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Abstract
Notions of surprise and novelty have been used in various
experimental and theoretical studies across multiple brain
areas and species. However, ‘surprise’ and ‘novelty’ refer to
different quantities in different studies, which raises concerns
about whether these studies indeed relate to the same func-
tionalities and mechanisms in the brain. Here, we address
these concerns through a systematic investigation of how
different aspects of surprise and novelty relate to different brain
functions and physiological signals. We review recent classi-
fications of definitions proposed for surprise and novelty along
with links to experimental observations. We show that
computational modeling and quantifiable definitions enable
novel interpretations of previous findings and form a foundation
for future theoretical and experimental studies.
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Introduction
An unexpected video interruption strengthens human
memory of the video’s content [1], mismatches be-
tween visual flow and locomotion facilitate synaptic
changes in the mouse visual cortex [2], monkeys show

faster saccades to unseen objects than to familiar ones
[3], and mice have a higher breathing frequency when
sniffing new odors than those already known [4].
www.sciencedirect.com
What these four statements have in common is that they
all concern situations where words like ‘surprise’ and
‘novelty’ seem applicable: The first two statements
assess neural responses to violation of expectations,
potentially caused by a feeling of surprise, whereas the
second two statements assess behavioral responses to
unfamiliar stimuli, potentially triggered by novelty of
the stimuli. It hence feels tempting to rephrase the first

two statements to ‘surprise strengthens memory and
modulates learning’ and the second two to ‘novelty at-
tracts attention and drives curiosity’. However, the
rephrased statements imply notably more than the
original statements: They suggest common mechanisms
for different experimental phenomena across different
species. Such generalisations are important for moving
towards a unified understanding of the brain, but they
can be misleading if not justified.

Intuitive usage of ‘surprise’ and ‘novelty’ is common

practice in neuroscience [5], psychology [6], and ma-
chine learning [7]. However, it has remained a mystery
how humans’ self-reported degree of ‘surprise’ when
entering a new and unexpected room [8] relates to the
brain activity of monkeys seeing ‘surprising’ fractals [9].
This is particularly worrisome as the words ‘surprise’ and
‘novelty’, sometimes used interchangeably, refer to
different measurable variables in different studies
[10,11]. Moreover, neural and behavioral signatures of
several novelty- or surprise-related variables have been
found simultaneously in single experiments [12e16].

If there are indeed common principles of how ‘surprise’
and ‘novelty’ contribute to different brain functions
across brain areas and species, then we need systematic
studies that enable neuroscientists to distinguish be-
tween different ‘aspects’ of surprise and novelty. In this
paper, we argue that computational modeling and
quantifiable definitions are necessary first steps for such
systematic studies.
A unifying computational framework
In experimental paradigms for studying surprise and

novelty, experimental subjects (human participants or
animals) are presented with unlikely or infrequent ob-
servations [17,18], observations violating repeating
patterns [19e22], or, in general, any observation that
Current Opinion in Neurobiology 2023, 82:102758
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2 Computational Neuroscience 2023
can intuitively be called ‘novel’ or ‘surprising’ (e.g., Figure
1a1). The goal of these experiments is to study how
novel or surprising observations influence physiological
brain signals [13,23] and action choices [16,24]
(Figure 1a2).

In an example of human multi-step decision-making
[16], participants see an image on a computer screen

and are instructed to select an action by clicking on one
of the disks below the image (Figure 1a1). The next
image to appear on the screen depends on the current
image and the selected action and is determined by
some underlying rules that are unknown to the partici-
pants. After several trials, participants associate a
particular action with a particular outcome, e.g., clicking
on the right action below the coffee cup yields the light
bulb as the next image (t= 31 and t= 32 in Figure 1a1).
Figure 1

Computational modeling of experimental paradigms studying surprise an
the influence of ‘novel’ or ‘surprising’ observations (a1) on various behavioral an
version of the task of [16]: In each trial, human participants see an image on
below the image; selected actions are shown in blue). The next image depen
underlying rules of the experiment that are unknown to participants (i.e., the g
the red one to a potentially surprising transition after an unannounced chang
trials, observing the ‘light bulb’ at t = 32 is expected, whereas observing the ‘th
‘right’ when seeing the ‘coffee cup’). See Figure 2a and [11] for other examp
description of the experimental paradigm (b1) and a formal description of the
described using three variables for the trial at time t + 1: The observation yt+1,
the image at time t + 1, xt+1 = (yt, at) is the pair of the last image yt and action
subject. b2. A subject is modeled by an algorithm that receives a cue xt+1 and
inferred novelty value nt+1, and, when required, an action at+1 as outputs. The a
internal dynamics by using the past cues and observations (x1, y1; …; xt, yt). In
set qt+1, a predictive model p(t) (yt+1|xt+1) to summarise the subject’s expectati
familiarity of observations (e.g., Equation (2)); see Box 1. Novelty and surprise
the algorithm as in Equation (3) and Equation (4), respectively. These values
using linear regression). See [11,16] for precise definitions and [13,25] for so
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Participants will feel surprised if they see a different
image than the expected one (e.g., the thumb at t = 35
in Figure 1a1). The experimental design is based on the
idea that measurable changes in, e.g., EEG, pupil dila-
tion, or reaction time after seeing the unexpected image
can be attributed to surprise.

Computational models and quantifiable definitions

allow us to go beyond mere ideas. A computational
model consists of two parts: (i) an abstract description of
the experimental paradigm (from the perspective of
experimental subjects; Figure 1b1) and (ii) a formal
description of subjects’ perception and behavior (Figure
1b2). We can describe most existing experiments on
surprise and novelty by using only three variables at time
t þ 1 (Figure 1b1): The observation ytþ1, a potential cue
xtþ1, and a set of hidden parameters qtþ1 (Box 1) [11].
d novelty. a. The goal of experiments on surprise and novelty is to study
d physiological measurements (a2). The example in a1 shows a simplified
a computer screen and select one of the two available actions (i.e., disks
ds on the current image and the selected action and is determined by the
raph on the left side; the black arrows correspond to available actions and
e of rules). Assuming all transitions have been experienced in the first 30
umb’ at t = 35 is unexpected and potentially surprising (after taking action
les. b. A computational model of an experiment consists of an abstract
subjects’ behavior (b2). b1. The great majority of experiments can be
the cue xt+1, and the parameter set qt+1 [11]. For the example in a1, yt+1 is
at, and qt+1 models the transitions according to the rules imagined by the
an observation yt+1 as inputs and gives an inferred surprise value st+1, an
lgorithm has an internal state that is iteratively updated according to some
general, the internal state includes a belief p(t) (qt+1) about the parameter

ons (e.g., Equation (1)), and a familiarity measure pf
(t) (yt+1) to quantify the

values of each observation are evaluated according to the internal state of
are used for trial-by-trial prediction of experimental measurements (e.g.,
me examples.

www.sciencedirect.com

www.sciencedirect.com/science/journal/09594388


Surprise and novelty in the brain Modirshanechi et al. 3
The cue xtþ1 summarises all information in time step tþ
1 that subjects may consider for predicting ytþ1, e.g., the
pair (yt, at) of observation yt and action at (Figure 1b1).
We always include the action at in the cue variable xtþ1;
this allows us to use the same mathematical formulation
for experiments with or without the possibility of
selecting actions. The set of parameters qtþ1 summa-
rises the hidden rules (for example action-dependent

transitions in Figure 1b1) that subjects, potentially un-
consciously, imagine to explain the observation ytþ1

given xtþ1. The imagined rules are estimates of the ‘real’
rules of the experiment.

Defining novelty and surprise for the observation ytþ1

needs a formal model of how experimental subjects
perceive ytþ1, which is described by the second part of a
computational model. All modeling studies on surprise
and novelty assume that subjects use their past experi-
ences (x1, y1; .; xt, yt) and some internal update dy-

namics to make a prediction of the next observation bytþ1

(Box 1) and, if required, select an action at accordingly
(Figure 1b2) [26e29]. Depending on the model as-
sumptions, the internal dynamics can have different
levels of abstractions [30], ranging from algorithmic
implementations of Bayesian inference [31e34] to
detailed models of biological neural networks [35e38].
In the most general setting, the model describes (i) the
belief p(t) (qtþ1) of the subject about the unknown set of
parameters qtþ1 and (ii) a predictive distribution of the
next observation p(t) (ytþ1|xtþ1) based on that belief

(Box 1). The belief p(t) (qtþ1) indicates the probability
of qtþ1 to be the ‘real’ rule of the experiment at time t þ
Box 1. Glossary. Explanation of technical terms used to describe ex

� When describing an experiment
– Cue refers to information that subjects use to predict the next obse

observation (Figure 2a) can be used as cues.
– Hidden parameters describe the rules that generate experimental o

observation A (Figure 2a). The rules are called hidden because they a
The rule in the mind of a subject may not be the same as the ‘real’ r

– A Volatile experiment is an experiment where the ‘real’ rule change
� When describing an experimental subject

– The Belief summarises the subject’s guess about the hidden rules, b
all possible rules of the experiment.

– Expectations summarise a subject’s guess about possible next obse
form a probability distribution over all possible next observations.

– A Prediction condenses a subject’s expectations into a single gues
– Confidence quantifies the certainty of a subject about either (i) the
– Familiarity quantifies how often a specific observation has occurred

depend on cues.
� When describing an observation

– Predictable observations can in principle (i.e., if experimental rules
observations in repeating or regular patterns are predictable (Figure

– Unexpected observations are either unlikely given the subject’s expe
sufficient experience, predictable observations are on average less
expected depends on the cue.

– Unfamiliar observations are those that have been encountered rarely
familiarity). An expected observation can be unfamiliar (Figure 2a3),
an observation is unfamiliar does not depend on the cue.

www.sciencedirect.com
1 according to the subjects’ past experience up to time t.
The predictive distribution p(t) (ytþ1|xtþ1) summarises
subjects’ expectations of what they might observe next
(Box 1). For example, in a simple case where xtþ1 and
ytþ1 take discrete values, we can define the predictive
distribution as [29,39]

pðtÞ
�
ytþ1jxtþ1

� ¼
CðtÞ�ytþ1

��xtþ1

� þ constant

CðtÞ�xtþ1

� þ constant
; (1)

where C(t) (xtþ1) is the count of how many times a subject

has received cue xtþ1 until time t, C(t) (ytþ1|xtþ1) is the

count of those trials that were followed by observation ytþ1,

and constants are added to avoid having zero probabilities.
Novelty is not surprise
Homann et al. (2022) [22] identify a population of
neurons in the mouse primary visual cortex that shows
strong responses to novel stimuli but not to familiar
stimuli even if the latter violate highly predictable
observation patterns (Figure 2a1 versus Figure 2a2; Box
1). In the computational framework described above,
this means that the physiological variables studied by
[22] do not depend on the unexpectedness of ytþ1 given

the cue xtþ1 (i.e., preceding stimuli in this case) but only
on the unfamiliarity of ytþ1 independently of any infer-
red regularities in the sequence of observations (Box 1).

These experimental results support the earlier propo-
sition of Xu et al. (2021) [16] to separate notions of
periments, experimental subjects, and observations.

rvation. The previously selected action (Figure 1a1) or the previous

bservations. A rule may imply that observation B always comes after
re not known by the subject but need to be inferred from observations.
ule of the experiment.
s at unknown moments in time, e.g., [19,24].

ased on past observations. Belief forms a probability distribution over

rvations, based on the current cue and the current belief. Expectations

s for the next observation.
hidden rule or (ii) the next observation.
or how similar it is to other frequent observations. Familiarity does not

are known) be predicted with high probability from cues. For example,
2a).
ctations or predicted inaccurately given the subject’s prediction.Given
unexpected than unpredictable ones. Whether an observation is un-

by subjects and are not similar to other frequent observations (i.e., low
while a familiar observation can be unexpected (Figure 2a2). Whether

Current Opinion in Neurobiology 2023, 82:102758
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Figure 2

A taxonomy of surprise and novelty definitions. Novelty quantifies the unfamiliarity of an observation (Equation (3)), whereas surprise quantifies its
unexpectedness conditioned on the cue variable xt+1 (Equation (4)) [16]. a. Average familiarity and expectedness can be manipulated in an experimental
paradigm where each observation yt = xt+1 is the predictor of the next observation yt+1 (e.g., [9,14,22]; Box 1). A blue triangle in the middle of a repeating
sequence of red squares and circles is unexpected and unfamiliar (high surprise, high novelty; a1), whereas a misplaced red circle is unexpected
although familiar (high surprise, low novelty; a2). A blue triangle observed for the second time after a switch in the observation pattern from repeating red
square-red circle to repeating blue square-blue triangle is expected but not familiar (low surprise, high/medium novelty; a3). b. Most definitions of novelty
can be classified into three groups: 1. ‘Absolute novelty’ considers novel observations as those never observed before (C(t) (yt+1): the count of yt+1 until
time t). 2. ‘Always decreasing novelty’ is a decreasing function of the count C(t) (yt+1). 3. ‘Frequency-based novelty’ is a decreasing function of the
observation-frequency pðtÞf ðyt+1Þ (e.g., Equation (2)). c. A technical classification of surprise definitions (columns) [11]: 1. Observation-mismatch surprise
needs only a prediction by t+1 of the next observation. 2. Probabilistic mismatch surprise needs the full predictive distribution p(t) (yt+1|xt+1). 3. Belief-
mismatch surprise needs the subject’s full belief distribution p(t) (qt+1); DKL denotes Kullback-Leibler divergence. An additional conceptual classification of
surprise definitions (rows) [11]: 1. Prediction surprise defines surprising events as those that violate predictions. 2. Change-detection surprise quantifies
possibility of changes in qt+1 and defines surprising events as those predicted inaccurately in comparison with an alternative predictive model p(alt.) (yt+1|
xt+1) [33]. 3. Information-gain surprise defines surprising events as those that change a subject’s belief. 4. Confidence-corrected surprise adds an explicit
measure of confidence into a definition of surprise, e.g., Shannon surprise plus a measure of confidence; note that the categorisation as probabilistic or
belief-mismatch also depends on the definition of confidence. While the two classifications are complementary, they are not fully independent: One needs
p(t) to evaluate an information-gain surprise, and it is not possible to define confidence without access to p(t) or p(t) (hatched boxes). Question marks:
Categories without any example in the literature. See [11] for a detailed mathematical treatment of different definitions, their placement in the categories,
and their relationships.
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surprise and novelty based on their relation to unex-
pectedness and familiarity: Surprising stimuli violate
expectations; hence, surprise is a measure of the unexpect-
edness of ytþ1 according to the predictive model p(t) (ytþ1|
xtþ1). Novel stimuli, however, violate familiarity; hence,
novelty is a measure of the unfamiliarity of ytþ1 according to
the familiarity p

ðtÞ
f ðytþ1Þ (Box 1 and Figure 2). The fa-

miliarity p
ðtÞ
f ðytþ1Þ quantifies how frequent ytþ1 (e.g., a

specific image) has been up to time t independently of
the cue xtþ1 and potential regularities in observations
(see [40] for similar ideas in machine learning). For
Current Opinion in Neurobiology 2023, 82:102758
example, in cases where xtþ1 and ytþ1 take discrete
values (same assumption as in Equation (1)), one can
define familiarity as the observation frequency

p
ðtÞ
f

�
ytþ1

� ¼
CðtÞ�ytþ1

� þ constant

t þ constant
; (2)

where C(t) (ytþ1) is the count of how many times a subject

has observed ytþ1 until time t, and constants are added to

avoid having zero frequencies. Novelty of observation ytþ1

defined as ntþ1 = � log pf
(t) (ytþ1) (‘frequency-based
www.sciencedirect.com
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novelty’; Figure 2b) explains some significant trial-by-trial

variabilities of human EEG signals [16]. More generally,

novelty of ytþ1 can be defined as

ntþ1 ¼ N ðtÞðytþ1Þ; (3)

where N(t) is a general function that (i) takes ytþ1 as its

argument, (ii) is independent of the cue xtþ1, and (iii) de-

pends on the subject’s current internal state at time t
(Figure 1b2).

The central criterion proposed by Xu et al. is that def-
initions of surprise quantify the unexpectedness of ytþ1 and
must be conditioned on xtþ1, whereas definitions of nov-
elty quantify the unfamiliarity of ytþ1 and must be inde-
pendent of xtþ1. Almost all existing definitions of novelty
in neuroscience and psychology meet this criterion and

can be written as in Equation (3) [5,10]. For example,
two alternative approaches to defining novelty are to (i)
consider only the first encounter of a specific observa-
tion as novel (‘absolute novelty’; Figure 2b) [41,42] or
(ii) define the novelty of ytþ1 as a decreasing function of
the count C(t) (ytþ1) (‘always decreasing novelty’; Figure
2b) [43,44]. Note that according to novelty definitions
based on observation frequency (e.g., Equation (2)), the
novelty of the observation ytþ1 increases if it has not
been observed for some time.

The distinction proposed by Xu et al. enables new in-
terpretations of earlier results: For example, the separate
MEG signatures found by [13] for ‘frequency-based’ and
‘transition-based’ surprise can alternatively be inter-
preted as separate signatures for novelty and surprise,
respectively; what has been called ‘expected surprise’ by
[45] can be seen as novelty; and what has been called
‘contextual novelty’ in neuroscience [5] is a form of
surprise and not novelty. These interpretations help
connect otherwise separate experimental phenomena in
a single coherent framework.

Finally, the perceived novelty of a stimulus does not only
depend on how often the exact same stimulus has been
experienced. For example, a familiar image with an
altered contrast level is a novel stimulus per se, but it
may be perceived as a familiar one if the subject cares
only about the image identity [46]; similarly, some novel
stimuli may be perceived less novel than others if they
look similar to familiar stimuli. Many experimental
studies support such feature-dependency in novelty
responses in the brain [9,22,47]. Novelty definitions

based on the simple observation frequency in Equation
(2) can be generalised to account for feature-dependent
novelty estimation as the familiarity measure pf

(t) (ytþ1)
can be an arbitrary (non-negative and normalised)
function of the stimulus. Analogously, count-based
novelty definitions can account for feature-dependent
novelty estimation by turning to frequency-based
pseudo-counts [40,48].
www.sciencedirect.com
A taxonomy of surprise definitions
Surprise is caused by a violation of expectations. How-

ever, even if we agree that surprise quantifies the un-
expectedness of ytþ1 conditioned on xtþ1, there are
multiple possibilities for quantifying unexpectedness
[10,12,31e33,49e51]. In general, surprise of ytþ1 can be
written as

stþ1 ¼ SðtÞðytþ1jxtþ1Þ; (4)

where S(t) is a general function that (i) takes both ytþ1 and

xtþ1 as arguments (in contrast to Equation (3)) and (ii)

depends on the subject’s current internal state at time t
(Figure 1b2) [11]. A recent systematic taxonomy of

commonly used definitions of surprise proposes two clas-

sification schemes for these definitions [52] (Figure 2c).

The first classification is based on the minimal informa-
tion, about the subject’s internal state, that is needed for
computing surprise with a given definition (columns in
Figure 2c): 1. Observation-mismatch surprise is defined
based on the assumption that, at each time t, an experi-

mental subject makes a prediction bytþ1 of the upcoming
observation ytþ1. Observation-mismatch surprise quan-
tifies surprise as a mismatch between ytþ1 and bytþ1; an
example is the absolute difference stþ1 ¼ jytþ1� bytþ1j,
where bytþ1 is, e.g., themean of the predictive distribution
[53]. 2. Probabilistic mismatch surprise depends on the full
distribution p(t) (ytþ1|xtþ1) of possible outcomes and,
hence, requires more information than a single prediction
bytþ1; an example is the Shannon surprise or surprisal stþ1

=� log p(t) (ytþ1|xtþ1) [10]. 3.Belief-mismatch surprise can
be evaluated only by having access to the full belief p(t)

(qtþ1) about the hidden parameter set qtþ1 and requires
even more information than the full distribution p(t)

(ytþ1|xtþ1); an example is the Bayesian surprise stþ1 =
DKL(p

(t), p(tþ1)), where DKL denotes Kullback-Leibler
divergence [31,32].

The second classification is a conceptual one (rows in
Figure 2c): 1. Prediction surprise defines surprising
events as those that violate predictions, e.g., the Shan-
non surprise stþ1 = � log p(t) (ytþ1|xtþ1). 2. Change-
detection surprise also defines surprising events as those

that violate predictions but only in comparison with an
alternative predictive model; an example is the differ-
ence in the Shannon surprise stþ1 ¼
log½pðtÞðytþ1jxtþ1Þ = pðalt:Þðytþ1jxtþ1Þ�, where p(alt.) (ytþ1|
xtþ1) is a prior or naive predictive model [33]. According
to change-detection surprise definitions, if the obser-
vation ytþ1 is unlikely according to both the predictive
model p(t) and its alternative, then it is not perceived as
surprising. Hence, change-detection surprise can be
interpreted as a measure of relative surprise. Impor-
tantly, change-detection surprise is optimal to modulate
learning in volatile environments [11,33] (Box 1), in

agreement with experimental observations [19, 24, 63].
Current Opinion in Neurobiology 2023, 82:102758
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3. Information-gain surprise defines surprising events as
those that change a subject’s belief about the world, e.g.,
the Bayesian surprise stþ1 = DKL(p

(t), p(tþ1)). We note,
however, that only a handful of information-gain mea-
sures [64] have been previously interpreted as measures
of surprise [12,31,32]. 4. Confidence-corrected surprise is
defined based on the argument that a given error in
prediction should feel more surprising if it is made with

higher confidence (Box 1); examples have been sug-
gested both in neuroscience [50] and psychology [51].

The two classifications together propose a refined ter-
minology necessary for a systematic study of surprise in
the brain. The first classification is important to judge
whether surprise computation based on different defi-
nitions can be biologically plausible. For example, eval-
uating observation-mismatch surprise in a recurrent
network of spiking neurons might be simpler than eval-
uating probabilistic mismatch and belief-mismatch sur-

prise under similar biological constraints [35,36,38]; see
[65,66] for different views on the neural implementation
of probabilistic inference. The first classification can
thus help studies to bridge the gap between algorithmic
and mechanistic neural models of ‘surprise-driven’
attention [67], exploration [68], and learning [28].

The second classification is important as it suggests that
observations that intuitively feel surprising can do so
because of different aspects of surprise. Importantly,
experimental studies of surprise have found separate

neural signatures for different definitions (Table 1). For
example, Gijsen et al. (2021) [14] found independent
EEG signatures of prediction, information-gain, and
confidence-corrected surprise in an experimental para-
digm using somatosensory roving stimuli. Similarly,
Kolossa et al. (2015) [12] showed in an earlier study that
even different definitions in the same surprise category
(e.g., information-gain surprise) can have different
neural signatures. These results suggest that the
experimental phenomena previously attributed to a
single broad notion of ‘surprise’ might relate to very
different but precise definitions of surprise.

The proposed taxonomy can also provide new in-
terpretations of existing experiments: Beyond the
comparison of trial types (e.g., expected versus unex-
pected trials), mathematical definitions of surprise and
novelty enable trial-by-trial data analysis (Table 1). For
example, Zhang et al. (2022) [9] observe in monkeys
that neural responses to an unexpected stimulus are
different depending on whether the stimulus appears in
a random unpredictable sequence or in a regular pre-
dictable sequence (Box 1). The observed difference

may be an indication that surprise signals in different
brain areas relate to different surprise categories rather
than a single notion of surprise. Such a hypothesis can be
Current Opinion in Neurobiology 2023, 82:102758
tested by trial-by-trial data analysis combined with
computational modeling.

Finally, surprise can also quantify the unexpectedness of
a scalar (or low dimensional) summary signal extracted
from the (high dimensional) observation ytþ1 instead of
ytþ1 itself. For example, the unsigned reward prediction
error (uRPE) [69,70] measures the mismatch between

the reward r(ytþ1) associated with stimulus ytþ1 and a
prediction brtþ1 thereof (see [11]). Similarly, an un-
signed novelty prediction error (uNPE) measures the
unexpectedness of the novelty value N(t) (ytþ1) of an
observation ytþ1 [16,71]. We can think of uRPE and
uNPE as secondary surprise signals since they are
derived from a scalar summary signal. When interpreting
neural responses to ‘novel’ stimuli, it is hence important
to consider that responses correlated with novelty may
in fact be caused by errors in novelty prediction [16,71].
Moreover, subjects may assume potential associations

between novelty (or similarly between surprise) and
threats or rewards [43,60], which can lead to
confounding effects of threats and rewards on neural
responses to novelty (or surprise); hence, ideal experi-
mental paradigms for studying neural and behavioral
signatures of novelty and surprise require a dissociation
of these signals from threats and rewards.

In addition, there can be multiple forms of neural re-
sponses to surprise and novelty of an abstract observation
ytþ1 depending on how it is neurally represented

regarding, for example, sensory modality (e.g., auditory
versus visual [59]) or the hierarchy of representations
(e.g., image identity [16,46] versus primary visual fea-
tures [2,22]). For example, a repeating sequence of
binary observation as in Figure 2a can be presented as
either a sequence of tones or a sequence of images (i.e.,
different modalities); Grundei et al. (2023) [59] found
separate modality-specific and modality-independent
EEG signatures of surprise in an experimental para-
digm using somatosensory, auditory, and visual roving
stimuli. Moreover, a sequence of images could consist of
meaningless fractals, sketches of meaningful objects, or

different visual drawing styles of always the same object,
which results in the same temporal sequence of stimuli
in the visual domain but at different levels of abstraction.

Towards a systematic study of surprise and
novelty
Different computational roles in learning [34,72] and
decision-making [73e75], broadly attributed to ‘sur-
prise’ and ‘novelty, may correspond to different but
mathematically precise definitions of novelty and sur-
prise and ultimately also to distinct physiological signals.
This leaves us with two main questions: 1. How many
fundamentally distinct physiological signals are involved
in brain computations related to surprise and novelty? 2.
www.sciencedirect.com
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Table 1

Example experimental papers with more than one signal related to surprise and novelty. ‘T-by-T’ indicates whether trial-by-trial data analysis
is performed. ‘Compared signals’ lists precise mathematical definitions (for trial-by-trial analysis) or the description of trial types (otherwise) that are
compared. Animal studies with trial-by-trial analysis exist (e.g., [54,55]) but none with more than one definition of surprise or novelty. Abbrevations:
CI: Calcium Imaging. Conf.: Confidence. Cort.: Cortex. DA: Dopamine. EEG: Electroencephalography. EP: Electrophysiology. Exp.: Expected.
fMRI: Functional Magnetic Resonance Imaging. FP: Fiber Photometry. MEG: Magnetoencephalography. OG: Optogenetic. Seq.: Sequence.
Unexp.: Unexpected.

T-by-T Compared signals Subjects Stimulus modality Measurements

Macedo et al. (2004)
[51]

Yes 1.Six definitions of
prediction surprise

2.Two definitions Conf.-
Corrected surprise

Humans Questionnaire 1. Self-report

O’Reilly et al. (2013)
[56]

Yes 1. Shannon surprise
2. Bayesian surprise

Humans Visual 1. fMRI
2. Pupillometry
3. Reaction time

Kolossa et al. (2015)
[12]

Yes 1. Shannon surprise
2. Bayesian surprise
3. Postdictive surprise

Humans Visual 1. EEG

Maheu et al. (2019)
[13]

Yes 1. Shannon surprise
2. Frequency-based

novelty

Humans Auditory 1. MEG

Visalli et al. (2019 &
2021 & 2023)
[15,57,58]

Yes 1. Shannon surprise
2. Bayesian surprise

Humans Visual 1. EEG [15,58]
2. fMRI [57]
3. Reaction time

Dubey and Griffiths
(2019) [44]

Yes 1. Information-gain
2. Always decreasing

novelty

Humans Questionnaire 1. Action choices

Xu et al. (2021) [16] Yes 1. Shannon/Bayes Factor
surprise

2. Frequency-based novelty

Humans Visual 1. EEG
2. Action choices

Gijsen et al. (2021)
[14] and Grundei
et al. (2023) [59]

Yes 1. Shannon surprise
2. Bayesian surprise
3. Conf.-Corrected surprise

Humans 1. Somatosensory
[14,59]

2. Auditory [59]
3. Visual [59]

1. EEG

Modirshanechi et al.
(2023) [52]

Yes 1. Shannon surprise
2. Postdictive surprise
3. Frequency-based novelty

Humans Visual 1. Action choices

Morrens et al. (2020)
[4]

No 1. New stimuli in a random
seq.

2. Rare stimuli in a random
seq.

Mice Olfactory 1. FP recording of DA
2. Breathing frequency

Zhang et al. (2022)
[9]

No 1. Unexp. new stimuli
2. Unexp. familiar stimuli in a

random seq.
3. Unexp. familiar stimuli in a

regular seq.

Monkeys Visual 1. EP in 22 brain areas
2. Pupillometry
3. Saccade latency

Homann et al. (2022)
[22]

No 1. New stimuli in a regular
seq.

2. Switch of stimuli in a
regular seq.

Mice Visual 1. CI in the visual cort.

Akiti et al. (2022) [60] No 1. Novel objects
2. Familiar objects in unexp.

context

Mice Visual 1. OG recording of DA
2. Action choices

Garrett et al. (2023)
[61] (see also [62])

No 1. Exp. new stimuli
2. Unexp. new stimuli
3. Unexp. familiar stimuli
4. Omission of exp. stimuli

Mice Visual 1. CI in the visual cort.
2. Action choices
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What is the role of each physiological signal in each brain
function? Addressing these questions requires in-
teractions of theory and experiments.

Recent years have seen an increasing interest in this line
of research. For example, Akiti et al. (2021) [60] show
that mice exhibit different behavioral patterns when
inspecting novel versus surprising objects and that

striatal dopamine release modulates the inspection of
novel objects differently from the inspection of sur-
prising ones. Dubey and Griffiths (2019) [44] show that
seeking novelty and information-gain (i.e., two distinct
curiosity-related behavioral patterns) can be considered
special cases of seeking a single ‘curiosity signal’ that is
‘optimal’ for exploration and depends on experimental
conditions. Another study on exploratory behavior, on
the other hand, shows that novelty-driven algorithms
explain the human search for rewarding states better
than algorithms driven by prediction surprise or

information-gain, even when novelty-seeking is subop-
timal [52]. Similar approaches can be applied to study-
ing the influence of different aspects of surprise and
novelty on learning, memory, and attention.

In conclusion, different aspects of surprise and novelty
can be captured and quantified by precise definitions
and well-designed experiments. The classifications in
Figure 2 offer a foundation for future experimental and
theoretical studies on surprise and novelty.
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