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a b s t r a c t

Training deep neural networks with the error backpropagation algorithm is considered implausible
from a biological perspective. Numerous recent publications suggest elaborate models for biologically
plausible variants of deep learning, typically defining success as reaching around 98% test accuracy on
the MNIST data set. Here, we investigate how far we can go on digit (MNIST) and object (CIFAR10)
classification with biologically plausible, local learning rules in a network with one hidden layer and
a single readout layer. The hidden layer weights are either fixed (random or random Gabor filters)
or trained with unsupervised methods (Principal/Independent Component Analysis or Sparse Coding)
that can be implemented by local learning rules. The readout layer is trained with a supervised, local
learning rule. We first implement these models with rate neurons. This comparison reveals, first, that
unsupervised learning does not lead to better performance than fixed random projections or Gabor
filters for large hidden layers. Second, networks with localized receptive fields perform significantly
better than networks with all-to-all connectivity and can reach backpropagation performance on
MNIST. We then implement two of the networks – fixed, localized, random & random Gabor filters in
the hidden layer – with spiking leaky integrate-and-fire neurons and spike timing dependent plasticity
to train the readout layer. These spiking models achieve >98.2% test accuracy on MNIST, which is
close to the performance of rate networks with one hidden layer trained with backpropagation. The
performance of our shallow network models is comparable to most current biologically plausible
models of deep learning. Furthermore, our results with a shallow spiking network provide an important
reference and suggest the use of data sets other than MNIST for testing the performance of future
models of biologically plausible deep learning.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

While learning a new task, synapses deep in the brain un-
dergo task-relevant changes (Hayashi-Takagi, et al., 2015). These
synapses are often many neurons downstream of sensors and
many neurons upstream of actuators. Since the rules that govern
such changes deep in the brain are poorly understood, it is ap-
pealing to draw inspiration from deep artificial neural networks
(DNNs) (LeCun, Bengio, & Hinton, 2015). DNNs and the cerebral
cortex share that information is processed in multiple layers of
many neurons (Kriegeskorte, 2015; Yamins & DiCarlo, 2016) and
that learning depends on changes of synaptic strengths (Hebb,
1949). However, learning rules in the brain are most likely dif-
ferent from the backpropagation algorithm (Crick, 1989; Marble-
stone, Wayne, & Kording, 2016; Whittington & Bogacz, 2019).
Furthermore, biological neurons communicate by sending dis-
crete spikes as opposed to real-valued numbers used in DNNs.
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Differences like these suggest that there exist other, possibly
nearly equally powerful, algorithms that are capable to solve
the same tasks by using different, more biologically plausible
mechanisms. Thus, an important question in computational neu-
roscience is how to explain the fascinating learning capabilities
of the brain with biologically plausible network architectures and
learning rules. Moreover from a pure machine learning perspec-
tive there is increasing interest in neuron-like architectures with
local learning rules, mainly motivated by the current advances in
neuromorphic hardware (Nawrocki, Voyles, & Shaheen, 2016).

Image recognition is a popular task to test the performance
of neural networks. Because of its relative simplicity and popu-
larity, the MNIST data set (28 × 28-pixel gray level images of
handwritten digits, LeCun, 1998) is often used for benchmarking.
Typical performances of existing models are around 97%–99%
classification accuracy on the MNIST test set (see Section 2 and
Table 2). Since the performances of many classical DNNs trained
with backpropagation (but without data augmentation or con-
volutional layers, see table in LeCun (1998)) also fall in this
region, accuracies around these values are assumed to be an
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Table 1
Alphabetical list of abbreviations in this paper.
Abbreviation Description

AE Autoencoder
ANN Artificial Neural Network
BP (Error-) Backpropagation
CNN / Conv. Convolutional Neural Network
DBN Deep Belief Network
DNN Deep Neural Network
FA Feedback Alignment
ICA Independent Component Analysis
l−. . . Localized connectivity between input and hidden layer
LIF Leaky Integrate-and-Fire
PCA Principal Component Analysis
RBM Restricted Boltzmann Machine
RG Random Gabor filters
RL Reinforcement Learning
RP Random Projections
SC Sparse Coding
SGD Stochastic Gradient Descent
SNN Spiking Neural Network
SP Simple Perceptron
STDP Spike Timing Dependent Plasticity
SVM Support Vector Machine

empirical signature of backpropagation-like deep learning
(Lillicrap, Cownden, Tweed, & Akerman, 2016; Sacramento, Costa,
Bengio, & Senn, 2017; Tavanaei, Ghodrati, Kheradpisheh, Masque-
lier, & Maida, 2018; Whittington & Bogacz, 2019). It is note-
worthy, however, that several of the most promising approaches
that perform well on MNIST have been found to fail on harder
tasks (Bartunov, Santoro, Richards, Hinton, & Lillicrap, 2018)
or at least need major modifications to scale to deeper net-
works (Moskovitz, Litwin-kumar, & Abbott, 2018).

There are two obvious alternatives to supervised training of
all layers with backpropagation. The first one is to fix weights
in the first layer(s) at random values , as proposed by general
approximation theory (Barron, 1993) and the extreme learning
field (Huang, Zhu, & Siew, 2006). The second alternative is un-
supervised training in the first layer(s). In both cases, only the
weights of a readout layer are learned with supervised training.
Unsupervised methods are appealing since they can be imple-
mented with local learning rules, see e.g. ‘‘Oja’s rule’’ (Oja, 1982;
Sanger, 1989) for principal component analysis, nonlinear ex-
tensions for independent component analysis (Hyvärinen & Oja,
1998) or algorithms in Brito and Gerstner (2016), Liu and Jia
(2012), Olshausen and Field (1997), Rozell, Johnson, Baraniuk, and
Olshausen (2008) for sparse coding. A single readout layer can be
implemented with a local rule as well. A candidate is the delta-
rule (also called ‘‘perceptron rule’’), which may be implemented
by pyramidal spiking neurons with dendritic prediction of so-
matic spiking (Urbanczik & Senn, 2014). Since straightforward
stacking of multiple fully connected layers of unsupervised learn-
ing does not reveal more complex features (Olshausen & Field,
1997) we focus here on networks with a single hidden layer (see
also Krotov et al., 2019).

The main objective of this study is to see how far we can go
with networks with a single hidden layer and biologically plau-
sible, local learning rules, preferably using spiking neurons. To
do so we first compare the classification performance of different
rate networks: networks trained with backpropagation, networks
with fixed random projections or random Gabor filters in the
hidden layer and networks where the hidden layer is trained with
unsupervised methods (Section 3.1). Since sparse connectivity is
sometimes superior to dense connectivity (Bartunov et al., 2018;
Litwin-Kumar, Harris, Axel, Sompolinsky, & Abbott, 2017) and
successful convolutional networks leverage local receptive fields,
we investigate sparse connectivity between input and hidden

layer, where each hidden neuron receives input only from a few
neighboring pixels of the input image (Section 3.2). Finally we
implement the simplest, yet promising and biologically plausible
models – localized random projections and random Gabor filters
– with spiking leaky integrate-and-fire neurons and spike timing
dependent plasticity (Section 3.3). We discuss the performance
and implications of this simplistic model with respect to current
models of biologically plausible deep learning.

2. Related work

In recent years, many biologically plausible approaches to
deep learning have been proposed, see e.g. (Marblestone et al.,
2016; Tavanaei et al., 2018; Whittington & Bogacz, 2019) for
reviews. Existing approaches usually use either involved archi-
tectures or elaborate mechanisms to approximate the backprop-
agation algorithm. Examples include the use of convolutional
layers (Kheradpisheh et al., 2018; Lee, Srinivasan, Panda, & Roy,
2018; Tavanaei et al., 2018; Tavanaei & Maida, 2016) (and tables
therein), dendritic computations (Guergiuev et al., 2016; Hussain
et al., 2014; Sacramento et al., 2017) or backpropagation approxi-
mations such as feedback alignment (Baldi et al., 2016; Bartunov
et al., 2018; Kohan et al., 2018; Lillicrap et al., 2016; Nøkland,
2016; Samadi et al., 2017) equilibrium propagation (Scellier &
Bengio, 2017), membrane potential based backpropagation (Lee
et al., 2016), restricted Boltzmann machines and deep belief net-
works (Neftci et al., 2014; O’Connor et al., 2013), (localized) dif-
ference target propagation (Bartunov et al., 2018; Lee et al., 2015),
using reinforcement-signals (Pozzi et al., 2018; Rombouts, Bohte,
& Roelfsema, 2015) or approaches using predictive coding (Whit-
tington & Bogacz, 2017). Many models implement spiking neu-
rons to stress bio-plausibility (Kulkarni & Rajendran, 2018; Liu,
Pineda-Garcia, Stromatias, Serrano-Gotarredona, & Furber, 2016;
Liu & Yue, 2018; Neftci et al., 2017; Tavanaei et al., 2018; Wu
et al., 2018) (and tables therein) or coding efficiency (O’Connor
et al., 2017). The conversion of DNNs to spiking neural networks
(SNN) after training with backpropagation (Diehl, et al., 2015) is
a common technique to evade the difficulties of training with
spikes. Furthermore, there are models including recurrent activity
(Bellec, Salaj, Subramoney, Legenstein, & Maass, 2018; Spoerer,
McClure, & Kriegeskorte, 2017), starting directly from realistic
circuits (Delahunt & Kutz, 2018), or combining unsupervised and
supervised training (Krotov et al., 2019) as in this paper. We refer
to Table 2 for an extensive list of current biologically plausible
models tested on MNIST (see Table 1 for abbreviations).

3. Results

We study networks that consist of an input (l0), one hidden
(l1) and an output-layer (l2) of (nonlinear) units, connected by
weight matrices W1 and W2 (Fig. 1). Training the hidden layer
weights W1 with standard supervised training involves (non-
local) error backpropagation using summation over output units,
the derivative of the units’ nonlinearity (ϕ′(·)) and the trans-
posed weight matrix WT

2 (Fig. 1a). In the biologically plausible
network considered in this paper (Fig. 1b & c), the input-to-
hidden weights W1 are either fixed random, random Gabor filters
or learned with an unsupervised method (Principal/ Independent
Component Analysis or Sparse Coding). The unsupervised learn-
ing algorithms assume recurrent inhibitory weights V1 between
hidden units to implement competition, i.e. to make different
hidden units learn different features. For more model details we
refer to Appendix A–Appendix D. Code for all (rate & spiking)
models discussed below is publicly available at https://github.
com/EPFL-LCN/pub-illing2019-nnetworks.

https://github.com/EPFL-LCN/pub-illing2019-nnetworks
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
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Table 2
MNIST benchmarks for biologically plausible models of deep learning compared with models in this paper (bold). SNN: Spiking Neural Network, for other abbreviations
see Section 3. Models are ranked by MNIST test accuracy (rightmost column). Parts of this table are taken from Diehl and Cook (2015), Kheradpisheh, Ganjtabesh,
Thorpe, and Masquelier (2018), Tavanaei et al. (2018). Models using convolutional layers (CNN) are marked in italic. See Table 1 for abbreviations. For conventional
ANN/DNN/CNN MNIST benchmarks see table in LeCun (1998).
Model Neural coding Learning type Comments Test accuracy (%)

Conv. SNN (Wu, Deng, Li, Zhu, & Shi, 2018) Spikes Supervised 5 conv. layers, Spatio-Temporal BP 99.3
Conv. SNN (Diehl, et al., 2015) Rate Supervised Conversion: rate → spike 99.1
Conv. Spiking AE (Panda & Roy, 2016) Spikes Un/Supervised Stacked conv. AE with BP + sym. weights 99.1
l-RG (this paper) Rate Un/Supervised Only output layer learned 98.9
l-BP (this paper) Rate Supervised BP-benchmark of this paper 98.8
l-ICA (this paper) Rate Un/Supervised ICs as features for SGD 98.8
l-FA (Bartunov et al., 2018) (& this paper) Rate Supervised FA with localized rec. fields 98.7
SNN (Lee, Delbruck, & Pfeiffer, 2016) Spikes Supervised BP approx., weight symmetry 98.7
spiking LIF l-RG (this paper) Spikes Supervised STDP (only output layer learned) 98.6
(Stoch.) Diff. Target Prop. (Lee, Zhang, Fischer, & Bengio,
2015)

Rate Supervised Layer-wise AE, Target Prop. 98.5

Nonlin. Hebb + SGD (Krotov, Hopfield, & Lee, 2019) Rate Un/Supervised nonlin. Hebb + SGD (similar to this paper) 98.5
l-RP (this paper) Rate Supervised Only output layer learned 98.4
l-SC (this paper) Rate Un/Supervised SC for 1. layer, SGD for 2. layer 98.4
Conv. SNN (Kheradpisheh et al., 2018) Spikes Unsupervised 3 Conv. layers, STDP, ext. SVM 98.4
SNN (O’Connor, Gavves, & Welling, 2017) Pseudo-spike Supervised Sparse, discrete activities, STDP 98.3
Direct FA (Nøkland, 2016) Rate Supervised Many hidden layers 98.3
Spiking FA (Lillicrap et al., 2016) Spikes Supervised 3 hidden layers 98.2
spiking LIF l-RP (this paper) Spikes Supervised STDP (only output layer learned) 98.2
l-PCA (this paper) Rate Un/Supervised PCs as features for SGD 98.2
Q-AGREL (RL-like) (Pozzi, Bohté, & Roelfsema, 2018) Rate RL-like RL-like BP-approx. 98.2
Forward propagation (FP) (Kohan, Rietman, &
Siegelmann, 2018)

Rate Supervised FP: BP approximation 98.1

Spiking FA (Neftci, Augustine, Paul, & Detorakis, 2017) Spikes Supervised Direct FA 98
Predictive coding (Whittington & Bogacz, 2017) Rate Supervised BP approx. by pred. coding 98
Spiking CNN (Tavanaei & Maida, 2016) Rate/Spikes Unsupervised Semi-online, STDP, ext. SVM 98
Equilibrium Prop. (Scellier & Bengio, 2017) Rate Supervised 1–3 hidden layers 97–98
Dendr. BP (Sacramento et al., 2017) Spikes Supervised Dendritic comp. for BP approx. 97.5
Spiking FA (Samadi, Lillicrap, & Tweed, 2017) Spikes Supervised 3 hidden layers 97
Sparse/Skip FA (Baldi, Sadowski, & Lu, 2016) Rate Supervised Sparse- & Skip-FA 96–97
Spiking CNN (Thiele, Bichler, & Dupret, 2018) Spikes Unsupervised Recurrent Inhib., STDP 96.6
Spiking FA (Guergiuev, Lillicrap, & Richards, 2016) Spikes Supervised Dendritic comp. for BP approx. 96.3
2 layer network (Diehl & Cook, 2015) Spikes Unsupervised Recurrent Inhib., purely unsuperv. 95
Spiking RBM/DBN (O’Connor, Neil, Liu, Delbruck, &
Pfeiffer, 2013)

Rate Supervised Conversion rate → spike 94.1

2 layer network (Querlioz, Bichler, Dollfus, & Gamrat,
2013)

Spikes Unsupervised Memristive device 93.5

Spiking HMAX/CNN (Liu & Yue, 2018) Spikes Supervised STDP, HMAX preprocess. 93
Spiking RBM/DBN (Neftci, Das, Pedroni, Kreutz-Delgado,
& Cauwenberghs, 2014)

Rate Supervised Neural sampling 92.6

Spiking RBM/DBN (Neftci et al., 2014) Spikes Supervised Neural sampling 91.9
SP (this paper) Rate Supervised Direct classification on MNIST data 91.9
Spiking CNN (Zhao, Ding, Chen, Linares-Barranco, & Tang,
2015)

Spike Supervised Tempotron rule, sensor MNIST 91.3

Dendritic neurons (Hussain, Liu, & Basu, 2014) Rate Supervised Nonlin. dendrites, neuromorphic appl. 90.3

3.1. Benchmarking biologically plausible rate models and backprop-
agation

To see how far we can go with a single hidden layer, we
systematically investigate rate models using different methods to
initialize or learn the hidden layer weights W1 (see Fig. 1 and
methods Appendix A–Appendix C for details). We use two differ-
ent ways to set the weights W1 of the hidden layer: either using
fixed Random Projections (RP) or Random Gabor filters (RG), see
Fig. 1b & blue curves in Fig. 2, or using one of the unsuper-
vised methods Principal Component Analysis (PCA), Independent
Component Analysis (ICA) or Sparse Coding (SC), see Fig. 1c &
red curves in Fig. 2. All these methods can be implemented with
local, biologically plausible learning rules (Hyvärinen & Oja, 1998;
Oja, 1982; Olshausen & Field, 1997). We refer to the methods
Appendix B for further details. As a reference, we train networks
with the same architecture with standard backpropagation (BP,
see Fig. 1a). As a step from BP towards increased biologically
plausibility, we include Feedback Alignment (FA, Lillicrap et al.,
2016) with fixed random feedback weights for error backprop-
agation (see methods Appendix D for further explanation). A
Simple Perceptron (SP) without a hidden layer serves as a fur-
ther reference, since it corresponds to direct classification of the

input. We expect any biologically plausible learning algorithm to
achieve results somewhere between SP (‘‘lower’’) and BP (‘‘upper
performance bound’’)

The hidden-to-output weights W2 are trained with standard
stochastic gradient descent (SGD), using a one-hot representation
of the class label as target. Since no error backpropagation is
needed for a single layer, the learning rule is local (‘‘delta’’ or
‘‘perceptron’’-rule). Therefore the two-layer network as a whole is
biologically plausible in terms of online learning and synaptic up-
dates using only local variables. For computational efficiency, we
first train the hidden layer and then the output layer, however,
both layers could be trained simultaneously.

We compare the test errors on the MNIST digit recognition
data set for varying numbers of hidden neurons nh (Fig. 2). The
PCA (red dashed) and ICA (red dotted) curves in Fig. 2 end
at the vertical line nh = d = 784 because the number of
principal/independent components (PCs/ICs), i.e. the number of
hidden units nh, is limited by the input dimension d. Since the PCs
span the subspace of highest variance, classification performance
quickly improves when adding more PCs for small nh and then
saturates for larger nh. ICA does not seem to discover significantly
more useful features than PCA, leading to similar classification
performance.

http://yann.lecun.com/exdb/mnist/
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Fig. 1. The proposed network model has one hidden layer (l1) and one readout layer (l2) of nonlinear units (nonlinearity ϕ(·)). Respective neural activations (e.g. a0,j)
and update rules (e.g. ∆W1,ij) are added. (f (·)) g(·), h(·) & h̃(·) are (non-)local plasticity functions, i.e. using only variables (not) available at the synapse for the
respective update. a Training with backpropagation (BP) through one hidden layer is biologically implausible since it is nonlocal (e.g. using W2 & ϕ′(·) from higher
layers to update W1 , see Appendix D). b & c Biologically plausible architecture with fixed Random Projections (RP) or fixed random Gabor filters (RG) (blue box in
b) or unsupervised feature learning in the first layer (red box in c), and a supervised classifier in the readout layer l2 (green boxes). All weight updates are local.
W stands for feed-forward, V for recurrent, inhibitory weights. (Crossed out) brain icons in a,b & c stand for (non-)bio-plausibility of the whole network. d & e
Illustration of fully connected and localized receptive fields of W1 . f For localized Principal/Independent Component Analysis (l-PCA/l-ICA) and Sparse Coding (l-SC)
the hidden layer is composed of independent populations. Neurons within each population share the same localized receptive field and compete with each other
while the populations are conditionally independent. For more model details, see Appendix A–Appendix D. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 2. MNIST classification with rate networks according to Fig. 1a-c with full
connectivity (Fig. 1d). The test error decreases for increasing hidden layer size nh
for all methods, i.e. Principal/Independent Component Analysis (PCA/ICA, curves
are highly overlapping), Sparse Coding (SC), fixed Random Projections (RP) and
fixed random Gabor filters (RG) as well as for the fully supervised reference
algorithms Backpropagation (BP) and Feedback Alignment (FA). The dash-dotted
line at 90% is chance level, the dotted line around 8% is the performance of a
Simple Perceptron (SP) without hidden layer. The vertical line marks the input
dimension d = 784, i.e. the transition from under- to overcomplete hidden
representations. Note the log–log scale. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this
article.)

SC (red solid line) extracts sparse representations that can be
overcomplete (nh > d), leading to a remarkable classification
performance of around 96% test accuracy. This suggests that the
sparse representation and the features extracted by SC are indeed
useful for classification, especially in the overcomplete case.

As expected, the performance of RP (blue solid) for small
numbers of hidden units (nh < d) is worse than for feature
extractors like PCA, ICA or SC. Also for large hidden layers, perfor-
mance improves only slowly with nh, which is in line with theory
(Barron, 1993) and findings in the extreme learning field (Huang
et al., 2006). However, for large hidden layers sizes, RP outper-
forms SC.

As a reference, we also studied fixing the hidden layer weights
to Gabor filters of random orientation, phase and size, located at
the image center (RG, blue dashed, see Appendix C). For hidden
layers with more than 1000 neurons, SC is only marginally better
than the network with fixed random Gabor filters.

For all tested methods and hidden layer sizes, performance is
significantly worse than the one reached with BP (black solid in
Fig. 2). In line with Lillicrap et al. (2016), we find that FA (black
dashed) performs as well as BP on MNIST. Universal function
approximation theory predicts lower bounds for the squared
error that follow a power law with hidden layer size nh for both
BP (O(1/nh)) and RP (O(1/n2/d

h ), where d is the input dimension
(Barron, 1993; Barron, Brandy, & Yale, 1994)). In the log–log-plot
in Fig. 2 this would correspond to a factor d/2 = 784/2 = 392
between the slopes of the curves of BP and RP, or at least a factor
deff/2 ≈ 10 using an effective dimensionality of MNIST (see
methods A). We find a much faster decay of classification error
in RP and a smaller difference between RP and BP slopes than
suggested by the theoretical lower bounds.

Taken together, these results show that the high dimension-
ality of the hidden layers is more important for reaching high
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performance than the global features extracted by PCA, ICA or SC.
Tests on the object recognition task CIFAR10 lead to the same
conclusion, indicating that this observation is not entirely task
specific (see Section 3.2 for further analysis on CIFAR10).

3.2. Localized receptive fields boost performance

There are good reasons to reduce the connectivity from all-
to-all to localized receptive fields (Fig. 1e & f): local connectivity
patterns are observed in real neural circuits (Hubel & Wiesel,
1962), useful theoretically (Litwin-Kumar et al., 2017) and em-
pirically (Bartunov et al., 2018), and successfully used in convo-
lutional neural networks (CNNs). Even though this modification
seems well justified from both biological and algorithmic sides,
it reduces the generality of the algorithm to input data such as
images where neighborhood relations between pixels (i.e. input
dimensions) are important.

To obtain localized receptive fields (called ‘‘l-’’ methods in the
following) patches spanning p × p pixels in the input space are
assigned to the hidden neurons. The centers of the patches are
chosen at random positions in the input space, see Fig. 1e &
f. For localized Random Projections (l-RP) and localized random
Gabor filters (l-RG) the weights within the patches are randomly
drawn from the respective distribution and then fixed. For the
localized unsupervised learning methods (l-PCA, l-ICA & l-SC) the
hidden layer is split into 500 independent populations. Neurons
within each population compete with each other while different
populations are independent, see Fig. 1f. This split implies a min-
imum number of nh = 500 hidden neurons for these methods.
For l-PCA and l-ICA a thresholding nonlinearity was added to the
hidden layer to leverage the local structure (otherwise PCA/ICA
act globally due to their linear nature, see methods Appendix B).

We test l-RP for different patch sizes p and find an optimum
around p ≈ 10 (see Fig. 3a). Note that p = 1 corresponds to
resampling the data with random weights, and p = 28 recovers
fully connected RP performance. The other methods show similar
optimal values around p = 10 (not shown). The main finding here
is the significant improvement in performance using localized
receptive fields. All tested methods improve by a large margin
when switching from full image to localized patches and some
methods (l-RG and l-ICA) even reach BP performance for nh =

5000 hidden neurons (see Fig. 3b). To achieve a fair comparison
BP is also implemented with localized receptive fields (l-BP)
which leads to a minor improvement compared to global BP. This
makes local random projections or local unsupervised learning
strong competitors to BP as biologically plausible algorithms in
the regime of large, overcomplete hidden layers nh > d — at least
for MNIST classification.

To test whether localized receptive fields only work for the
relatively simple MNIST data set (centered digits, uninformative
margin pixels, no clutter, uniform features and perspective etc.)
or generalize to more difficult tasks, we apply it to the CIFAR10
data set (Krizhevsky, 2013). We first reproduce a typical bench-
mark performance of a fully connected network with one hidden
layer trained with standard BP (≈ 56% test accuracy, nh = 5000,
see also Lin & Memisevic, 2016). Again, classification performance
increases for increasing hidden layer size nh and localized recep-
tive fields perform better than full connectivity for all methods.
Furthermore, as on MNIST, we can see similar performances for
local feature learning methods (l-PCA, l-ICA & l-SC) and local
random features (l-RP, l-RG) in the case of large, overcomplete
hidden layers (see Table 3). Also on CIFAR10, localized random
filters and local feature learning reach the performance of bi-
ologically plausible models of deep learning (Bartunov et al.,
2018; Krotov et al., 2019) and come close to the performance
of the reference algorithm l-BP. However, the difference remains

statistically significant here. Given that the state-of-the-art per-
formance on CIFAR10 with deep convolutional neural networks
is close to 98% (e.g. Real, Aggarwal, Huang, & Le, 2018), the
limitations of our shallow local network and the well-known
differences in difficulty between MNIST and CIFAR10 become
apparent.

In summary, the main message of this section is that unsu-
pervised methods, as well as random features, perform signifi-
cantly better when applied locally. Equipped with local receptive
fields our shallow network can outperform many current models
of biologically plausible deep learning (see Table 2). On MNIST
some models (l-RG & l-ICA) even reach backpropagation per-
formance, while on CIFAR10 large differences to state-of-the-art
deep convolutional networks remain.

3.3. Spiking localized random projections

Real neural circuits communicate with short electrical pulses,
called spikes, instead of real numbers such as rates. We thus ex-
tend our shallow network model to networks of leaky integrate-
and-fire (LIF) neurons. The network architecture is the same as
in Fig. 1b. To keep it simple we implement the two models with
fixed random weights with LIF neurons: fixed localized Random
Projections (l-RP) and fixed localized random Gabor filters (l-RG)
with patches of size p × p — as in Section 3.2. The output layer
weights W2 are trained with a supervised spike timing dependent
plasticity (STDP) rule.

The spiking dynamics follow the usual LIF equations (see
methods Appendix E) and the readout weights W2 evolve ac-
cording to a supervised delta rule via spike timing dependent
plasticity (STDP) using post-synaptic spike-traces tri(t) and a
post-synaptic target trace tgti(t)

τtr
dtri(t)
dt

= −tri(t) +

∑
f

δ

(
t − t fi

)
(1)

∆w2,ij = α ·

(
tgtposti (t) − trposti (t)

)
δ

(
t − t fj

)
,

where α is the learning rate. Thus, for a specific readout weight
w2,ij, the post-synaptic trace is updated at every post-synaptic
spike time t fi and the weight is updated at every pre-synaptic
spike time t fj . The target trace is constant while a pattern is
presented and uses a standard one-hot coding for the supervisor
signal in the output layer (l2).

To illustrate the LIF and STDP dynamics, a toy example con-
sisting of one pre-synaptic neuron connected to one post-synaptic
neuron is integrated for 650 ms. The pre- and post-synaptic mem-
brane potentials show periodic spiking (Fig. 4a) which induces
post-synaptic spike traces and corresponding weight changes
(Fig. 4b), according to Eq. (1). For the MNIST task, Fig. 4c shows
a raster plot for an exemplary training and testing protocol.
During activity transients after a switch from one pattern to
the next, learning is disabled until regular spiking is recovered.
We experienced that without disabling learning during these
transient phases the networks never reached a low test error. This
is not surprising, since in this phase the network activities carry
information both about the previously presented pattern and the
current one, but the learning rule is designed for network activ-
ities in response to a single input pattern. It is also known that
LIF neurons differ from biological neurons in response to step cur-
rents (see Naud, Marcille, & Clopath, 2008 and references therein).
During the testing period, learning is shut off permanently (see
methods Appendix E for more details). The LIF and STDP dynamics
can be mapped to a rate model (see e.g. Diehl, et al., 2015 and
Appendix E for details). However all following results are ob-
tained with the fully spiking LIF/STDP model.
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Fig. 3. Effect of localized connectivity on MNIST. a Test error for localized Random Projections (l-RP), dependent on receptive field size p for different hidden layer
sizes nh . The optimum for receptive field size p = 10 is more pronounced for large hidden layer sizes. Full connectivity is equivalent to p = 28. Note the log-lin
scale. b Localized receptive fields decrease test errors for all tested networks (compare Fig. 2): Principal/Independent Component Analysis (l-PCA/l-ICA), Sparse Coding
(l-SC), Random Projections (l-RP), Random Gabor filters (l-RG) and Backpropagation (l-BP). The effect is most significant for l-ICA and l-RG, which approach l-BP
performance for large nh and p = 10, while all other methods reach test errors between 1 − 2%. All other reference lines as in Fig. 2. l-PCA/l-ICA & l-SC use 500
independent populations in the hidden layer (see Fig. 1f) which constrains the hidden layer size to nh ≥ 500. Note the log–log scale.

Table 3
Test accuracies (%) on MNIST and CIFAR10 for rate networks and spiking LIF models. The Simple Perceptron (SP) is equivalent to direct classification on the data
without hidden layer. All other methods use nh = 5000 hidden neurons and receptive field size p = 10. Note that CIFAR10 has d = 32 × 32 × 3 = 3072 input
channels (the third factor is due to the color channels), MNIST only d = 28× 28 = 784. The rate (spiking) models are trained for 167 (117) epochs. Best performing
in bold.

SP l-PCA l-ICA l-SC l-RP l-RG l-BP

Rate CIFAR10 41.1 ± 0.1 50.8 ± 0.3 53.9 ± 0.3 50.2 ± 0.2 52.0 ± 0.4 55.6 ± 0.2 58.3 ± 0.2
MNIST 91.9 ± 0.1 98.2 ± 0.02 98.8 ± 0.03 98.4 ± 0.07 98.4 ± 0.1 98.9 ± 0.05 98.8 ± 0.1

Spiking MNIST – 98.2 ± 0.05 98.6 ± 0.1 –

When directly trained with the STDP rule of Eq. (1), the spik-
ing LIF models closely approach the performance of their rate
counterparts. Table 3 compares the performances of the rate and
spiking LIF l-RP & l-RG models with the reference algorithm l-BP
(for same hidden layer size nh and patch size p, see Section 3.2).
The remaining gap (< 0.3%) between rate model and spiking LIF
model presumably stems from noise introduced by the spiking
approximation of rates and the activity transients mentioned
above. Both, the rate and spiking LIF model of l-RP/l-RG achieve
accuracies close to the backpropagation reference algorithm l-BP
and fall in the range of performance of prominent, biologically
plausible models, i.e. 98%–99% test accuracy (see Section 2 and
Table 2). Based on these numbers we conclude that the spiking LIF
model of localized random projections using STDP is capable of
learning the MNIST task to a level that is competitive with known
benchmarks for spiking networks.

4. Discussion

In contrast to biologically plausible deep learning algorithms
that are derived from approximations of the backpropagation
algorithm (Lillicrap et al., 2016; Pozzi et al., 2018; Sacramento
et al., 2017; Whittington & Bogacz, 2019), we focus here on
shallow networks with only one hidden layer. The weights from
the input to the hidden layer are either learned by unsupervised
algorithms with local learning rules; or they are fixed. If fixed,
they are drawn randomly or represent random Gabor filters. The
readout layer is trained with a supervised, local learning rule.

When applied globally, randomly initialized fixed weights/
Gabor filters (RP/RG) of large hidden layers lead to better classifi-
cation performance than training them with unsupervised meth-
ods like Principal/Independent Component Analysis (PCA/ICA) or
Sparse Coding (SC). Such observations also occur in different

contexts, e.g. Dasgupta, Sheehan, Stevens, and Navlakha (2018)
showed that (sparse) random projections, combined with dimen-
sionality expansion outperform known algorithms for locality-
sensitive hashing. It may be interesting to search for alternative
unsupervised, local learning rules with an inductive bias that is
better adapted to image processing tasks than the one of SC.

Replacing all-to-all connectivity with localized input filters
is such an inductive bias that already proved useful in super-
vised models (Bartunov et al., 2018) but turns out to be particu-
larly powerful in conjunction with unsupervised learning (l-PCA,
l-ICA & l-SC). Interestingly, non of the local unsupervised meth-
ods could significantly outperform localized random Gabor filters
(l-RG). Furthermore, we find that the performance scaling with
the number of hidden units nh is orders of magnitudes better than
the lower bound suggested by universal function approximation
theory (Barron, 1993).

To move closer to realistic neural circuits we implement our
shallow, biologically plausible network with spiking neurons and
spike timing dependent plasticity to train the readout layer. Spik-
ing localized random projections (l-RP) and localized Gabor filters
(l-RG) reach >98% test accuracy on MNIST which lies within the
range of current benchmarks for biologically plausible models for
deep learning (see Section 2 and Table 2). Our network model is
particularly simple, i.e. it has only one trainable layer and does
not depend on sophisticated architectural or algorithmic features
typically necessary to approximate backpropagation (Whitting-
ton & Bogacz, 2019). Instead it only relies on the properties of
high-dimensional localized random projections.

Since we want to keep our models as simple as possible, we
use online stochastic gradient descent (SGD, no mini-batches)
with a constant learning rate. There are many known ways to
further tweak the final performance, e.g. with adaptive learning
rate schedules or data augmentation, but our goal here is to
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Fig. 4. Spiking LIF and STDP dynamics. a Dynamics of the pre- and postsynaptic membrane potentials, spike-traces and the weight value (b) of a toy example with
two neurons and one interconnecting synapse. The weight decreases when the post-trace is above the post-target-trace (see Eq. (1) and Appendix E). Both neurons
receive static supra-threshold external input: Iextpre ≫ Iextpost ≈ ϑ (spiking threshold). Note that presynaptic spikes only slightly alter the postsynaptic potential since
the weight is initially zero. c Rasterplot of a network trained on MNIST, where every spike is marked with a dot. The background color indicates the corresponding
layers: input (blue, n0 = 144 neurons), hidden (green, n1 = nh = 100) and output (red, n2 = 10). Bold vertical lines indicate pattern switches, thin lines indicate ends
of transient phases (indicated by semi-transparency), during which learning is disabled. Left: Behavior at the beginning of the training phase. Right: Testing period
(learning off) after 6 · 104 presented patterns (1 epoch). As can be seen in the zoomed view of the 10 output layer neurons (red), the output layer has started to
learn useful, 1-hot encoded class predictions. A downsampled (12 × 12) version of MNIST is used for improved visibility. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

demonstrate that even a simple model with constant learning
rate achieves results that are comparable with more elaborate
approaches that use e.g. convolutional layers with weight shar-
ing (Panda & Roy, 2016), backpropagation approximations (Lee
et al., 2016), multiple hidden layers (Lillicrap et al., 2016), den-
dritic neurons (Sacramento et al., 2017), recurrence
(Diehl & Cook, 2015) or conversion from rate to spikes (Diehl,
et al., 2015). Above 98% accuracy we also have to take into
account a saturating effect of the network training: better models
will only lead to subtle improvements in accuracy. It is not obvi-
ous whether improvements are really a proof of having achieved
deep learning or just the result of tweaking the models towards
the peculiarities of the MNIST data set. Localized random filters
or local unsupervised feature learning perform remarkably well
compared to fully-connected backpropagation in shallow net-
works, even on more challenging data sets such as CIFAR10. This
makes our model an important benchmark for future, biologically
plausible models but also clearly highlights the limitations of
our shallow two-layer model. A long time ago state-of-the-art
deep learning has moved from MNIST to harder data sets, such
as CIFAR10 or ImageNet (Deng et al., 2009). Yet MNIST seems
to be the current reference task for most biologically plausible
deep learning models (see Section 2 and Table 2). We suggest
that novel, progressive approaches to biologically plausible deep
learning should significantly outperform the results presented
here. Furthermore, they should be tested on tasks other than
MNIST, where real deep learning capabilities become necessary.
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Appendix A. General rate model details

We use a 3-layer (input l0, hidden l1 = lh and output l2) feed-
forward rate-based architecture with layer sizes (n0 for input),
n1 (hidden) and n2 (output, with n2 = 10 = number of classes).
The layers are connected via weight matrices W1 ∈ Rn1×n0 and
W2 ∈ Rn2×n1 and each neuron receives bias from the bias vectors
b1 ∈ Rn1 and b2 ∈ Rn2 respectively (see Fig. 1). The neurons
themselves are nonlinear units with an element-wise, possibly
layer-specific, nonlinearity ai = ϕl(ui). The feed-forward pass of
this model thus reads

ul+1 = Wl+1al + bl+1

al+1 = ϕl+1(ul+1). (2)

The Simple Perceptron (SP) only consists of one layer (l2,
W2 ∈ Rn2×n0 , b2 ∈ Rn2 ). The sparse coding (SC) model assumes
recurrent inhibition within the hidden layer l1. This inhibition
is not modeled by an explicit inhibitory population, as required
by Dale’s principle (Dale, 1935), but direct, plastic, inhibitory
synapses V1 ∈ Rn1×n1 are assumed between neurons in l1. Classi-
fication error variances in Figs. 2 and 3 are displayed as shaded,
semi-transparent areas with the same colors as the corresponding
curves. Their lower and upper bounds correspond to the 25% and
75% percentiles of at least 10 independent runs.

An effective dimensionality deff of the MNIST data set can
be obtained, e.g. via eigen-spectrum analysis, keeping 90% of
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the variance. We obtain values around deff ≈ 20. The mea-
sure proposed by Litwin-Kumar et al. (2017) gives the same
value deff ≈ 20. We checked that training a perceptron
(1 hidden layer, nh = 1000, 107 iterations, ReLU, standard BP)
on the first 25 PCs of MNIST instead of the full data set leads
to a comparable MNIST performance (1.7% vs 1.5% test error
respectively). Together, these findings suggest that the MNIST
data set lies mostly in a low-dimensional linear subspace with
deff ≈ 25 ≪ d. The MNIST (& CIFAR10) data was rescaled to
values in [0,1] and mean centered, which means that the pixel-
wise average over the data was subtracted from the pixel values
of every image. Simulations were implemented and performed in
the Julia-language. The code for the implementation of our rate
network models is publicly available at https://github.com/EPFL-
LCN/pub-illing2019-nnetworks.

Appendix B. Unsupervised methods (PCA, ICA & SC)

In this paper we do not implement PCA/ICA learning explic-
itly as a neural learning algorithm but by a standard PCA/ICA
algorithm (MultivariateStats.jl) since biologically plausible online
algorithms for both methods are well known (Hyvärinen & Oja,
1998; Sanger, 1989). For d-dimensional data such algorithms
output the values of the n ≤ d first principal/ independent
components as well as the corresponding subspace projection
matrix P ∈ Rn×d. This matrix can directly be used as feedforward
matrix W1 in our network since the lines of P correspond to
the projections of the data onto the single/independent principal
components. In other words each neuron in the hidden layer l1
extracts another principal/independent component of the data.
ICA was performed with the usual pre-whitening of the data.

Since PCA/ICA is a linear model, biases b1 were set to 0 and
ϕ1(u) = u. With this, we can write the (trained) feed-forward
pass of the first layer of our PCA/ICA model as follows:

a1 = u1 = W1 · a0 with W1 = P (3)

Since the maximum number of principal/independent com-
ponents that can be extracted is the dimensionality of the data,
nmax = d, the number of neurons in the hidden layer n1 is lim-
ited by d. This makes PCA/ICA unusable for overcomplete hidden
representations as investigated for SC and RP. In the localized
version of PCA/ICA we assume the hidden layer to consist of
independent populations, each extracting PCs/ICs of its respective
localized receptive field (see Fig. 1). The hidden layer was divided
into 500 of those populations, resulting in a minimum number
of nh = 500 hidden neurons (1 PC/IC per population) for these
methods (and up to 10 PCs/ICs per population for nh = 5000).
The classifier was then trained on the combined activations of
all populations of the hidden layer. Because PCA/ICA are linear
methods the localized PCA/ICA version would not extract signif-
icantly different features unless we introduce a nonlinearity in
the hidden units. This was done by simply thresholding the hid-
den activations (ReLU with threshold 0). No further optimization
in terms of nonlinearity- and threshold-tuning was performed.
Sparse coding (SC) aims at finding a feature dictionary W ∈ Rh×d

(for d-dimensional data) that leads to an optimal representation
a1 ∈ Rh which is sparse, i.e. has as few non-zero elements as
possible. The corresponding optimization problem reads:

Wopt , aopt1 = argmin L(W, a1)

L(W, a1) =
1
2
∥a0 − W⊤a1∥2

2 + λ∥a1∥1. (4)

Since this is a nonlinear optimization problem with latent vari-
ables (hidden layer) it cannot be solved directly. Usually an
iterative two step procedure is applied (akin to the expectation–
maximization algorithm) until convergence: First optimize with

respect to the activities awith fixed weightsW. Second, assuming
fixed activities, perform a gradient step w.r.t to weights.

We implement a biologically plausible SC model using a
2-layer network with recurrent inhibition and local plasticity
rules similar to the one in Brito and Gerstner (2016). For a
rigorous motivation (and derivation) that such a network archi-
tecture can indeed implement sparse coding we refer to Brito
and Gerstner (2016), Olshausen and Field (1997), Pehlevan and
Chklovskii (2015), Zylberberg, Murphy, and DeWeese (2011). We
apply the above mentioned two step optimization procedure to
solve the SC problem given our network model. The following
two steps are repeated in alternation until convergence of the
weights:

1. Optimizing the hidden activations:
We assume given and fixed weights W1 and V1 and ask for
optimal hidden activations a1. Because of the recurrent in-
hibition V1 the resulting equation for the hidden activities
a1 is nonlinear and implicit. To solve this equation itera-
tively, we simulate the dynamics of a neural model with
time-dependent internal and external variables u1(t) and
a1(t) respectively. The dynamics of the system is then given
by Brito and Gerstner (2016), Zylberberg et al. (2011):

τu
du1(t)
dt

= −u1(t) + (W1a0(t) − V1a1(t))

a1(t) = ϕ(u1(t)) (5)

In practice the dynamics is simulated for Niter = 50
iterations, which leads to satisfying convergence (change
in hidden activations < 5%).

2. Optimizing the weights:
Now the activities a1 are kept fixed and we update
the weights following the gradient of the loss function.
The weight update rules are Hebbian-type local learning
rules (Brito & Gerstner, 2016):

∆W1,ji = αw · a0,i · a1,j
∆V1,jk = αv · a1,k ·

(
a1,j −

⟨
a1,j

⟩)
(6)

⟨·⟩ is a moving average (low-pass filter) over several past
hidden representations (after convergence of the recurrent
dynamics) with some time constant τmav, e.g. τmav = 100
patterns. At the beginning of the simulation (or after a new
pattern presentation) τmav is increased starting from 0 to
τmav during the first τmav. The values of the rows of W1
are normalized after each update, however this can also
be achieved by adding a weight decay term. Additionally
the values of V1 are clamped to positive values after each
update to ensure that the recurrent input is inhibitory. Also
the diagonal of V1 is kept at zero to avoid self-inhibition.

During SC learning, at every iteration, the variables u1(t) and
a1(t) are reset (to avoid transients) before an input is presented.
Then for every of the N iterations, Eq. (5) is iterated for Niter steps
and the weights are updated according to Eq. (6).

Similar to localized PCA/ICA, the localized version of SC uses
independent populations in the hidden layer (see Fig. 1). The SC
algorithm above was applied to each population and its respec-
tive receptive field independently. The classifier was then trained
on the combined activations of all populations of the hidden layer.

Appendix C. Fixed random filters (RP & RG)

For RP, the weight matrix W1 between input and hidden layer
is initialized randomly W1 ∼ N (0, σ 2) with variance-preserving
scaling: σ 2

∝ 1/n0. The biases b1 are initialized by sampling from

https://julialang.org/
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
https://github.com/JuliaStats/MultivariateStats.jl
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a uniform distribution U([0, 0.1]) between 0 and 0.1. In practice
we used the specific initialization

W1 ∼ N (0, σ 2) σ 2
=

1
100 n0

b1 ∼ U([0, 0.1]) (7)

for RP (keeping weights fixed), SC, SP and also BP & RF (both
layers with W2, b2 and n1 respectively).

For localized RP (l-RP), neurons in the hidden layer receive
input only from a fraction of the input units called a receptive
field. Receptive fields are chosen to form a compact patch over
neighboring pixels in the image space. For each hidden neuron a
receptive field of size p × p (p ∈ N) input neurons is created at
a random position in the input space. The weight values for each
receptive field (rf) and the biases are initialized as:

W1,rf ∼ N (0, σ 2
rf) σ 2

rf =
c

100 p
(8)

b1 ∼ U([0, 0.1]) (9)

where the parameter c = 3 was found empirically through a
grid-search optimization of classification performance. For exact
parameter values, see Table 4.

The (localized) random Gabor filters in RG have the same
receptive field structure as in l-RP (see Appendix C) but instead
of choosing the weights within the receptive field as random
values, they are chosen according to Gabor filters W1 ∝ g(x, y).
Here, x and y denote the pixel coordinates within the localized
receptive field relative to the patch center. The Gabor filters have
the following functional form:

g (x, y; λ,Θ, ψ, σ , γ ) = (10)

exp
(

−
x′2

+ γ 2y′2

2σ 2

)
· cos

(
2π

x′

λ
+ ψ

)
(
x′

y′

)
=

(
cosΘ sinΘ

− sinΘ cosΘ

)
·

(
x
y

)
To obtain diverse, random receptive fields we draw the param-

eters λ,Θ, ψ, σ , γ of the Gabor functions from uniform distribu-
tions over some intervals. The bounds of the sampling interval are
optimized using Bayesian optimization (BayesianOptimization.jl)
with respect to classification accuracy on the training set.

Appendix D. Classifier & supervised reference algorithms (BP,
FA & SP)

The connections W2 from hidden to output layer are updated
by a simple delta-rule which is equivalent to BP in a single-
layer network and hence is biologically plausible. For having a
reference for our biologically plausible models (Fig. 1b & c), we
compare it to networks with the same architecture (number of
layers, neurons, connectivity) but trained in a fully supervised
way with standard backpropagation (Fig. 1a). The forward pass
of the model reads:

ul+1 = Wl+1al + bl+1

al+1 = ϕl+1(ul+1) (11)

Given the one-hot encoded target activations tgt, the error ẽL
is

ẽL = tgt − aL (12)

when minimizing mean squared error (MSE)

LMSE =
1
2
∥tgt − aL∥2

2 (13)

or

p = softmax (aL)
ẽL = tgt − p (14)

for the softmax/cross-entropy loss (CE),

LCE = −

nL∑
i=1

tgti · log (pi) .

Classification results (on the test set) for MSE- and CE-loss
were found to be not significantly different. Rectified linear units
(ReLU) were used as nonlinearity ϕ(ul) for all layers (MSE-loss)
or for the first layer only (CE-loss).

In BP the weight and bias update is obtained by stochastic
gradient descent, i.e.∆Wl,ij ∝

∂L
∂Wl,ij

. The full BP algorithm for deep
networks reads (Rumelhart, Hinton, & Williams, 1986):

eL = ϕ′

L(uL) ⊙ ẽL
el−1 = ϕ′

l−1(ul) ⊙ W⊤

l el
∆Wl = α · el ⊗ al−1

∆bl = α · el (15)

where ⊙ stands for element-wise multiplication, ⊗ is the outer
(dyadic) product, ϕ′

l (·) is the derivative of the nonlinearity and α
is the learning rate. FA (Lillicrap et al., 2016) uses a fixed random
matrix Rl instead of the transpose of the weight matrix W⊤

l for
the error backpropagation step in Eq. (15).

To allow for a fair comparison with l-RP, BP and FA were
implemented with full connectivity and with localized receptive
fields with the same initialization as in l-RP. During training with
BP (or FA), the usual weight update Eq. (15) was applied to the
weights within the receptive fields. The exact parameter values
can be found in Table 4.

Appendix E. Spiking implementation of RP & RG

The spiking simulations were performed with a custom-made
event-based leaky integrate-and-fire (LIF) integrator written in
the Julia-language. Code is available at https://github.com/EPFL-
LCN/pub-illing2019-nnetworks. For large network sizes, the ex-
act, event-based integration can be inefficient due to a large
frequency of events. We thus also added an Euler-forward in-
tegration mode to the framework. For sufficiently small time
discretization (e.g. ∆t ≤ 5 · 10−2 ms for the parameters given
in Table 6) the error of Euler-forward integration does not have
negative consequences on the learning outcome. The dynamics of
the LIF network is given by:

τm
dui(t)
dt

= −ui(t) + RIi(t)

with Ii(t) = I ffi (t) + Iexti (t)

=

∑
j,f

wijϵ

(
t − t fj

)
+ Iexti (t) (16)

and the spiking condition: ui(t) ≥ ϑi: ui → ureset, where ui(t) is
the membrane potential, τm the membrane time-constant, R the
membrane resistance, wij are the synaptic weights, ϵ(t) = δ(t)/τm
is the post-synaptic potential evoked by a pre-synaptic spike
arrival, ϑi is the spiking threshold and ureset the reset potential
after a spike.

The input is split into a feed-forward (I ff (t)) and an external
(Iext (t)) contribution. Each neuron in the input layer l0 (n0 = d)
receives only external input Iext proportional to one pixel value
in the data. To avoid synchrony between the spikes of different
neurons, the starting potentials and parameters (e.g. thresholds)

https://github.com/jbrea/BayesianOptimization.jl
https://julialang.org/
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
https://github.com/EPFL-LCN/pub-illing2019-nnetworks
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Table 4
(Hyper-)Parameters for (l-) BP, FA, RP, RG (apart from weight initialization, see Appendix C) & SP as well as the supervised classifier
on top of (l-) PCA, ICA and SC representations. Best performing parameters in bold.
Parameter Description Value

nh = n1 Number of hidden units [10, 25, 50, 100, 250, 500, 1000, 2500, 5000]
p Rec. field sizes (edge length) in units [1, 5, 10, 15, 20, 25, 28]
αl Learning rate 1e−3
N Number of iterations 1e7 (≈167 epochs)
Winit

l Feed-forward weight initialization Wl,ij ∼ N (0, 1)/(10
√
nl−1)

binit
1 Bias initialization bl,i ∼ U ([0, 1]) /10
ϕl(·) nonlinearity ReLU
Npop Number of populations in hidden layer (l-PCA, l-ICA & l-SC) [50, 100, 500]

Table 5
(Hyper-)Parameters for SC. Best performing parameters in bold.
Parameter Description Value

nh = n1 Number of hidden units [10, 25, 50, 100, 250, 500, 1000, 2500, 5000]
p Rec. field sizes (edge length) in units [1, 5, 10, 15, 20, 25, 28]
αw Learning rate for W1 1e−3
αv Learning rate for V1 1e−2
λ Sparsity parameter [1e−4, 1e−3, 1e−2, 1e−1, 1e−0]
S Resulting sparsity (fraction of 0-elements in l1) 90%–99% (dependent on nh)
τmav Time constant of the moving average 1e−2 [1/patterns]
τu Time constant of inner variable u1(t) 1e−1 [1/iterations]
Niter Number of iterations solving Eq. (5) 50
N Number of iterations for SC 1e5
Winit

l Feed-forward weight initialization Wl,ij ∼ N (0, 1)/(10
√
nl−1)

Vinit
1 Recurrent weight initialization 0

binit
1 Bias initialization 0 (and kept fixed)
ϕ1(·) nonlinearity of hidden SC units ReLU max(0, · − λ)

Table 6
(Hyper-)Parameters for the spiking LIF l-RP & l-RG models (apart from weight initialization, Appendix C). Input and target
amplitudes are implausibly high due to the arbitrary convention R = 1 �. Best performing parameters in bold.
Parameter Description Value

nh = n1 Number of hidden units [10, 25, 50, 100, 250, 500, 1000, 2500, 5000]
p Rec. field sizes (edge length) in units [1, 10, 28]
τm Membrane time constant 25 ms
R Membrane resistance 1 �
∆abs Absolute refractory period 0 ms
ϑi Spiking thresholds ϑi ∼ N (ϑmean, σϑ )

ϑmean Mean spiking threshold 20 mV
σϑ Variance of spiking thresholds 1 mV
ampinp Input amplitude 500 mA
amptgt Target amplitude 500 mA
Iextbias External bias input to all neurons ϑmean/R
τtr Spike trace time constant 20 ms
ureset Reset potential 0 mV
α Learning rate 2e−4 (nh = 5000, 5e−4 for Euler forward)
α̃ Learning rate for LIF rate model 1e−8 (for nh = 5000)
N Number of iterations for spiking/rate model 6e6/1e7 (≈117/167 epochs)
Winit

l Feed-forward weight initialization Wl,ij ∼ N (0, 1) · 20/
√
nl−1

W̃
init
l Feed-forward weight initialization (LIF rate) Wl,ij ∼ N (0, 1) · 20/

√
nl−1

Tpat Duration of pattern presentation 50 ms (train, 200 ms during testing)
Ttrans Duration of the transient without learning 100 ms
∆t Time step for Euler integrator ≤5e−2 ms

for the different neurons are drawn from a (small) range around
the respective mean values.

We implement STDP using post-synaptic spike-traces tri(t)
and a post-synaptic target-trace tgti(t).

τtr
dtri(t)
dt

= −tri(t) +

∑
f

δ

(
t − t fi

)
(17)

∆wij = g
(
trposti (t), tgtposti (t)

)
δ

(
t − t fj

)
with the plasticity function

g
(
trposti (t), tgti(t)

)
= α ·

(
tgtposti (t) − trposti (t)

)
. (18)

To train the network, we present patterns to the input layer and
a target-trace to the output layer. The MNIST input is scaled by

the input amplitude ampinp, the targets tgt(t) of the output layer
are the one-hot-coded classes, scaled by the target amplitude
amptgt. Additionally, every neuron receives a static bias input
Iextbias ≈ ϑ to avoid silent units in the hidden layer. Every pattern
is presented as fixed input for a time Tpat and the LIF dynamics
as well as the learning evolves according to Eqs. (16) and (17)
respectively. Learning is disabled after pattern switches for a
duration of Ttrans = 4τm since the noise introduced by these
transient phases was found to deteriorate learning progress. With
the parameters we used for the simulations (see Table 6), firing
rates of single neurons in the whole network stayed below 1 kHz
which was considered as a biologically plausible regime. For the
toy example in Fig. 4a& b we used static input and target with the
parameters ampinp = 40, amptgt = 5 (i.e. target trace = 0.005),
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ϑmean = 20, σϑ= 0, τm = 50, α = 1.2 · 10−5. For the raster plot
in Fig. 4c we used ampinp = 300, amptgt = 300, ϑmean = 20,
σϑ= 0, τm = 50, α = 1.2 · 10−5, Tpat = 50 ms, Ttrans = 100 ms.
The LIF dynamics can be mapped to a rate model described by
the following equations:

ul = Wlul−1 + RIext

al = ϕLIF (ul)

∆wij = g̃
(
aprej , aposti , tgtposti

)
(19)

with the (element-wise) LIF-activation function ϕLIF(·) and the
modified plasticity function g̃(·):

ϕLIF (uk) =

[
∆abs − τm ln

(
1 −

ϑk

uk

)]−1

g̃
(
aprej , aposti , tgtposti

)
= α̃ · aprej ·

(
tgtposti − aposti

)
The latter can be obtained by integrating the STDP rule of Eq. (17)
and taking the expectation over spike times. Most of the parame-
ters of the spiking- and the LIF rate models can be mapped to each
other directly (see Table 6). The learning rate α must be adapted
since the LIF weight change depends on the presentation time
of a pattern Tpat. In the limit of long pattern presentation times
(Tpat ≫ τm, τtr), the theoretical transition from the learning rate
of the LIF rate model (α̃) to the one of the spiking LIF model (α)
is

α =
1000 ms
Tpat [ms]

· 1000 · α̃, (20)

where the second factor comes from a unit change from Hz to
kHz. It is also possible to train weight matrices computationally
efficient in the LIF rate model and plug them into the spiking
LIF model afterwards. The reasons for the remaining difference in
performance presumably lie in transients and single-spike effects
that cannot be captured by the rate model. Furthermore the new
target was presented immediately after a pattern switch even
though the activity obviously needs at least a couple time con-
stants (τtr or τm) to propagate through the network. Removing
this asynchrony between input and target should further shrink
the discrepancy between rate and spiking models.

Appendix F. Parameter tables

For all simulations, we scaled the learning rate proportional to
1/nh for nh > 5000 to ensure convergence (see Tables 4–6).
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