sears, 1978; Poliakov, 1991) ap-
proximated the membrane potential trajectory using a
linear segment and therefore do not apply to the sub-
threshold mode. The model presented in this article in-
corporates arbitrary PSP and refractory functions, cov-
ers a continuum of noise levels, and spans the range of
firing regimes from subthreshold to tonic firing.

4.2. Limitations of the Model

4.2.1. Noise Model. In our analytical model, we de-
scribe noise using an escape rate function; we have
shown that by an appropriate choice of escape func-
tion we can obtain a good approximation of a noisy
integration (diffusive noise) process. Our diffusive
noise model simulates membrane potential fluctuations
caused by background synaptic input, the main source

of noise in motoneurons: Calvin and Stevens (1968)
performed intracellular recordings in cat lumbosacral
motoneurons showing that synaptic input causes the
membrane potential to fluctuate about an otherwise
steady level with an exponentially time-filtered Gaus-
sian distribution. The membrane potential peak-to-
peak amplitude can reach several mV (Granit et al.,
1966; Gustafsson and McCrea, 1984), enough to trig-
ger occasional spikes even when the mean potential is
well below threshold; in tonically firing human mo-
toneurons, synaptic noise is known to play a major
role (Matthews, 1996). It should be noted that back-
ground synaptic activity has also been found to increase
conductance significantly in dendrites of neocortical
pyramidal neurons (Paré et al., 1998) and in cerebel-
lar Purkinje cells (Hausser and Clark, 1997), thus de-
creasing cellular responsiveness; our model does not
describe these effects explicitly. Instead, we use an “ef-
fective” membrane time constant 7,, = 4 ms, which is
shorter than the passive time constant measured at rest
(Bernander et al., 1991).

4.2.2. Voltage Trajectories. The neuron description
we have used produces trajectories of the membrane
potential that only approximate those of real motoneu-
rons. We attribute the differences between the experi-
mental PSTHs of Poliakov et al. (1996) and the simu-
lated PSTHs of Fig. 2 mainly to the ad hoc nature of
the parameter values and kernels we used. Although
dynamically changing conductances have a significant
cumulative effect on the threshold-crossing behavior,
they are represented here only summarily. Several types
of improvements to the model might be considered.

1. The simple scalar factor we adopted here only cap-
tures spike-dependent amplitude changes in the re-
sponse to a pulse. However, temporal changes also
occur in the pulse response because of dynamic
conductances (Schwindt and Calvin, 1973; Kistler
et al., 1997), suggesting that better biological re-
alism could be obtained by adding another mod-
ulation to the membrane response kernel ¢ in the
form of a “time constant of the time constant” that
would allow 1, to increase with ¢ — 7 (Stevens and
Zador, 1998). However, whatever the value of this
time constant, the effect on the form of the PSTH
is expected to be small because the effective time
constant would not change very much over the time
scale of the input pulse.

2. Additionally, it is known that the time course of the
input conductance of motoneurons is different at



different drive levels, and differs from that measured
during the afterhyperpolarization following a single
spike (Schwindt and Calvin, 1973). Our model does
not produce a drive-level dependent conductance.

3. The membrane response kernel used here is based
on a decaying exponential. However, kernels of real
neurons are more complex; for example, kernels of
Hodgkin-Huxley type neurons exhibit oscillations
(Kistler et al., 1997). An even better description
using the spike response model could be obtained
by deriving the kernels directly from experimental
measurements in the same way as they were ob-
tained for the Hodgkin-Huxley model by Kistler
et al. (1997).

4.3. Predictions of the Model

To our knowledge, the only direct physiological mea-
surements of the effect of noise on the PSTH response
of neurons to current pulses have been in motoneu-
rons stimulated with a suprathreshold current (Poliakov
etal., 1996, 1997; Fetz and Gustafsson, 1983). Our the-
ory allows two general predictions to be made.

First, the same effect of noise on the PSTH should be
observable when the baseline current is subthreshold:
in low noise, the shape of the PSTH should exhibit a
trough following the main peak; as noise increases, the
peak amplitude should decrease and the trough should
become less pronounced. Since the firing rate is rather
sensitive to noise in the subthreshold regime, the mean
input Iy may be readjusted in order to keep the fir-
ing rate constant so as to extract the effect of noise
on the PSTH. A secondary peak should appear follow-
ing the initial peak, at a delay corresponding to the
mean interval. Secondary peaks are observed experi-
mentally in the suprathreshold regime (e.g., Powers and
Binder (1996) in cat motoneuron) but, to our knowl-
edge, have not been reported below threshold, where
they are likely to be more difficult to observe because
of low firing rates.

Second, our model allows predictions to be made
about the effect of changing the baseline current level.
Motoneurons operate over arange of mean input levels,
from the subthreshold regime Matthews (1996) to tonic
firing (Calvin and Stevens, 1968). If synaptic noise
were very low, our model would predict that motoneu-
ron responses to input pulses is very strongly depen-
dent on the mean input level: responsiveness changes
dramatically as the mean input approaches threshold
and the neuron switches from subthreshold mode to
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tonic firing (top curve in Fig. 8). However, many stud-
ies (Calvin and Stevens, 1968; Granit et al., 1966;
Gustafsson and McCrea, 1984; Matthews, 1996) have
established that the level of synaptic noise in motoneu-
rons generates a standard deviation of the membrane
potential of a few mV. According to our model, at this
level of noise (bottom two curves in Fig. 8), the dis-
continuity in responsiveness just below threshold dis-
appears. Furthermore, at this level of noise, the range
of response below threshold is extended. These pre-
dictions can be tested by measuring the PSTH peak
amplitude at different baseline current levels.

5. Conclusions

We have presented a simple extension of the integrate-
and-fire neuron based on the spike-response model
that gives biologically plausible firing rates and mem-
brane trajectories using typical motoneuron values of
the passive membrane time constant and input resis-
tance. Using an escape-rate approach to model diffu-
sion noise, we have shown how the noise level con-
trols the shape of the neuron’s PSTH response to an
input pulse. The model qualitatively reproduces exper-
imentally observed noise level-dependent changes in
the PSTH. We have thus demonstrated that the exper-
imentally observed effect of noise on the form of the
PSTH does not depend on properties such as adapta-
tion or specific ionic conductances. Although the spike-
response model is a highly simplified description of
biological neurons, it may nevertheless be applicable
when nonlinear properties of the dendrites are unim-
portant. In particular, it is valid for the experimental
situation of current injection into the soma of electro-
tonically compact motoneurons. Our model shows that
noise can play a significant role in signal transmission
in motoneurons in the subthreshold range by extending
the response range. In very low noise, extremely high
responses occur in response to an input pulse when the
mean input is just below threshold. Increasing the noise
level makes the response to an input pulse less sharply
dependent on the mean drive level. Our results may
help to understand a broad set of experimental mea-
surements (Fetz and Gustafsson, 1983; Kirkwood and
Sears, 1978; Poliakov et al., 1996, 1997).

6. Appendix

To obtain AA(t) for our new neuron model, we must
briefly return to the theory of population dynamics
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(Gerstner, 2000). According to this theory, the follow-
ing equation must hold:

d (' W A
0=— Sp(t|1) A(r)dt.
dt‘/:a) n(t | 1) A7)

By linearizing this equation in A A or A#, the following
is obtained:

= —/ So(t —t)AA(t)+A0di
ASu(r|1)
{/ dtlf di Ah(t maAh(t] B

This expression cannot immediately be evaluated
because of the dependence on 7 of the potential
in the second term. However, for the specific ker-
nels defined in Section 2.2, it is easy to show that
h(t 1) = (1 — exp[—(t — D)/ 1) (hgree(t) — exp[—(t —
2:)/":m]]’lfree(,t\)) where hree(t) = fooo e(s)I(t — s)ds.
Before the pulse, the input potential depends on the
time of the last spike 7—i.e. ho(t | 1) = (1 —exp[—(t —
i)/rr])Ahfree(?); note Ahfree(f) = (Tm/rr)RIO- Apph'
cation of the pulse A(¢) causes a fluctuation

Ah= O}

15)

(1=

Ahtree(t)e m ) .
(16)

Ah(t | 2) = (1 —67%)(Aht‘ree(r)

Therefore, dAR(t | 7)/0 Ahgee(t) = (1 — e_(lr;r;)) and so

dSu(r|1)
At | T)

_aiy 1 3Su(r]1)
=(l-e ) ——. (A7)
( ) aAhfree(tl)

When Eqgs. (16) and (17) are used in Eq. (15), the depen-
dence of the potential on 7 is removed. Rearrangement
gives Eq. (10) with the filters of Eq. (11).

Notes

1. For infinitely short current pulses /(¢) = q8(t — tp), the response
amplitude would be independent of the conductance, depending
only on the membrane capacity and the charge g. Below we focus
(as in the case of Poliakov et al., 1996) on current pulses /() =
q(t/ rsz)exp(—t /7s) of finite width 7,. In this case the response
amplitude does depend on the conductance and so on the time
t — 1 since the last output spike. This dependence is mimicked by
Eq. (4).

2. The time constant in the refractory function is changed to Trefr,
and the update rule for / in step Sa is changed to (A ;) = hgree(t;)
[1- exp(_Aj/frec)]~
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