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Abstract

Reduced models of neuronal activity such as integrate-and-fire models allow a description of neuronal dynamics in simple, intuitive
terms and are easy to simulate numerically. We present a method to fit an integrate-and-fire-type model of neuronal activity, namely a
modified version of the spike response model, to a detailed Hodgkin–Huxley-type neuron model driven by stochastic spike arrival. In the
Hogkin–Huxley model, spike arrival at the synapse is modeled by a change of synaptic conductance. For such conductance spike input,
more than 70% of the postsynaptic action potentials can be predicted with the correct timing by the integrate-and-fire-type model. The
modified spike response model is based upon a linearized theory of conductance-driven integrate-and-fire neurons.
� 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

The seminal work by Hodgkin and Huxley [13], on the
mathematical description of action potential generation,
has led to a whole series of models that describe in detail
the dynamics of various ionic currents and the effect of
the dendritic architecture on signal integration, see e.g.
[1,6,23,33]. However, the precise description of neuronal
activity involves a large number of variables, which often
prevents a clear understanding of the underlying dynamics.
Hence, a simplified description is desirable and has been
subject of numerous studies (for a review, see [12,21]).
The most popular simplified models include the integrate-
and-fire model [19,32], the FitzHugh–Nagumo model
[9,25] and the Morris–Lecar model [24]. However, it is
not clear if such simplified models are sufficient to capture
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the essence of neuronal dynamics. Indeed, reduced models
of neuronal activity, as opposed to detailed models of the
Hodgkin–Huxley-type, are commonly thought to be too
simple to account for the rich firing behavior of real
neurons.

Nevertheless, these highly simplified models have been
shown to yield good predictions when compared to biolog-
ical data [16,28]. In particular, several parameter estima-
tion and/or optimization techniques have been proposed
to map reduced models to real neurons [14–16,27,28].
These techniques allow to map electrophysiological data
from biological neurons (intracellular or extracellular
recordings) onto simplified models of the integrate-and-
fire-type. Moreover, such a mapping could be the starting
point of a systematic classification of cortical neurons in
terms of simplified dynamics. Finally, reduced models have
been used extensively and successfully to model and study
analytically the behavior of cortical-like networks [4,11]. In
other words, analytical and computational tools are
available to go from a simple description of single cells
dynamics to network dynamics.
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In this paper, we review and extend a numerical tech-
nique that allows a systematic mapping of a class of inte-
grate-and-fire neuron models, namely the spike response
model [12,17], to intracellular recordings of neuronal activ-
ity [15]. While this technique ensures reliable predictions
and good generalization when the target neuron is driven
by a randomly fluctuating current, it was shown in a previ-
ous study [15] that the generalization power is poor when
the target neuron is driven by randomly fluctuating synap-
tic conductances. Hence, the purpose of this paper is to pro-
pose extensions of our previous work which address the
latter problem. Using recent theoretical results [29,31], we
propose a generalization of the spike response model so
as to make model parameters input dependent. This
improved version of the SRM is shown to be very effi-
cient and robust at predicting the spike train of a detailed
Hodgkin–Huxley-type neuron model.
2. Materials and methods

2.1. The spike response model

We consider a neuron stimulated by stochastic presynaptic spike arri-
val. The state of the neuron is characterized by a single variable u, the
membrane voltage of the cell at the soma. Let us suppose that the neuron
has fired its last spike at time t̂. At time t > t̂, the membrane potential of
the cell is described by

uðtÞ ¼ gðt � t̂Þ þ
X
i2E

X
f

�þðt � tfi Þ þ
X
j2I

X
f

��ðt � tfj Þ ð1Þ

The last two terms account for the drive by presynaptic neurons i (respec-
tively j) of the excitatory E (respectively inhibitory I) population. tfi and tfj
denote the firing time of presynaptic neurons. The �-functions describe the
excitatory (+) and inhibitory (�) postsynaptic potentials (EPSPs and
IPSPs). gðt � t̂Þ describes the form of the spike itself as well as the afterhy-
perpolarization potential, if present. A spike is elicited if the following
threshold condition is satisfied

if uðtÞ P #ðt � t̂Þ and
du
dt

> 0 then; t̂ ¼ t ð2Þ

Note that spiking occurs only if the membrane voltage crosses the thresh-
old # from below. The threshold itself can be taken either as a constant or
as time dependent. In this paper, we use a dynamic threshold of the form

#ðt � t̂Þ ¼
þ1 if t � t̂ 6 cref
#0 þ #1 exp½�ðt � t̂Þ=s#� else

�
ð3Þ

where cref is a fixed absolute refractory period so as to exclude continuous
firing. #0, #1 and s# are parameters that will be chosen to yield the best fit
to a target spike train (see Section 2.2). This version of the spike response
model (the one that we use in this paper) is a simplified version of the full
spike response model and has been termed SRM0 (see [12] for further de-
tails). We will use this acronym to refer to this model.

Eq. (1) can be restated in the form

uðtÞ ¼ gðt � t̂Þ þ
Z þ1

0

�þðsÞQþðt � sÞdsþ
Z þ1

0

��ðsÞQ�ðt � sÞds ð4Þ

with

QþðtÞ ¼
X
i2E

X
f

dðt � tfi Þ; Q�ðtÞ ¼
X
j2I

X
f

dðt � tfj Þ ð5Þ
For numerical implementation, we will use a discrete version of Q�s

Qþ;�
t ¼

Z tþDt

t
Qþ;�ðsÞds ð6Þ

i.e. Qþ
t is the spike count in a time bin of duration Dt in the excitatory pre-

synaptic population and analogously for Q�
t . The activity (population

rate) A+ of the excitatory presynaptic population is defined as follows:

AþðtÞ ¼ 1

Dt

R tþDt
t QþðsÞds

Nþ ð7Þ

where N+ is the size of the presynaptic population (with a corresponding
definition for the inhibitory population). All simulations are done using a
fixed time bin Dt = 0.2 ms.

2.2. Mapping the SRM0 to voltage traces

The mapping technique that we propose has been discussed in detail
elsewhere [15] and we refer interested readers to this reference. Here, we
describe the essentials of the technique without going into details.

To realize the mapping of the SRM0 to the target neuron, we proceed
in two steps. First, we extract the functions characterizing the model
(EPSP �+, IPSP �� and spike shape g) and second, we choose the param-
eters of the dynamic threshold (#) and optimize them in terms of quality of
predictions. To do so, we assume that we have at our disposal voltage
traces of the target neuron as well as firing times of presynaptic neurons.
We also assume that the input characteristics are kept constant during the
recording of the dataset used for the mapping procedure. We start by
extraction of the spike shape g. The shape of spikes is usually highly ste-
reotyped and presents only little variability. We therefore select one spike
train from the dataset and align all spikes relatively to some arbitrarily
chosen initiation point. The mean trajectory of the spikes yields g. Detec-
tion and alignment of spikes is realized using a threshold condition on the
first derivative of the membrane voltage. Once we are done with g, we
extract the shape �+ of an EPSP and the shape �� of an IPSP. If we limit
ourselves to the interval between two consecutive spikes of the same spike
train t̂k and t̂kþ1, we can rewrite Eq. (1) with the notation introduced in
Eq. (4) as follows (for t̂k < t < t̂kþ1)

uðtÞ � gðt � t̂kÞ ¼
Z þ1

0

�þðsÞQþðt � sÞdsþ
Z þ1

0

��ðsÞQ�ðt � sÞds ð8Þ

It is then possible to find the optimal �-functions using the Wiener–Hopf

optimal filtering technique [20,34]. Resulting �-functions are optimal in
the sense that they minimize the mean square distance between the pre-
dicted membrane voltage u(t) and the membrane voltage of the target neu-
ron given the same input. We fit the resulting EPSP �+ with a suitable
function, typically a difference of exponentials

�þðsÞ ¼ Kþ
� expð�s=sþr Þ � expð�s=sþd Þ
� �

ð9Þ

with a corresponding definition for ��. K�, sr and sd are free parameters.
The final step of model optimization is to choose and optimize the thresh-
old. The absolute refractory period cref is set to 2 ms. The other parameters
of Eq. (3), i.e. #0, #1 and s#, are fitted in order to optimize the coincidence
factor C (see below). In order to ensure a good generalization, we optimize
the threshold with a large dataset generated with different input character-
istics set apart for parameter optimization. The numerical optimization
algorithm that we use is the downhill simplex method [26]. Obviously, the
SRM0 can only predict neuronal activity of the specific neuron it has been
mapped to.

2.3. Target neuron model

Instead of real data from experiments, we use as a reference or ‘‘target’’
a Hodgkin–Huxley-type model of a fast-spiking interneuron [8]. It con-
tains standard Na+ and K+ spike-generating channels and one extra
Kv1.3 K+-channel derived from ‘‘n’’-type currents measured in human
T-lymphocytes. The Kv1.3 current produces a subtle form of adaptation.
See [8] for further details.
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2.4. Input scenario

The Hodgkin–Huxley-type model of a fast-spiking interneuron is dri-
ven by random synaptic conductances generated by massive stochastic
presynaptic spike arrival. The total driving current is given by [30]

I synðtÞ ¼ gþsynðtÞ½uðtÞ � Eþ� þ g�synðtÞ½uðtÞ � E�� ð10Þ

where gþ;�
syn are the excitatory (+) and inhibitory (�) conductances and

E+,� are the corresponding reversal potential. Synaptic conductances are
generated by slightly correlated homogeneous Poisson spike trains. The
excitatory and inhibitory populations contain respectively N+ = 8000
and N� = 2000 neurons. These two populations are independent of each
other. Spike trains of the N+ excitatory neurons are constructed from
N

þ
< Nþ independent Poisson spike trains via duplication of spike times

(see Appendix A for further details), analogously for inhibitory input. This
procedure makes all the presynaptic neurons within a given population
(i.e. excitatory or inhibitory) correlated with zero time lag. For a given tar-
get value of the correlation coefficient, N

þ;�
depend on the presynaptic dis-

charge frequency and on the size of the presynaptic population. In the
following, we assume that the presynaptic neurons discharge at frequen-
cies m+ and m� and the correlation coefficient is held at a constant value
c = 0.002 (see Appendix A for further details about how the presynaptic
spike trains are generated and, in particular, see Eqs. (A.11) and (A.12)
for the relation between N

þ;�
and the correlation coefficient c). This kind

of correlated input ensures that the membrane voltage of the Hodgkin–
Huxley-type model neuron exhibits large fluctuations. We have previously
reported that the amplitude of fluctuations is a critical factor for the ability
of threshold models to predict spikes with a correct timing based upon a
strict threshold condition [15]. This may seem to be a strong constraint on
our approach. However, the correlation coefficient chosen here is very
small (c = 0.002). Moreover, reliable spike timing of cortical neurons
in vitro is only possible if the input has sufficient fluctuations [22].

The dynamics of each excitatory synapse i is described by a conduc-
tance variable Pþ

i with

sþsyn
d

dt
Pþ
i ¼ �Pþ

i þ Dþ
X
f

dðt � tfi Þ ð11Þ

The value of Pþ
i is increased by an amount D+ for each presynaptic spike

activating the synapse at time tfi . It then decays back to zero with a time
constant sþsyn. The total excitatory conductance is the sum of conductance
variables Pþ

i over all excitatory synapses. Thus, the total excitatory con-
ductance is

gþsynðtÞ ¼
X
i2E

Pþ
i ðtÞ ¼

Dþ

sþsyn

Z þ1

0

e�s=sþsynQþðt � sÞds ð12Þ

with a corresponding definition for the total inhibitory conductance.
Numerical values used in this paper are summarized in Table 1.

2.5. Assessing the quality of predictions of the reduced model

In order to evaluate quantitatively the predictions of our reduced
model, we use the coincidence factor C between two spike trains [17]
defined as

C ¼ N coinc � hN coinci
1
2
ðN target þ NSRMÞ

1

N
ð13Þ
Table 1
Parameters of excitatory and inhibitory synapses (adapted from Destexhe
and Paré [6])

Synapse E (mV) ssyn (ms) D (mS/cm2)

Excitatory (+) 0 2.45 0.073
Inhibitory (�) �80 6.11 0.04

Parameter D has been adjusted so as to yield an amplitude of postsynaptic
potential of the order of 1 mV.
where Ntarget is the number of spikes in the target spike train Starget, NSRM

is the number of spikes in the spike train SSRM that is predicted by our re-
duced model, Ncoinc is the number of coincidences with precision D be-
tween the two spike trains, and hNcoinci = 2mDNtarget is the expected
number of coincidences generated by a homogeneous Poisson process with
the same rate m as the spike train SSRM. The factor N ¼ 1� 2mD normal-
izes C to a maximum value of one which is reached if and only if the spike
train of the reduced model reproduces exactly that of the target neuron. A
homogeneous Poisson process with the same frequency as the reduced
model would yield, on average, C = 0. We compute the coincidence factor
C by comparing the two complete spike trains, i.e., the spike train Starget

generated by the target neuron and the train SSRM predicted by the
SRM. This is different to the approach of Kistler and colleagues [17] where
C was used to predict the next spike in a spike train, under the assumption
that past action potentials were correctly reconstructed. Note that the
coincidence factor C is similar to the ‘‘reliability’’ as defined in [22]. In
the present paper, the precision D was fixed to a constant value
D = 2 ms that is supposed to be approximately the width of a spike. Note
that D is different from Dt, the time bin used for simulations.

2.6. Linearized theory of a conductance-driven integrate-and-fire

model

The results of Section 3.1 show that a SRM0 with fixed time course of
EPSPs �+ and IPSPs �� has a rather limited range of validity. The naive
solution would therefore be to use a different set of EPSPs and IPSPs
for each set of discharge frequencies {m+;m�}. However, this is not a very
practical solution if we have to compute PSPs �+ and �� for each possible
combination of input frequencies with the method indicated above.
Instead, we aim at finding a simple parameterization of the EPSPs and
IPSPs that would allow to interpolate between and generalize beyond
the specific inputs used for the numerical derivation of �+ and ��. To do
so, we use a linearized theory of conductance-driven integrate-and-fire
models that allows to write down an analytical expression for the EPSPs
�+ and IPSPs �� in function of the discharge frequencies m+ and m�. Thus,
the extended spike response model SRMc that we derive in this paper is
directly related to the subthreshold dynamics of a conductance-driven
integrate-and-fire neuron model (CIF) [5,29,31].

The subthreshold membrane voltage u of a CIF neuron model is given
by the following differential equation:

C
d

dt
u ¼ �gLðu� ELÞ � gþsynðtÞ½u� Eþ� � g�synðtÞ½u� E�� ð14Þ

with C the membrane capacitance, gL the leak conductance (with a rever-
sal potential EL) and gþsyn (respectively g�syn) the instantaneous excitatory
(respectively inhibitory) conductance. E+ and E� are the reversal poten-
tials of the excitatory and inhibitory synapses. It is straightforward to
show that the average membrane voltage predicted by this model (in
absence of spiking mechanism) is given by

lCIF ¼
gLEL þ �gþsynE

þ þ �g�synE
�

gL þ �gþsyn þ �g�syn
ð15Þ

The bars denote time averaging in this case. For example, if N+ presynap-
tic neurons fire at rate m+, we have

�gþsyn ¼ DþNþmþsþsyn ð16Þ

The EPSPs �+ and IPSPs �� of the SRM0 that would correspond to the
CIF model can then be calculated as the linear response around the aver-
age membrane voltage lCIF. We find

�þðsÞ ¼
DþseffsþsynðlCIF � EþÞ

seff � sþsyn
e�s=sþsyn � e�s=seff

� �
ð17Þ

with a corresponding definition for ��(s). seff is the effective membrane
time constant and is given by seff ¼ C=ðgL þ �gþsyn þ �g�synÞ. Note that Eq.
(17) is equivalent to a current-based approximation. We compare the re-
sults of Eqs. (15) and (17) with results extracted from simulations of the
target Hodgkin–Huxley-type neuron model. We find that, outside the
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regime of EPSP-amplification, both the average membrane voltage (data
not shown) and the shape of PSPs �+ and �� are well predicted by this sim-
ple linearized theory (see Fig. 2B in Section 3). To illustrate this, we fit the
PSPs plotted in Fig. 1A with Eq. (17) with seff as a free parameter. We then
compare this parameter with seff as predicted by the Eq. (19). Fig. 3 shows
that the linearized theory is in very good agreement with the results of sim-
ulations of the target Hodgkin–Huxley-type neuron model except in the
area where inhibition is weak.

Eq. (17) gives an analytical expression for the PSPs �+ and ��. The
PSPs allow us to reproduce the fluctuations of the membrane voltage.
However, we also need to account for the constant voltage bias which
appears when discharge frequencies are elevated. Therefore, we redefine
the first term of the SRM0, namely the function g as

gðt � t̂Þ ! gðt � t̂Þ þ ðlCIF � ELÞ ð18Þ
0 50

time (ms)

-100

-50

0

50

η 
(m

V
)

B C

E
P

S
P

/IP
S

P
 (

m
V

)

A

Fig. 1. EPSPs, IPSPs and spike shape as extracted by our numerical method
different presynaptic input discharge frequencies m+ = 0.9,0.6,0.3 Hz (from top
in ms and vertical axis is in mV. The light grey area shows the dynamics of the n
shape g. (C) Effect of Na+-channels on the shape of kernels. This panel repeats t
(light grey area and solid lines). The dotted lines correspond to EPSPs and IPS
shorter. (D) EPSP-amplification in the target model. An exponentially decayin
bar is 0.005 mS/cm2). The response of the target neuron (top) when receiving
lines). For n = 20, one observes huge EPSP-amplification in normal condition
line; note that in this latter case, the resting state is slightly changed) and a spi
10 mV.
This simple procedure ensures that our model produces the correct
average membrane voltage. The model could be further improved by using
a time-dependent leak conductance gLðt � t̂Þ [15], but we will not do so.

In order to relate the linearized theory of conductance-driven inte-
grate-and-fire model of Section 3.2 to the numerical PSPs �+ and ��

extracted in Section 3.1, we need to estimate the parameters appearing
in Eq. (17) from the data. We will assume that the size of the presynaptic
populations (N+ and N�) as well as the average discharge frequencies in
these populations (m+ and m�) are known. We will also assume ‘‘standard’’
reversal potentials at the synapses, i.e. E+ = 0 mV and E� = �80 mV. C is
taken to be constant at a value of 1 lF/cm2. The reversal potential of the
leak current can be crudely approximated by the resting potential of the
neuron EL � urest.

Thus, the parameters we need to estimate are the synaptic time con-
stants sþsyn and s�syn, the effective membrane time constant seff, as well as
time (ms)

D
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. (A) EPSPs and IPSPs (respectively positive and negative solid lines) for
to bottom) and m� = 1,2,3, . . . , 12 Hz (from left to right). Horizontal axis is
ormalized EPSCs and IPSCs (vertical axis in arbitrary units). (B) The spike
he results of panel A with discharge frequencies m� = 5 Hz and m+ = 0.9 Hz
Ps extracted while blocking Na+-channels. Resulting PSPs are significantly
g excitatory conductance is injected in the target neuron (bottom; vertical
n-fold times the excitatory conductance for n = 0,4,8,12,16,20 (thin solid
s (thick solid line) but none when Na+-channels are blocked (thick dotted
ke is finally elicited for n = 21. Horizontal bar is 10 ms and vertical bar is
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the mean conductances gL, �gþsyn and �g�syn. The time constants sþsyn (respec-
tively s�syn) can be estimated by fitting the EPSP �+ (respectively the
IPSP ��) extracted from a dataset where EPSP-amplification does not
take place, i.e. a dataset with strong inhibition and weak excitation.
Once sþsyn and s�syn are known, one can find the other parameters by
comparing EPSPs �+ extracted for several different sets of input character-
istics. Fitting the EPSPs �+ with formula (17) yields an estimate of seff.
If we collect three different values of seff for three different sets of
input characteristics (m+ and m�) and using the definition of seff introduced
above, we find a set of three equations with three unknowns, namely
gL, �gþsyn and �g�syn where the average �gþsyn is given in Eq. (16). Solving this
set of equations thus yields an estimate of gL, D

+ and D�. Therefore,
we now have a simple model that allows to compute PSPs �+(s) and
��(s) in a straightforward fashion for any given set of input discharge fre-
quencies m+ and m�. We will refer to this model as SRMc with a lower-case
‘‘c’’ for conductance-based. The advantage of using this two-step proce-
dure, i.e. first a non-parametric extraction of the PSPs and then a fit by
parametric functions, is the following. The non-parametric extraction pro-
vides a straightforward and robust estimate of the PSPs. Then, the result-
ing PSPs are fitted with a simple parametric function and comparison of
the results obtained with three different sets of input discharge frequencies
provides a direct estimate of the model parameters. The overall proce-
dure is much simpler than a direct non-linear parametric optimization
technique.
3. Results

In the first subsection, we discuss the intrinsic limita-
tions of the simple spike response model SRM0. In partic-
ular, we show that the shape of EPSPs and IPSPs derived
by our method changes systematically as a function of
the input parameters. These findings are then compared
with a linearized theory of conductance-driven integrate-
and-fire models (CIF). This comparison allows us to deter-
mine the parameters of a new conductance-based spike
response model (SRMc) which is tested over a broad range
of different inputs in Section 3.2.

3.1. Limitations of a classic SRM0

We map the target neuron model to the SRM0 using the
technique described in Section 2. Let us recall that the
SRM0 is characterized mainly by the spike shape g as well
as the EPSP �+ and the IPSP ��. Fig. 1A shows the EPSPs
and IPSPs �+,� extracted for different input discharge fre-
quencies m+ and m� and Fig. 1B shows the spike shape g.
The shape of the spike does not depend on the characteris-
tics of the input scenario. One immediately remarks that
both the characteristic time scales and the amplitude of
the EPSP/IPSP do change in function of the input dis-
charge frequencies. In fact, the numerical technique
extracts the best linear filters so as to reproduce the mem-
brane voltage trace of a given sample spike train. The cor-
responding EPSPs and IPSPs are then optimal for the
specific set of input discharge frequencies used for param-
eter extraction but there is no reason why they should be
optimal for other sets of inputs with different characteris-
tics. Indeed, there are reasons why they should be different
depending on input discharge frequencies. Let us quickly
review these reasons [6].
First, two different sets of input discharge frequencies
are likely to produce two different values of average mem-
brane voltage. In turn, this means increased or decreased
average driving forces for the synapses as the correspond-
ing current includes a multiplicative term of the form
u(t) � E+,� (see Eq. (10)). This should affect the amplitude
of the EPSPs and IPSPs. Second, two different sets of input
discharge frequencies are likely to produce two different
total conductances. This affects the effective membrane
time constant of the neuron. If we neglect the effect of
somatic AP-generating ion channels, the effective time con-
stant in the subthreshold regime can be written

seff ¼
C

gL þ �gþsyn þ �g�syn
ð19Þ

with C the membrane capacitance, gL the conductance of
the leak current and �gþsyn and �g�syn the total average excit-
atory and inhibitory synaptic conductances. Finally, when
the total excitatory drive is large, the target neuron runs in
a highly non-linear regime due to activation of Na+-chan-
nels. This effect is known as EPSP-amplification [10] and
illustrated for our target neuron in Fig. 1C and D. While
EPSP-amplification is usually not observed in fast-spiking
interneurons, it is present in our target model of a fast-spik-
ing interneuron since Na+-channels are the only channels
opened at depolarized states close to threshold (see Section
2). All these three effects (average driving force, effective
membrane time constant and EPSP-amplification) combine
with each other and lead to the pattern of EPSPs and IPSPs
shown in Fig. 1A and C. The EPSPs and IPSPs are shorter
when total conductance is increased (shortening of effective
membrane time constant) except when this increase is
mainly due to the excitatory conductance which then leads
to the reverse effect because of EPSP-amplification (see pa-
nel C). The amplitude of EPSPs decreases when excitation
is increased and increases when excitation is decreased
(average driving force) with corresponding effects for IPSPs
and modifications of the inhibition level. Interestingly, one
remarks that when inhibition is very strong together with
weak excitation, the extracted EPSPs �+ and IPSPs �� fol-
low exactly the dynamics of the corresponding synapses,
i.e. an almost instantaneous rise followed by a decay with
the same time constant as the time constant of the synaptic
conductance (see Fig. 1A at bottom right). The dynamics
of EPSPs and IPSPs can be approximated by

�þ;�ðsÞ / e�s=sþ;�
syn � e�s=seff

� �
ð20Þ

Therefore, when drive is very strong, seff � 0 from Eq. (19)
and �+,� is proportional to e�s=sþ;�

syn . Note that this effect
does appear only with weak excitatory stimulation. When
excitatory drive is strong, EPSP-amplification compensates
the reduction of seff and Eq. (19) does not hold anymore.

Given the change of the time course of EPSPs and IPSPs
as a function of the input, it is clear that correct predictions
of the subthreshold fluctuations of the membrane voltage
by linear summation of EPSPs and IPSPs with a fixed time
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course are only possible in the input regime for which the
reduced model was constructed (recall Eq. (1)).

In order to make the EPSPs and IPSPs input dependent,
we parameterize �+ and �� using the linearized theory of a
conductance-driven integrate-and-fire model [5,29,31]; see
Section 2 for details.

We find that outside the regime of EPSP-amplification
the numerically derived postsynaptic potentials �+ and ��

are well fitted by the theory (see Fig. 2). The regime of
EPSP-amplification can easily be identified by comparing
the effective membrane time constant seff predicted by the
theory with that derived from the numerically optimized
PSPs �+ and �� (see Fig. 3). All parameters of the linearized
theory, in particular the synaptic time constants sþsyn, s

�
syn

and the mean conductances �gþsyn and �g�syn can hence be esti-
mated from the data by using three sets of inputs that do
not lead to EPSP-amplification (see Section 2). Note that
although extraction of the PSPs �+ and �� requires station-
ary input statistics, the resulting conductance-driven spike
response model SRMc allows to take into account changes
in the input frequency. In a network simulation where
spike times are not known in advance, the instantaneous
input frequencies m+ and m� can be approximated by the
instantaneous population activities in the presynaptic
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Fig. 2. The EPSPs and IPSPs as predicted by the linearized theory (solid
lines; see Eq. (17)) are compared to the EPSPs and IPSPs extracted by the
method proposed in Section 2 (symbols). (A) The inhibitory discharge
frequency m� = 6 Hz and the excitatory discharge frequency m+ =
0.9,0.6,0.3 (from top to bottom). (B) Same as in (A) except that m� =
10 Hz.
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Fig. 3. The effective membrane time constant as predicted by a CIF (solid
line) is compared to the corresponding parameter extracted from
simulations of the target Hodgkin–Huxley-type neuron model (dotted
line with squares). See text for further details. (A) m+ = 0.3 Hz. (B)
m+ = 0.6 Hz. (C) m+ = 0.9 Hz.
pools. The conductance-driven spike response model
(SRMc) will now be tested on a new set of inputs indepen-
dent from the one used for parameter optimization.
3.2. Predicting spike by spike

A conductance-driven spike response model (SRMc) has
been estimated from the numerical voltage traces using the
procedure described in Section 2. We now test the predic-
tive power of the SRMc. We are interested in reproducing
the exact timing of the spikes of the target neuron. As we
have not dealt yet with the threshold, the first step is to
optimize the three free parameters of the threshold, namely
#0, #1 and s# (see Eq. (3), cref is set at a constant value of
2 ms). To do so, we use a very long spike train with input
characteristics that include the discharge frequencies where
EPSP-amplification does not take place (see Fig. 3). We
then proceed as indicated in Section 2. Note that the data
used to optimize the parameters of the threshold are not
part of the test set, i.e. the dataset used to assess the predic-
tive power of the reduced model. The error (i.e. 1 � C, see
below) is usually slightly smaller on the dataset used for
parameter optimization than on the test set. However,
the difference is not significant indicating that there is no



Table 2
Best fit parameters for the threshold (see text for further details)

Parameter Mean SD

#0 (mV) �38.437 0.002
#1 (mV) 564.0 0.7
s# (ms) 0.91 0.03

Mean and standard deviation (SD) are computed from four optimizations
with different initial conditions. The small standard deviation shows that
the four optimization runs all converge to the same minimum.

Fig. 4. Comparative results for low (1) and high (2) input discharge
frequencies. (A) The activity in the excitatory (top) and inhibitory
(bottom) presynaptic populations. The arrows indicate the starting point
of the segment plotted in (B). (B) Corresponding membrane voltage of the
target neuron (solid line) is compared to the membrane voltage as
predicted by the SRMc (dashed line). In both cases (B.1 and B.2) the
membrane voltage as predicted by the SRMc gives a fair approximation of
the membrane voltage of the target neuron.
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systematic overfitting. The resulting numerical values are
summarized in Table 2.

Fig. 4 shows sample results of the predictive power of
the SRMc in two distinct regimes, low-drive (low presynap-
tic discharge frequencies, 1) and high-drive (high presynap-
tic discharge frequencies, 2). In both cases the predicted
membrane voltage is reasonably close to the membrane
voltage of the target neuron. Note also that all the spikes
in plotted samples are reproduced with the exact timing
(panel B). For these two cases, we find C = 0.76 (low-drive)
and C = 0.67 (high-drive). The coincidence factor C takes a
value of 1 if 100% of spikes coincide and is normalized to 0
if coincidences are random (see Section 2).

To test the performances in a more systematic way, we
quantify the predictions of the SRMc in terms of the timing
of the spikes (coincidence factor C) and in terms of output
frequencies of the model (mout) over a broad range of input
characteristics (m+ and m�). Fig. 5 shows the performances
of the SRMc for such a systematic procedure. We observe
that the SRMc yields good performances (C P 0.7 and out-
put frequency mout predicted in the correct range) over a
broad range of input discharge frequencies. The only nota-
ble exception is when inhibitory discharge frequency is very
high. In this regime, the output frequency mout is close to
zero so that the number of spikes in a spike train is low.
Our coincidence factor C is not well suited for this case.
However, we note that even if C is low, the output fre-
quency is predicted in the correct range. Furthermore,
the subthreshold fluctuations of the membrane voltage
are well reproduced (not shown).
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time close to the resting potential and occasionally receives
numerous coincident presynaptic spikes that bring it in the
area of EPSP-amplification. Most of these large excursions
then lead to a spike while only a few of them do not. In this
situation, one can easily predict spikes at a correct timing
with a threshold model like the SRMc.

In summary, our modified version of the SRM0, the so-
called SRMc, performs well over a broad range of input
characteristics m+ and m� and predicts not only the output
frequency but also most of the spikes with the correct tim-
ing. It is useful to keep in mind that we used a calculation
based on a conductance-driven integrate-and-fire model to
evaluate the subthreshold membrane voltage fluctuations
and the average membrane voltage. The latter results do
not include the potential effect of ionic channels activated
in the subthreshold regime. The SRMc should therefore fail
in regimes where such ionic channels are activated. How-
ever, we found here that even though the underlying theo-
retical framework is on the edge of its validity domain, the
SRMc still performs reasonably well in the regime where
EPSP-amplification takes place and thus as long as there
are large enough fluctuations of the subthreshold mem-
brane voltage.
4. Discussion

Mapping real neurons to simplified neuronal models has
benefited from many theoretical developments in recent
years and has been applied to both in vitro and in vivo
recordings [16,28]. However, most of the techniques have
been developed for a current injection scenario [3,2,
27,28]. On the experimental side, conductance injection is
increasingly used instead of current injection and is
thought to be closer to in vivo conditions (see [7] for a
review).

We had previously reported a mapping technique [15]
based on standard signal processing tools which allows a
systematic mapping of a simplified neuron model, the spike
response model [12,17], to intracellular recordings. It has
been shown to yield very good results in the case of current
injection for model neurons [15] and with in vitro data
(unpublished observations). However, while the reduced
model built in this way generalizes its predictions over a
broad range of different input characteristics for the current
injection case, it performs very poorly in the conductance
injection case since, both the amplitude of the PSPs charac-
terizing the model and their decay time constants depend on
the total input conductance. A model using a single set of
constant PSPs cannot account for such an input-dependent
variability. Moreover, activation of Na+-channels produces
a non-linear effect known as EPSP-amplification that affects
the shape of PSPs. A linear model is likely to perform badly
in such a highly non-linear regime.

In this paper, we have shown that a simple modification
of the standard threshold model SRM0 solves this problem.
In its new formulation, the model is able to predict very
reliably many aspects of neuronal activity, such as timing
of the spikes, membrane voltage and mean output rate.
The new model SRMc is directly related to conductance-
driven integrate-and-fire neurons [5,29,31]. Even though
the two models are not strictly equivalent, it is a priori
likely that a conductance-driven integrate-and-fire model
would perform well too. Our technique is based upon
direct estimation of effective EPSPs and IPSPs and can
be applied to extract simple neuron models from experi-
mental intracellular recordings under conductance injec-
tion.
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Appendix A. Generation of presynaptic spike trains

In this appendix, we detail the method used in simula-
tions to generate slightly correlated spike trains and we also
derive some useful analytical results. The method follows
[6] but there exists other ways to generate correlated spike
trains (see [18] for instance).

Presynaptic spike trains are described by random
homogeneous Poisson processes. At each time step, N inde-
pendent random variables are generated and distributed
among the N P N presynaptic neurons to generate slightly
correlated spike trains [6]. In this specific case, we can
derive the probability distribution function (PDF) of the
variable Q (see Eq. (6) in Section 2 for a definition of var-
iable Q). Here, all the calculations rely on a discrete time
scale with bins of width Dt. Let us consider that elements
of a vector V of length N are distributed at random and
receive either a value of 1 with a constant probability p

or 0 with probability (1 � p). In this specific case, p =
mDt with m the average discharge frequency in the presynap-
tic population and Dt the size of the time steps used in the
simulation. In order for this procedure to generate Poisson
spike trains, the probability p must be small, i.e. p � 1.
Therefore, Dt must be chosen so that it is much smaller
than the period 1/m of the spike trains. The total number
K of elements receiving a value of 1 in V is therefore dis-
tributed according to a binomial distribution PðK ¼ kÞ ¼
Bðk;N ; pÞ. In a second vector V of length N, elements
receive 0 or 1 according to a parent element chosen at
random in vector V . This method produces N independent
spike trains with Poisson statistics. The correlations
emerged due to the fact that N < N . At each time step,
small clusters involving only subsets of the N presynaptic
neurons fire synchronously. The probability of receiving
a value of 1 is then ~p ¼ K=N . The total number of elements
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Q of V receiving a value of 1 is then given by P ðQ ¼ qjKÞ ¼
Bðq;N ; ~pÞ. The average distribution of variable Q is then:

P ðQ ¼ qÞ ¼
XN
k¼0

PðQ ¼ qjKÞPðK ¼ kÞ ðA:1Þ

Some algebra yields:

P ðQ ¼ qÞ ¼ CN
q N

�N XN
k¼0

CN
k p

kð1� pÞN�kkqðN � kÞN�q

ðA:2Þ
In the following, we will need to know the first two mo-
ments E[Q] and Var[Q] of this distribution. Using the def-
inition of ~p (see above), we find that E½~p� ¼ p and thus:

E½Q� ¼ Np ðA:3Þ
To calculate the variance of Q, we use the fact that:

E½Q2jK� ¼ Var½QjK� þ E½QjK�2 ¼ N~pð1� ~pÞ þ N 2~p2 ðA:4Þ
Using the fact that E½~p� ¼ p and that E½~p2� ¼
N

�2
Var½K� þ p2, we find that:

Var½Q� ¼ Npð1� pÞ 1þ N=N
� �

ðA:5Þ

While variables N and p have direct biological interpreta-
tions (N is the size of the presynaptic population and p is
related to the discharge frequency in that population), N
is a rather abstract quantity which is linked to the correla-
tions in the activity of the presynaptic population. For
practical use, it would be useful to compute the correlation
coefficient between two spike trains in terms of these vari-
ables. The correlation coefficient between two sequences of
numbers mi and ni is defined by:

c ¼
P

iminiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
im

2
i

P
jn

2
j

q ðA:6Þ

If we choose at random two elements from the vector V,
the probability that both fire together is given by the hyper-
geometric distribution H(N,q, 2) so that:

P ðY ¼ 2jQÞ ¼ Cq
2C

N�q
0

CN
2

¼ qðq� 1Þ
NðN � 1Þ ðA:7Þ

On the other hand, if we choose only one element from the
vector V, the probability that it fires is given by H(N,q, 1):

P ðZ ¼ 1jQÞ ¼ q=N ðA:8Þ
Finally, the average correlation coefficient between two
randomly chosen spike trains of the presynaptic population
is given by:

c ¼
PN

q¼0P ðY ¼ 2jQÞP ðQ ¼ qÞPN
q0¼0P ðZ ¼ 1jQÞP ðQ ¼ q0Þ

ðA:9Þ

Using Eqs. (A.7) and (A.8) in Eq. (A.9), we find:

c ¼ 1

N � 1

E½Q2� � E½Q�
E½Q� ðA:10Þ
Note that the latter result is general when considering
homogeneous Poisson spike trains with the same rate p

and does not depend on the specific way spike trains are
generated. In our case, some algebra yields:

c ¼ p þ Nð1� pÞ
NðN � 1Þ

ðA:11Þ

and thus:

N ¼ Nð1� pÞ
ðN � 1Þðc� pÞ ðA:12Þ
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