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Abstract. The storage and short-term memory capacities of recurrent
neural networks of spiking neurons are investigated. We demonstrate that
it is possible to process online many superimposed streams of input. This
is despite the fact that the stored information is spread throughout the
network. We show that simple output structures are powerful enough
to extract the diffuse information from the network. The dimensional
blow up, which is crucial in kernel methods, is efficiently achieved by the
dynamics of the network itself.

1 Introduction

Information processing in recurrent neural networks has become a fashionable
subject and is known as Liquid State Machines (LSM, [1,2]) or echo state net-
works [3]. They are good candidates to model ultra-short-term memories. The
idea underlying those models is that the instantaneous state of the network pro-
vides a rich reservoir of non-linear spatio-temporal transformations of the inputs.
Information about past input can then be read out with simple, efficient and
adaptive readouts. In general learning only acts on the readout structures, the
network itself remaining fixed. A set of non-linear transformations of the input
is achieved through the use of a sparsely-connected neural network of integrate-
and-fire neurons. Tuning the network to an asynchronous irregular firing state
allows us to have the needed rich dynamics. In this paper we establish a link be-
tween liquid state machines on the one side and the theory of sparsely-connected
networks [4] on the other side.

2 The Model

The system we study is a sparsely-connected network of leaky integrate-and-fire
(IF) neurons. Such networks are known to have a complex dynamics ([4,5]). Our
network is made up of 200 IF neurons, 80% of which are excitatory and 20%
inhibitory. Both excitatory and inhibitory neurons are modelled with a mem-
brane time constant of 20ms. They are weakly (connection probability = 0.2)
and randomly connected through simple static synapses. We carefully chose the
synaptic strengths, ωI = 5ωE , and an external drive consisting of 32 external
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poisson spike trains with a mean rate of 6.3 Hz, such that the network without
additional external input is in an asynchronous and irregular firing regime based
on the phase diagram described in [4] (coordinates: g = 5 and νext = 2νthr,
specifically we take ωE = 1mV , θ = 5mV and Vreset = 0mV , but other combi-
nations of parameters would give the same results). With a weaker or a stronger
input, the system reaches a phase of synchronous irregular firing (respectively
slow or fast). The absence of synchrony at the working point of the liquid state
machine is important in order to avoid limit cycles (periodic patterns of activity)
and therefore indistinguishable moments that share the same phase within these
cycles.

We assess the information processing capacity of the network with a proce-
dure analogous to [1] and [3]. We inject simultaneously N independent inputs to
N disjoint groups of randomly chosen neurons (see figure 1 left), every neuron
receives exactly one input e.g. for N = 4 inputs we have 4 groups of 50 neurons
in our network of 200 neurons. The inputs are derived from a bounded random
walk so that they all share the same underlying statistics. Their auto-correlation
profiles can easily be measured, an analysis of which will be done in section 3.3.
N readout structures, ’seeing’ all neurons of the network are trained to retrieve
the amplitude of their corresponding signal a given time T in the past (see figure
1 right). The outputs of the readout structures are simple linear combination of
all the membrane potentials i.e.

Output(t) =
∑

k

wkuk(t) .

Only the weights wk of the readout structures are tunable, the network itself
remaining fixed. We minimise the error :

E = [Output(t) − Input(t − T )]2

by an optimal regression on the training set. This Input(t − T ) plays the
role of a target value for optimisation. After a training period, the weights of
the readout structures are frozen and N new input signals are introduced in
the network. Outputs of the readout structures are then compared with their
corresponding targets.

3 Results and Discussion

In the following section we will discuss the results we obtained by the procedure
described above. For all the simulations, the training time is 50000 time steps
and performances are obtained on an independant test set of 5000 time steps.
Firstly we will show that it is possible to process online many superimposed
streams of input. In the second subsection we will show that this is possible
despite the fact that information has diffused within the network. In the third
subsection we investigate the role of the input statistics and see that the output
structures use all the available information in order to minimise the distance
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Fig. 1. Left: The different signals are introduced to randomly chosen interconnected
neurons. Every neuron receives exactly one input from the exterior. Only two input
signals are shown in the figure. Right: Based on the momentary state of all membrane
potentials (those receiving directly the signal S1 and those receiving any other signal
Sx), a readout structure is trained to guess the amplitude of its corresponding input a
time T before (referred as delay thereafter).

of its output to the target. Finally it will be shown that simple linear readouts
are powerful enough to extract information and perform as good kernel-based
methods: in other words, the recurrent neural network provides the necessary
dimensional blow up.

3.1 Multiple Inputs

Following the procedure described in the previous section, we inject simultane-
ously eight independent signals with an autocorrelation time of 95 ms. In figure
2 (left), only four out of the eight input-output pairs are shown. In order to
allow a qualitative visual assessment of the performance, inputs are shifted back
in time so that they can be directly compared with the output. The time de-
lay shown here is 10ms. In figure 2 (right), the cross-correlations between the
output of the readout structures and their corresponding targets are shown as a
function of the delay. A significant amount of information is still present up to
about 150ms. Although the eight signals excite the network simultaneously, the
high dimensionality of the system allows the readout structures to extract any
individual signal.

3.2 Information Diffusion

A control has yet to be done. Although the network is generated randomly, cou-
pling might be stronger within a given subset of neurons compared to neurons
outside the subset. Information might then stay localized in that part of the
network, where it was injected. To rule out this possibility, a closer look at the
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Fig. 2. Left: A sample of four target(black)-output(grey) pairs. Trained delay: 10ms.
Right: Cross-correlation curves for the eight target-output pairs.

weights of the readouts was taken. This time we injected simultaneously four
different signals. For three different delays and four different readout structures,
the sixteen weights with the largest value have been identified. Neurons of the
network have been grouped into four groups according to the label of the input
they receive. The number of ’large’ weights has then been determined in each of
the zones. The results are shown as grey-level plots: the horizontal axis is the
label of the zones and the vertical axis is the label of the readout structures,
the grey-level being the count of large weights that belong to a given readout
structure (y-axis) and that ’read’ neurons that belong to a given zone (x-axis).
The clearer the zone is, the more weights lie in that zone. A diagonal light ridge
implies that information is located where it was injected, whereas a rather homo-
geneous coloration indicates that information is spread out over the network. In
figure 3, three different plots are shown. They correspond to delays of 2ms, 20ms
and 50ms. Although cross-correlation plots of the figure 2 (right) indicate that
information is still extractable up to more than 100ms, the plots corresponding
to the 20ms and 50ms delay do not show any significant diagonal trace, com-
pared to the one clearly present for the 2ms delay. The information therefore
diffuses in the network without being predominantly stuck locally.

3.3 Auto-correlation versus Cross-Correlations

A step towards a deeper analysis of the characteristics of the network is to have
a look at the full cross-correlation curves instead of only sampling the values for
the trained delay as done in figure 2 (right). In what follows, only one single input
with a short auto-correlation profile excites the network. In figure 4, the thick
curves correspond to the cross-correlations between the input and the outputs
of readouts trained for different delays. If we have to guess the trained delay by
only looking at the input and the output of the network, we might be tempted
to say it corresponds to the location of the peak of the cross-correlation curve.
This would in fact yield an incorrect answer. A quick examination shows us that
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Fig. 3. Greyscale plots giving insight to where the information is (see text). Light ar-
eas indicate regions where a given readout structure extracts most of the information.
Diagonal clear squares signify information stays where it has been injected (as seen on
the left for a delay of 2ms) whereas rather uniform colour distribution means informa-
tion is spread out among different network regions (as seen for the 20ms (middle) and
50ms (right) delays.
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Fig. 4. Auto-correlation curve (thin line starting at the point(0,1)) of the input signal
and cross-correlation curves target-output. Note that the cross-correlation curves peak
at a shift value that is not the trained delay (eg for the dot-dashed curve; the trained
delay is 50ms but the curve peaks around 37ms). For a given shift though, the highest
curve has the correct corresponding delay (eg for a 50ms shift, the highest curve is the
one trained for a 50ms delay). These curves are in this perspective optimal.

the curves do not peak around values that correspond to the trained delays. Yet
another important observation is that for a given shift, the highest curve for this
shift correspond to the readout trained for a delay equal to that shift. Although
it is in apparent contradiction, the explanation is rather simple. Because the
weights are chosen such that they minimise the error L2 between the output
and the target, they use all the available information. On the one hand they will
set their guess by looking in the past, but on the other hand they will also use
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the fact that the auto-correlation of the target has a certain width. Reading the
present and saying this was the past is not completely incorrect, because of this
auto-correlation. Minimising the error L2 is equivalent to finding the optimal
balance between extracting degraded past information and online reading of the
present input (correlated with the input some time T ago). Performances are
then strongly dependent on the underlying statistics of the target.
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Fig. 5. Comparison between optimal linear output and kernel-based methods.

3.4 Optimal Readouts: Linear versus SVM

In the previous sections, outputs of the readout structures have often been named
’optimal’. Such outputs are not biologically plausible in the sense that they can
access the membrane sub-threshold potential instead of only receiving informa-
tion through action potentials. These structures are intended to provide an upper
bound on the information processing capacity of such a network. To justify the
use of simple linear outputs we now show that they can extract as much infor-
mation as possible for a given number of learning examples. A comparison of
the performances of such simple readouts to kernel-based methods have been
carried out with always the same training set size (50000 time steps). Support
vector machines ([6] and therein) are known to be among the most powerful
classification tools. Therefore we used SVM (with hierarchical polynomial ker-
nels) in regression [7] as readout structures of our network. None of the kernels
succeeded in doing better than the optimal linear output (see figure 5). The lin-
ear kernel and the polynomial (degree two) kernel performed almost as well as
the linear regression whereas kernels of higher dimensions (polynomial of degree
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three, Gaussian) showed strong effects of over-fitting. Simple output structures
(yet optimal in the linear sense) are powerful enough to extract information from
the network for a limited (although big) training set. The dimensional blow up
which is crucial in the kernel methods is already efficiently achieved by the rich
dynamics of the network.

3.5 Conclusion

We have seen that a sparsely-connected recurrent neural network tuned to be
in an asynchronous irregular firing regime has enough degrees of freedom for
simple output structures to extract simultaneously informations coming from
independent sources, even though patterns are superimposed. We also have seen
that statistics of the targets play an important role in the performances of the
network. In order to minimise the distance to the target, an optimal trade-off
is made between extracting old corrupted information and retrieving not-so-old
information correlated in time to the desired target.
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