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In randomly connected networks of pulse-coupled elements a time-dependent input signal can be buffered
over a short time. We studied the signal buffering properties in simulated networks as a function of the
networks’ state, characterized by both the Lyapunov exponent of the microscopic dynamics and the macro-
scopic activity derived from mean-field theory. If all network elements receive the same signal, signal buffering
over delays comparable to the intrinsic time constant of the network elements can be explained by macroscopic
properties and works best at the phase transition to chaos. However, if only 20% of the network units receive
a common time-dependent signal, signal buffering properties improve and can no longer be attributed to the
macroscopic dynamics.
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I. INTRODUCTION

Neurons in the brain are connected with each other and
send short electrical pulses �action potentials or spikes� along
those connections. Despite the fact that there are correlations
between the type of connections and the type of neurons �1�,
it is fair to say that neurons fall essentially into two classes,
excitatory and inhibitory, and that the connectivity in a local
population of several thousand cortical neurons is close to
random. Networks with fixed random connectivity can, in
principle, contain loops of varying size, which could sustain
the flow of transient information signals over times that are
long compared to the intrinsic time constants of the network
elements, i.e., the neurons. In neuroscience and related fields,
elementary considerations on information flow in random
networks have inspired ideas as diverse as synfire chain ac-
tivity �2�, reverberations �3�, liquid computing �4�, echo state
machines �5�, or computing at the edge of chaos �6,7�. At the
center of all these ideas is the concept that the network state
must be characterized on a microscopic level. In other words,
the identity of the active neurons is relevant so that an activ-
ity pattern where, say, neurons number 17, 43, 387, 557, and
621 are active together is different from a network state
where a different subset of neurons is active. The differences
between microscopic network states can be measured by the
differences in the membrane potential of all N neurons. The
evolution of these differences over time can be characterized
by a Lyapunov exponent.

On the other hand, random networks have also been stud-
ied intensively by the physics community, in the context of
diluted spin glasses �8�, formal neural networks �9,10�, or
automata �11� and limiting cases have been identified for
which exact solutions are known. In particular, in the limit of
asymmetric networks with low connectivity, mean-field dy-
namics becomes exact �10�. More recently these approaches
have been extended to the case of random networks of spik-

ing neurons in continuous time �12�. In a mean-field ap-
proach, the state of the network is fully characterized by a
macroscopic activity variable, i.e., the fraction of neurons
that are active per unit of time. Hence the identity of the
active neurons is irrelevant.

In this paper, we will compare simulations of a random
network of excitatory and inhibitory neurons with the mean-
field solutions valid in the low-connectivity limit and evalu-
ate the performance of such networks on a simple informa-
tion buffering task that can be seen as a minimal and
necessary requirement for more complex computational
tasks �4,5� which a neural network might have to solve.
More precisely, the task consists in reconstructing a time-
dependent input I�t�� by reading out the activity of the net-
work at a later time t= t�+�. The readout will be performed
in two conceptually different ways: a “microscopic” readout
that combines the activity of all N neurons with N different
weighting factors; and a “macroscopic” readout that gives
the same weight to all neurons. While the microscopic read-
out is sensitive to the identity of the individual neurons, the
macroscopic readout is only sensitive to the fraction of neu-
rons that are active per unit of time.

We will see that performance in the information buffering
task is best at the phase transition that is marked by a rapid
increase in both the macroscopic activity variable and the
Lyapunov exponent characterizing the microscopic network
state indicating transition to chaos. Moreover, if the same
time-dependent input I�t� is shared by all neurons in the net-
work, a macroscopic information readout based only on the
fraction of active neurons is as good as a microscopic read-
out that is based on the output pulses of all N neurons. How-
ever, if the input is only given to a small group of neurons a
detailed readout conveys more information than a macro-
scopic one. This indicates that the identity of active neurons
plays a role, as predicted by theories postulating information
flow along loops in the network connectivity. In contrast to
those theories, we find that the maximum information buff-
ering delay is in the range of the intrinsic time constant of
the network elements �i.e., the membrane time constant of*Electronic address: wulfram.gerstner@epfl.ch
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the neurons� and that the amount of information buffered in
our random network is rather limited.

II. MODEL

We consider a network of N leaky integrate-and-fire units
�neurons� with fixed random connectivity. Eighty percent of
the neurons are taken as excitatory and the remaining 20%
inhibitory. Independent of the network size �N=200, 400,
800�, each neuron i in our simulation receives input from
CE=40 excitatory and CI=10 inhibitory units �presynaptic
neurons�, which are chosen at random amongst the N−1
other neurons in the network. The ensemble of neurons that
are presynaptic to neuron i is denoted by Mi and the efficacy
wij of a connection from a presynaptic neuron j�Mi to a
postsynaptic neuron i is wij =wE if j is excitatory, and wij
=wI if j is inhibitory.

Each neuron is described by a linear equation combined
with a threshold. In the subthreshold regime the membrane
potential follows the differential equation

�mu̇i�t� = − ui�t� + Ii
netw + Ii

ext�t� , �1�

where �m=20 ms is the effective membrane time constant
and Ii

ext is the external input. The recurrent input Ii
netw neuron

i receives from the network is

Ii
netw�t� = �m �

j�Mi

�ij�
k

��t − tj
k − D� , �2�

where tj
k is the time neuron j fires its kth spike and D

=1 ms is a short transmission delay. A spike from an excita-
tory �inhibitory� neuron j�Mi causes a jump in the mem-
brane potential of neuron i of wE=0.6 mV �wI=−3.6 mV�. If
the membrane potential ui reaches a threshold �=10 mV, a
spike of neuron i is recorded and its membrane potential is
reset to ui=0. Integration restarts after an absolute refractory
period of �rp=2 ms.

The external input Ii
ext= Ii

sg�t�+ Ii
backg�t� can be separated

into two components which we now discuss in turn
Test signal. We inject a time dependent test signal Ii

sg�t�
which is generated as follows: the total simulation time is
broken into segments of duration Tsg=10 ms. During each
segment of length Tsg the input is kept constant. At the tran-
sition to the next segment, a new value of Isg�t� is drawn
from a uniform distribution over the interval �−0.25,0.25�,
i.e., the signal distribution has a standard deviation of �sg
=0.25/�3=0.144. By construction the signal at time t pro-
vides no information about the signal at t−T for T�Tsg.
More precisely, the autocorrelation A�s� of the signal has a
triangular shape and is strictly zero for �s��Tsg.

Background noise. The network of N neurons is consid-
ered as part of a larger brain structure. To mimic input from
excitatory “background” neurons that are not modelled ex-
plicitly, we assume stochastic spike arrival described by a
Poisson process of total rate 	exc, i.e., the number of back-
ground spikes nbackg�t ; t+�t� arriving in a time step �t is
Poisson distributed with mean 	exc�t. For the sake of sim-
plicity, we assume that the efficacy wE of background spikes
is identical to that of the recurrent connections within the

network. Thus the background input Ibackg integrated over a
time step �t is Ibackg�t=�mwEnbackg�t ; t+�t�. For the theoret-
ical analysis in Sec. III, we approximate the background in-
put Ibackg by a Gaussian white noise with mean �Ibackg	
=
backg=�E	exc�m and standard deviation �backg= ���Ibackg

−
backg�2	�1/2=�E
�	exc�m, where 	exc is the background

spike arrival rate. This approximation is valid under the as-
sumption that a neuron receives a large number of presynap-
tic contributions per unit time, each generating a change in
the membrane potential that is relatively small compared to
the firing threshold. To simplify notation we set �=CI /CE
and g=−�I /�E. The values in our simulations are �=0.25
and g=6.

III. CHARACTERIZING THE NETWORK STATE

The macroscopic variable describing the activity of the
network is the population rate 	�t� defined by the fraction of
neurons that are active in a time step divided by the duration
of the time step. We will use a mean-field analysis of the
random network in order to derive the population rate in a
stationary state of asynchronous neuronal activity �12�. To do
so, we approximate the triangular test signal Isg that is used
for the simulations by Gaussian white noise of zero mean
and standard deviation �sg; and the Poisson background
noise used in the simulations by Gaussian white noise with
mean 
backg and standard deviation �backg. In the mean-field
theory that is valid for low random connectivity in the limit
of a large network �N→�� �12�, the stationary population
rate approaches a constant value 	0 that is identical to the
mean firing rate of an arbitrarily chosen neuron in the net-
work. The mean firing rate, and hence the population rate 	0,
depend on the mean


0 = �E�m�	exc + CE	0�1 − g��� . �3�

and variance

�0
2 = �E

2�m�	exc + CE	0�1 + g2��� + �sg
2 �4�

of the total input Inetw+ Iext via the equation

1

	0
= �rp + 2



−
0/�0

��−
0�/�0

dueu2

−�

u

dve−v2
. �5�

Combining Eqs. �3�–�5�, we obtain a self-consistent solution
of the population firing rate 	0 as a function of the external
Poisson drive 	exc. We emphasize that by changing the back-
ground spike arrival rate 	exc, we change both the mean drive

0 and the variance �0

2. The inset of Fig. 1 shows the popu-
lation rate 	0 predicted by the mean-field theory as a function
of the background spike arrival rate 	exc. For small signal
amplitudes ��sg→0�, the population rate exhibits a first-
order phase transition with coexistence of several solutions
which disappears for larger signal amplitudes.

The main graph in Fig. 1 shows a simulation of a random
network while stimulated with the test signal as explained in
Sec. II. The population rate shows a marked increase near
	exc�420 Hz �shown in Fig. 1� which is in the vicinity of
the first-order phase transition predicted by the mean-field
theory.
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By construction, a mean-field theory yields only a macro-
scopic description of the network activity. In order to get
some insight into the microscopic network state, we consid-
ered the Lyapunov exponent of membrane potentials during
simulations of the random network. The largest Lyapunov
exponent is defined by �p=limt→�ln���t� /��0�� where ��t�
=�i=1

N �ui�t�−ui��t��
2 is the difference between a reference tra-

jectory of the N variables u1�t� ,…uN�t� and test trajectory
u1��t� ,…uN� �t� with slightly different initial conditions. Using
standard numerical techniques �13�, the largest Lyapunov ex-
ponent has been estimated from a large number of simula-
tions of a test network and a reference network with identical
connectivity. Both networks received identical input �same
realization of the Poisson input and signal input� and the test
trajectory was regularly reset close to the reference trajec-
tory.

We found that the marked increase in the macroscopic
variable 	0 as a function 	exc that has been predicted by the
mean-field theory and confirmed in simulations �Fig. 1,
dashed line� is accompanied by a transition of the largest
Lyapunov exponent from negative to positive values �see
dotted line in Fig. 1�. This indicates that the microscopic
dynamics becomes chaotic. Moreover, we confirmed that not
only for background spike input but also for appropriately
chosen constant input �i.e., 
backg�0, �backg=0�, the fixed
random connectivity is sufficient to generate irregular asyn-

chronous spiking activity �12� with a positive largest
Lyapunov exponent �data not shown�.

IV. INFORMATION BUFFERING

After having characterized the macroscopic and micro-
scopic state of the network, we asked how performance in an
information buffering task, inspired by concepts of liquid
computing �4� and echo state machines �5�, would depend on
the network state. We considered a linear readout unit with
dynamics

dy/dt = − ��y − �0�/�s� + �
i=1

N

�i�
k

��t − ti
k� , �6�

where the sums run over all firing times ti
k of all neurons in

the network. �s=5 ms is a short synaptic time constant. We
note that there are N+1 free parameters, a bias term �0 plus
one weighting factor �i �1� i�N� per neuron, i.e., different
neurons are potentially treated differently �“microscopic
readout”�. These parameters are chosen so as to minimize the
signal reconstruction error E= ��y�t�− Isg�t−���2	 /�sg

2 . The
performance depends on the delay � of information buffer-
ing which has to be compared with the membrane time con-
stant ��m=20 ms� and the autocorrelation of the input Tsg

=10 ms. Parameters were optimized using a first simulation
�learning set� lasting 100 s �100 000 time steps of simula-
tion� and were kept fixed afterwards. The performance mea-
surements reported in this paper are then evaluated on a sec-
ond simulation of 100 s �test set�. Simulation results were
obtained using the simulation software NEST �15�.

The same time-dependent signal Isg�t� was injected into
all neurons in the network and the performance evaluated in
terms of the signal reconstruction error. Overall the signal
reconstruction error is relatively high. As expected, the sig-
nal reconstruction error increases if we increase the desired
buffer duration from �=10 ms to �=15 ms or �=20 ms
�Fig. 2�A��.

At the same time, the optimal background firing rate 	exc
to achieve minimal signal reconstruction error shifts towards
lower values and is for �=20 ms very close to the transition
between regular and chaotic microscopic dynamics as shown
in Fig. 1. This result is consistent with the idea of computing
at the edge of chaos in cellular automata �7� or threshold
gates �6�. Also, similar to the results in discrete-time spin
networks �14�, the information buffering performance does
not significantly depend on the number N of neurons in the
network; cf. Fig. 2�B�. Differences are within the statistical
variations caused by overfitting on finite data samples.

V. MICROSCOPIC VS MACROSCOPIC PROPERTIES

Given that networks states have been classified success-
fully by macroscopic mean-field equations �12�, we won-
dered whether the performance in the above information
buffering task can be completely understood in terms of
macroscopic quantities. To answer this question, we com-
pared the performance using the previous readout unit y �i.e.,
a microscopic readout with N+1 free parameters, one per

FIG. 1. Dashed line: Fixed points of the population activity 	0

as a function of the Poisson background drive resulting from Eqs.
�3�–�5�. Note the sharp transition at 	exc=420 Hz. The network
switches from an almost quiescent state to a state of sustained ac-
tivity. Dotted line: largest Lyapunov exponent �see definition in
text� as a function of the external drive 	exc in a network of 800
neurons. For 	exc�420 Hz the population rate 	0 is low �“quiescent
state”� and the largest Lyapunov exponent is negative. For a stron-
ger drive, the exponent switches to a positive value, reflecting the
chaotic behavior of the membrane potential trajectories. Solid line:
Signal reconstruction error �arbitrary scale; for quantitative values
see Fig. 2�, as defined in text, for a delay of 20 ms in a network of
800 neurons. The error is minimal near the transition from the qui-
escent to a chaotic regime. Inset: Fixed points of the population rate
�Eq. �5�� in absence of test signal �solid line�, and with increasing
signal variance. The system exhibit a first-order phase transition if
the signal is weak.
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neuron plus an offset� with that by a simplified readout ỹ

with two free parameters �̃ and �̃ only,

dỹ/dt = − ��ỹ − �̃�/�s� + �̃�
i=1

N

�
k

��t − ti
k� , �7�

i.e., a readout that uses only the macroscopic population ac-
tivity. Surprisingly, for a stimulation paradigm where all neu-
rons receive the same time-dependent signal Isg�t� the mac-
roscopic readout performs as well as the microscopic one. In
other words, connectivity loops between specific subsets of
neurons where signals could circulate for some time seem
not to play a role in information buffering. This suggests
that, for signals of sufficiently small amplitude, the informa-
tion buffering capacity is directly related to the macroscopic
linear response kernel � of the network activity, that can, in
principle, be calculated from the linearized mean-field equa-
tions of the population rate, i.e., �	�t�=���s�Isg�t−s�ds; cf.
Ref. �12�. The time constant of the kernel, and hence infor-
mation buffering delays, become large in the vicinity of a
phase transition.

We hypothesized that signal transmission loops in our
randomly connected network could manifest themselves
more easily if only a small subset of neurons received the

input signal. We therefore selected 20% of neurons at ran-
dom �group G1� and injected an identical time-dependent sig-
nal Ij

sg�t� into all neurons j�G1. The remaining 80% of neu-
rons �group G2� received no signal. In such a network
consisting of two groups, signal buffering performance is
indeed significantly better than in a single homogeneous
group �Fig. 3�. While the overall performance is never very
good �the errors fall never below 0.8�, the difference between
a macroscopic and a microscopic readout is highly signifi-
cant.

On a macroscopic scale, a network consisting of two
groups G1 and G2 can be described by two macroscopic vari-
ables, i.e., the population activities in groups G1 and G2. In
order to evaluate the information contained in the macro-
scopic population rates, we used a linear readout unit y2 with
three free parameters �0 ,�1, and �2, characterized by the
differential equation dy2 /dt=−��y2−�0� /�s�+�1�i�G1

�k��t
− ti

k�+�2�i�G2
�k��t− ti

k� and proceeded as before. As we can
see from Fig. 3, a readout based on the macroscopic activity
of the two groups performs significantly worse than the mi-
croscopic readout. This suggests, that for the case when only
a small subset of units in a random network receive an input,
signal transmission loops, and hence microscopic neuronal
dynamics, indeed play a role in short-term information buff-
ering. However, we emphasize that errors are consistently
high indicating that the performance of a random network in
a simple signal buffering task is not satisfying even if the
required buffering time is only of the duration of one mem-
brane time constant.

VI. DISCUSSION

A. Mean-field vs microscopic dynamics

Mean-field methods neglect correlations in the input. In
random networks mean-field theory becomes asymptotically

FIG. 2. �A� Signal reconstruction error E as a function of the
background firing rate in a network of 800 neurons for three differ-
ent information buffer delays: �=10 ms �solid�, �=15 ms
�dashed�, �=20 ms �dotted�. For sufficiently long delays, optimal
performance is located near the transition between the qui- escent
and the chaotic state; cf. Fig. 1. Deeper in the chaotic phase the
error goes back to the chance level whereas in the almost quiescent
regime we can see the effects of overfitting �E�1�, because the
num- ber of action potentials is insufficient to build an accurate
model of the past events. �B� Comparison of the errors for different
network sizes. Top three lines: Reconstruction error based on a
microscopic readout in a network with N=800 neurons �solid line�,
N=400 neurons �dashed line�, and N=200 neuron �dotted line� for a
delay �=20 ms. The fourth line from top �solid line with filled
circles� shows the error based on a macroscopic readout of the
network of N=800 neurons. The vertical shift of the error curves is
not significant but due to overfitting because of limited amount of
data. Vertical bars indicate the mean differ- ence between errors on
the data used for parameter optimization �training set� and that on
an independent test set for N=800 �left bar�, N=400 �second bar�,
N=200 �third bar� and macroscopic readout �right bar�. A represen-
tative curve of errors on the training set for N=800 neurons is
shown by the dot-dashed line �bottom�. The location of minimal
error is independent of the number of neurons or readout method
and coincides with the phase transition indicated in Fig. 1.

FIG. 3. The input is injected to 20% of the neurons only. A
macroscopic readout assuming a single population �dotted line� per-
forms well near the phase transition. However, deeper in the chaotic
phase it is outperformed by the microscopic readout �solid line�. A
macroscopic readout based on a two-population assumption �dashed
line� explains only part of the increased performance. The signal
buffering delay for this figure is �=20 ms.
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correct only in the low-connectivity limit where the probabil-
ity of closed loops tends to zero �10�. However, it is exactly
these loops which could give the network the power to buffer
information for times significantly longer than the intrinsic
time constants of the network elements. Our network is for-
mally not in the low-connectivity limit since the number of
neurons N=800 is small. Nevertheless, we found that mean-
field results can qualitatively predict the rough location of
the phase transition of the macroscopic population rate.
Moreover, if the input signal is shared between all neurons, a
macroscopic readout is sufficient to explain the network per-
formance in an information buffering task. Microscopic
properties do, however, play a role if the input is only given
to a subset of the network units suggesting that in this case
ultra-short term information buffering in connectivity loops
is indeed possible.

B. Signal buffering and computing in random nets

Random networks of model neurons have been proposed
as powerful computing devices in the context of “liquid”
computing �4� or echo state machines �5�. Typically such
networks have been endowed with a certain amount of het-

erogeneity, with intrinsic time constants spanning a wide
range �4�, and potentially a feedback from the readout units
back to the network �5�. In this paper we have only consid-
ered the simplest case, i.e., a random network of spiking
neurons that is completely homogeneous, since all units are
characterized by the same parameters �membrane time con-
stant and threshold� and receive the same number of connec-
tions. Moreover, we have focused our study on a particularly
simple task, i.e., signal buffering. This purification allows us
to ask the question of whether random connectivity can yield
a significant increase of buffering times beyond the intrinsic
time constant of the network elements themselves. We have
seen in this paper that even for a delay of one membrane
time constant �20 ms�, the performance is not very good. In
additional simulations we checked that signal reconstruction
is reduced to insignificant levels if the delay � is increased to
50 ms. Thus the maximum delay � for which signal recon-
struction is feasible is not significantly different from the
intrinsic neuronal time constants. This suggests that, without
slow processes such as synaptic plasticity or neuronal adap-
tation, a purely random network of spiking neurons is not
suitable as an information buffer beyond tens of millisec-
onds.
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