
LETTER Communicated by Terrence Sejnowski

Exponentially Long Orbits in Hopfield Neural Networks

Samuel P. Muscinelli
samuel.muscinelli@epfl.ch
Wulfram Gerstner
wulfram.gerstner@epfl.ch
Johanni Brea
johanni.brea@epfl.ch
School of Computer and Communication Sciences and Brain Mind Institute,
School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL),
1015 Lausanne, Switzerland

We show that Hopfield neural networks with synchronous dynamics and
asymmetric weights admit stable orbits that form sequences of maximal
length. For N units, these sequences have length T = 2N; that is, they
cover the full state space. We present a mathematical proof that maximal-
length orbits exist for all N, and we provide a method to construct both
the sequence and the weight matrix that allow its production. The orbit
is relatively robust to dynamical noise, and perturbations of the optimal
weights reveal other periodic orbits that are not maximal but typically
still very long. We discuss how the resulting dynamics on slow time-
scales can be used to generate desired output sequences.

1 Introduction

Humans and some other animals can learn complex sequential behavior,
such as dancing, singing, playing a musical instrument, or writing. These
behaviors require precise coordination of many muscles on the timescale of
seconds or minutes. That the brain achieves this coordination is remarkable,
in particular, given that typical processes on a neuronal level, like action
potentials or synaptic transmission, operate on a timescale of milliseconds.

To introduce a neuronal mechanism that could underlie such compu-
tations, we give an operational definition of sequence: a sequence is a map
from a ordered set of indices to a set of sequence elements. We can take, for
example, the natural numbers as the ordered index set and lowercase ro-
man letters as the sequence elements. An example of a map is 1 �→ s, 2 �→
e, 3 �→ q, 4 �→ u, 5 �→ e, 6 �→ n, 7 �→ c, 8 �→ e. A putative neuronal mecha-
nism uses a recurrent network of neurons to represent the ordered set of
indices and a group of readout neurons to represent the set of sequence
elements (see Figure 1A). Each neuronal activity pattern in the index net-
work encodes an index, and the ordering is established by the autonomous

Neural Computation 29, 458–484 (2017) c© 2017 Massachusetts Institute of Technology
doi:10.1162/NECO_a_00919

Exponentially Long Orbits in Hopfield Neural Networks 459

Figure 1: Network architectures and maximal-length sequences. (A) Schematic
representation of the index network connected to the sequence network.
(B) Schematic representation of the hypothetical mechanism of song genera-
tion in the zebra finch. Neurons in HVC are connected to form a chain and are
active only once during a song. Neurons in RA read out their activity and can
activate more than once. (C) Maximal-length sequence for N = 4, constructed
according to equation 2.1. Units are arranged from top to bottom according to
their indices. A black rectangle indicates that the unit is active at that time step.
(D) Maximal-length sequence for N = 5, constructed according to algorithm 1.
Highlighted in red is the state at the critical time step t = 2N−1.

dynamics. Neurons in the index network are recurrently connected
to each other such that when the network is initialized in a particular
state, the activity patterns evolve through a fixed sequence. The activity
in readout neurons could encode motor commands that lead to a specific
coactivation of muscles. To produce complex movements, it is sufficient to
learn a map from index patterns to motor commands such that the first
motor command is activated by the first index pattern and so forth.

It has been hypothesized that songbirds use this mechanism to learn
songs (Fee, Kozhevnikov, & Hahnloser, 2004). For example, zebra finches
produce songs that consist of motifs (sequences), each defined by a specific

460 S. Muscinelli, W. Gerstner, and J. Brea

ordering of sounds (elements). The activity in premotor area RA (robust
nucleus of the arcopallium) is highly correlated with the vocalization of
single sounds and can thus be seen as encoding sequence elements. Neurons
in RA receive input from brain area HVC (hyperstriatum ventrale, pars
caudalis). Most of the neurons in HVC that project to RA are active only once
during a motif, and the time of activity is locked relative to the onset of the
motif itself (Hahnloser, Kozhevnikov, & Fee, 2002). This observation leads
to the hypothesis that neurons in HVC form a recurrent neural network that
produces a chain-like activity pattern, where one group of neurons excites
the next group of neurons and so forth (see Figure 1B). This can be seen
as implementing the index network, where an index is associated with the
activity of a particular group of neurons. In this way, each neuron is active
only once during a sequence.

The main limitation of reading out from a chain-like activity is the max-
imal length of the sequence that can be generated in the recurrent network.
Indeed, with each neuron in the recurrent network being active only once
during a sequence, the length of learnable sequences is severely limited.
The maximal length scales linearly with the number of neurons. If each
recurrently connected neuron would be allowed to spike more than once,
one would expect that the recurrent network could generate much longer
sequences. Here we focus on intrinsically generated sequential activity that
allows overcoming the linear scaling limit.

Models of recurrent neural networks come in different flavors. We can
distinguish between discrete and continuous temporal dynamics, between
deterministic and stochastic updates, and between binary (spiking) and
real-valued (rate-based) signal transmission. Each flavor comes with its
own ways to overcome the linear scaling limit.

In systems with an infinite state space, typically the case for models with
continuous temporal dynamics, a better scaling behavior is possible by ex-
ploiting the chaotic regime. Under specific conditions, transients in random
networks of coupled oscillators (Zumdieck, Timme, Geisel, & Wolf, 2004)
have been shown to scale exponentially with the number of units. A sim-
ilar phenomenon can be observed in spiking networks (Zillmer, Brunel,
& Hansel, 2009). Rate-based networks were shown to be useful to imple-
ment the index network (Sussillo & Abbott, 2009; Laje & Buonomano, 2013).
In this case, each index corresponds to a certain configuration in the state
space, and the order is determined by the intrinsic dynamics of the network.

The linear scaling limit can also be overcome in rate-based networks
without relying on chaotic trajectories. One remarkable example is the cod-
ing strategy of grid cells, where the combination of cells with different
(real-valued) periods leads to a representation capability that is exponen-
tial in the number of units (Fiete, Burak, & Brookings, 2008; Sreenivasan &
Fiete, 2011; Mathis, Herz, & Stemmler, 2012). Although grid cells code for
space, a translation of the same mechanism to the temporal domain could
be possible (Gorchetchnikov & Grossberg, 2007; Eichenbaum, 2014).

Exponentially Long Orbits in Hopfield Neural Networks 461

Here we consider discrete dynamics with binary signal transmission,
which does not allow making use of the chaotic regime, since the state-
space is finite. More specifically, we study Hopfield neural networks with
synchronous update and asymmetric weights. The dynamics of these net-
works converges usually to a limit cycle with a short period or to a fixed
point. Indeed, sequence generation in a Hopfield network can be related
to linear separability in perceptron learning (Gardner, 1988; Brea, Senn, &
Pfister, 2013). This implies that the expectation of having an admissible
sequence made of random patterns goes to zero when its length is larger
than 2N, where N is the number of units. Therefore, using random patterns
does not lead to any significant advantage with respect to the activity chain
approach.

However, there are examples of very long sequences that can be gener-
ated with such networks. Distinct subnetworks could, for example, produce
activity chains of different lengths. A network of 10 units produces a peri-
odic orbit of length T = 2 · 3 · 5 = 30 steps, if it is divided into subnetworks
of 2, 3, and 5 units with each subnetwork generating an activity chain of
corresponding length. Generally combinations of chains of co-prime length
yield a very fast growth of the sequence length. This idea is related to the
coding strategy of grid cells (see, e.g., Fiete et al., 2008).

The occurrence of long periodic orbits in Hopfield networks raises the
question: What are the longest sequences that such a network can generate?
Here we prove that for each network size, it is possible to find weights such
that the dynamics generates an orbit of maximal length. Moreover, our
proof provides an algorithm to construct the weight matrix. In contrast to
the network with chains of co-prime lengths, this network produces orbits
of length T = 2N, and it cannot be split into distinct subnetworks. Finally,
we show that this network is surprisingly robust to dynamical noise and
that small perturbations of the optimal weights lead to networks that are
likely to produce nonmaximal but long orbits.

2 Results

We consider a recurrent neural network of N binary neurons, whose state
at time t is specified by the single neuron activities

ξi(t) ∈ {1,−1}, i ∈ {1, . . . , N}. (2.1)

Such a network has 2N possible states, corresponding to all possible N-
tuples made of 1 and −1. Geometrically, the network states correspond
to the 2N vertices of an N-dimensional hypercube. The set of all possible
network states is called state space.

Time is treated as discrete, and the network dynamics is synchronous:
all neurons update their state at every time step. The update rule is

462 S. Muscinelli, W. Gerstner, and J. Brea

ξi(t) = sign

⎛
⎝

N∑
j=1

wi jξ j(t − 1)

⎞
⎠ t ∈ N, (2.2)

where sign(·) is the sign operator with the convention that sign(0) = 1.
Every neuron updates its state based on the status of the full network at
the previous time step. The influence of neuron j on neuron i is weighted
by wi j ∈ R. Since the system is deterministic and there are only 2N different
network states, the dynamics in equation 2.2 can only lead to a fixed point
or a periodic orbit. We define the length T of a periodic orbit as its smallest
period. The maximal length of a periodic orbit is equal to 2N.

A specific N-dimensional sequence of length T,

X =

⎛
⎜⎝

x1(1) . . . x1(T)
...

...
xN(1) . . . xN(T)

⎞
⎟⎠ , (2.3)

where xi(t) ∈ {−1,+1}, is a periodic orbit of the system if we can find
weights wi j such that the dynamics in equation 2.2 leads to that sequence,
for a certain set of initial conditions:

∃ t0 : ξi(t0 + kT + t) = xi(t) ∀k ∈ N. (2.4)

Here and in the remainder, we consider i ∈ {1, . . . , N} and t ∈ {1, . . . , T}
unless otherwise stated. The main result of this letter is the proof of the
existence of a maximal length orbit for arbitrary N. First, we present a
necessary condition for a sequence to be an orbit of maximal length. Then
we present an iterative method to construct a maximal-length orbit, for
which we can find the weights explicitly. In the main text, we only give the
intuition of the mechanism; the formal proof is in the appendix.

2.1 Maximal-Length Orbits Need Reflection Symmetry. In this section,
we prove a necessary condition that sequences have to satisfy in order to
be maximal-length orbits for the dynamics in equation 2.2. We notice that
if the dynamics in equation 2.2 produces a sequence X, then

xi(t)
N∑

j=1

wi jx j(t − 1) > 0, (2.5)

since equation 2.2 implies that xi(t) and
∑N

j=1 wi jx j(t − 1) have the same
sign. We use in equation 2.5 and in the following the convention that xi(0) =
xi(T), ∀i ∈ {1, . . . , N}. The converse is also true: if a sequence satisfies

Exponentially Long Orbits in Hopfield Neural Networks 463

equation 2.5, then the dynamics in equation 2.2 admits it as an orbit. We will
refer to equation 2.5 as the condition of linear separability, in analogy with
the geometrical concept (Elizondo, 2006; Hertz, Krogh, & Palmer, 1991). The
formulation in equation 2.5 allows us to prove the following lemma.

Lemma 1. If there exists a set of weights such that an N-dimensional sequence of
length T = 2N, with the property that xi (t) �= xi (t

′) if t �= t′, satisfies equation 2.5
for t ∈ {1, . . . , 2N} and i ∈ {1, . . . , N}, then

xi (t) = −xi

(
t + 2N−1) , t ∈ {1, . . . , 2N−1}, (2.6)

which means that the second half of the sequence should be the sign-inverted copy
of the first half.

Proof. The sequence covers the whole state space; therefore, there exists a τ

for which xi(t + τ − 1) = −xi(t − 1) for all i ∈ {1, . . . , N}. Since the sequence
is linearly separable,

0 < xi(t + τ)

N∑
j=1

wi jx j(t + τ − 1) = xi(t + τ)

N∑
j=1

wi j · (−x j(t − 1)).

(2.7)

The comparison with the linear separability condition, equation 2.5, at time
t implies

xi(t + τ) = −xi(t); (2.8)

that is, the state at time t + τ is the reflection of the state at time t. The
argument can be iterated, implying that x (t + τ + 1) = −xi(t + 1) and so
on, until the whole state space is covered. Iterating the argument above τ

times, we get

xi(t + 2τ) = −x(t + τ) = xi(t); (2.9)

therefore, τ should be equal to half the length of the sequence.

Sequences that satisfy the hypothesis of lemma 1 will be referred to as
maximal-length orbits. Lemma 1 illustrates a necessary condition that a
maximal-length sequence needs to satisfy in order to be linearly separable,
that is, implementable in a recurrent network. However, the condition is
not sufficient, and one could construct maximal-length sequences that have
the reflection symmetry but are not linearly separable.

464 S. Muscinelli, W. Gerstner, and J. Brea

2.2 Existence of Maximal-Length-Period Orbit. In this section, we il-
lustrate a recursive procedure that allows us to construct linearly separable
sequences of maximal length. The procedure is inspired by lemma 1. Sup-
pose we have a sequence of maximal length for a network of n units. We
denote this sequence by Xn. To increase its dimensionality, we add a unit
to the network. This new unit takes a constant value, so that we obtain an
(n + 1)-dimensional sequence that explores half of the (n + 1)-dimensional
state space. Lemma 1 tells us that the second half should be the reflection
of the first half in order to allow linear separability. The reflection step con-
cludes the construction of an (n + 1)-dimensional sequence Xn+1 of length
2n+1 starting from Xn. Algorithm 1 summarizes the sequence construction
algorithm.

In the appendix, we prove that the sequences devised according to algo-
rithm 1 are linearly separable and that the weights wi j for an implementation
in a recurrent neural network can be constructed recursively. Here we pro-
vide the intuition of the proof and a simple algorithm for the construction
of the weights.

The proof is done by induction; assuming that we have a linearly separa-
ble sequence Xn−1 for the (n − 1)-dimensional case, we look for the existence
of one in the n-dimensional case (Xn). We notice that the dynamics in equa-
tion 2.2 is symmetric under a simultaneous sign change of both xi(t − 1)

and xi(t), since this would correspond to a sign change of both sides of the
equation. Given that Xn is constructed according to algorithm 1 (i.e., the
second half is the reflection of the first), we have only to show that the first
half of the sequence, from t = 1 to t = 2N−1, is linearly separable. Notice
that this first half of Xn is different from Xn−1, since it is its n-dimensional

Exponentially Long Orbits in Hopfield Neural Networks 465

extension. We restrict to the case in which we do not modify the weights
wi j, for i, j < n. We introduce new weights to and from the added unit,
win, wni, i ≤ n. The proof consists in showing that the new weights can be
chosen in a way that the n-dimensional sequence is linearly separable.

As we can see in Figure 1C, the nth unit stays constant for the whole first
half of the sequence. It flips its sign at t = 2n−1 and then stays constant for
the second half. Due to the special role of the switching point, we refer to
it as the critical time point. The activity of the first n − 1 units evolves as
in the (n − 1)-dimensional case except for the critical time point. Indeed,
while in the (n − 1)-dimensional case, all the n − 1 units go from the state at
t = 2n−1 to the all-plus state (see Figure 1C), in the n-dimensional case, the
first n − 1 units should go to the all-minus state (see Figure 1D). Since we
do not change the weights between these units, this new transition should
be caused by the interaction with the added unit.

These requirements can be translated into conditions on the new weights.
We start by considering the input received by the nth unit. A positive
recurrent weight wnn ensures a constant sign if it can overcome potentially
negative input from the other units. However, since we want the nth unit to
flip sign at the critical time point, we need to have the input from the first
n − 1 units maximally negative at the critical time point. To obtain this, we
set the weight from unit i to the new unit n equal to minus its activity xi at
time t = 2n−1,

wni = −xi(2
n−1), i ∈ {1, . . . , n − 1}, (2.10)

which yields

n−1∑
j=1

wn jx j(2
n−1) = −

n−1∑
j=1

x j(2
n−1)x j(2

n−1) = −(n − 1). (2.11)

This choice ensures that at any time point different from the critical one, the
input from the first n − 1 units is

n−1∑
j=1

wn jx j(t)≥
n−1∑

j=1
j �= j�

wn jx j(2
n−1) − wn j� x j� (2

n−1) = −(n − 3),

t ∈ {1, . . . , 2n−1}, (2.12)

since there exists a t� for which xi(t
�) = xi(2

n−1) for all i �= j�, i ∈ {1, . . . , n−1}.
Therefore, by choosing

wnn = n − 1 − 1
2
, (2.13)

466 S. Muscinelli, W. Gerstner, and J. Brea

we have a recurrent excitation that is always larger than the negative input
from the first n − 1 units except at the critical time point. The reason behind
the choice of wnn = n − 1 − 1

2 and not, say, wnn = n − 2 is due to the presence
of a stricter bound, as explained in the appendix and as can be seen in the
next section. However, this stricter bound is necessary only if we want to
be able to extend the system by another dimension (i.e., going to n + 1
dimensions). If this is not the case, a larger range of weights gives rise to
valid solutions.

We now consider the input received by each of the first n − 1 units. The
weights from the nth unit to all the other ones should be negative to cause
the transition to the all-minus state at the critical time point

win < 0, i ∈ {1, . . . , n − 1}. (2.14)

The input from neuron n to neuron i should be bigger in magnitude than
the one unit i receives from the other n − 1 units at the critical point,

|win| >

n−1∑
j=1

wi jx j(2
n−1), i ∈ {1, . . . , n − 1}, (2.15)

but this should be the only time point in which the nth unit influences the
others. This can be obtained if we set

win = −
⎛
⎝

n−1∑
j=1

wi jx j(2
n−1) + 1

2n−1

⎞
⎠ , i ∈ {1, . . . , n − 1}. (2.16)

Intuitively, this corresponds to adding a “precision” bit to the lower bound
of |win|. This choice is rigorously motivated in the appendix, where we also
provide exact bounds on the new weights. The recursive procedure for the
weight construction is summarized in algorithm 2, and an example of a
weight matrix built according to it is shown in Figure 2A.

2.3 Exact Bounds on the Weights. Algorithm 2 is a special case within
the more general conditions that the weights must satisfy. In the appendix,
we derive the exact bounds that the new weight elements have to satisfy
at each recursive step. Here we only report these bounds. In the following
equations, xi(t) are the elements of the maximal length orbit constructed
according to algorithm 1:

• Elements of the added row:

wni = −xi(2
n−1)|wni|, i ∈ {1, . . . , n − 1}, (2.17)

while their signs are constrained, their magnitudes are arbitrary.

Exponentially Long Orbits in Hopfield Neural Networks 467

Figure 2: Weight matrix. (A) Realization of the weight matrix according to
algorithm 2 for N = 10. Due to the exponential decrease of the superdiagonal
weights, the color map is not able to capture its fine structure. (B) Exact bounds
on the new column elements depending on the postsynaptic index. Due to the
logarithmic scale, both the bounds and the distance between them go to zero
exponentially.

• Diagonal element:

n−1∑
j=1

|wn j| − min
j∈{1,...,n−1}

|wn j| < wnn <

n−1∑
j=1

|wn j|. (2.18)

• Column elements: win = −|win| and

|win| >

n−1∑
j=1

wi jx j(2
n−1)

468 S. Muscinelli, W. Gerstner, and J. Brea

|win| <
1
2

{
min

t∈T +
i (2,2n−1)

[
n−1∑
j=1

wi jx j(t − 1)

]
+

n−1∑
j=1

wi jx j(2
n−1)

}
,

i ∈ {1, . . . , n − 1}, (2.19)

where T +
i (2, 2n−1) is the set of all time points t from t = 2 to t = 2n−1

for which xi(t) = 1.

Equation 2.19 represents the tightest bound to be satisfied. As we can see
in Figure 2B, both the upper and lower bound on the new column elements
go exponentially to zero with n, as well as the distance between them. This
means that new column elements need to be exponentially fine tuned.

2.4 Comparison to Co-Prime Chains. It is straightforward to find
weights such that a network of N units produces a chain-like activity
pattern, where ξi(t) = 1 if t mod N = i − 1 and ξi(t) = −1 otherwise (e.g.,
wi j = 1 for j mod N = i − 1 and wi j = 0 otherwise). If K such networks with
N1, . . . , NK units are combined into one network with N = �(K) = ∑K

k=1 Nk
units and if N1, . . . , Nk are co-prime (i.e., their greatest common divisor is
1), then the combined network will show a periodic orbit of length T =
�(K) = ∏K

k=1 Nk. Figure 3A shows an example with N1 = 2 and N2 = 3. Al-
though the sequence length grows asymptotically like �(K) ∼ e(1+o(1)) K log K

(Sloane & Conway, 2011) and thus much faster than the number of units
�(K) ∼ 1

2 K2 log K (Bach & Shallit, 1996), the orbit length of co-prime chains
is considerably below the maximal sequence length: �(K) 2�(K) (see
Figure 3B).

In contrast to the network with chains of co-prime lengths, the maximal
length orbit is produced by a network that cannot be split into distinct
subnetworks; the weight matrix in Figure 2A does not show block structure
but reveals the all-to-all connectivity of the network.

2.5 Robustness to Noise. Given the tightness of the bounds on the
weight matrix, one may wonder whether the maximal-length orbit is robust
to perturbations. We considered two types of noise: dynamical noise (i.e.,
perturbations of the total input onto each unit), and weight noise (i.e.,
perturbations of the weight matrix).

2.5.1 Dynamical Noise. In the presence of dynamical noise, the update
rule becomes

ξi(t) = sign

⎛
⎝

N∑
j=1

wi jξ j(t − 1) + γdεi(t)

⎞
⎠ t ∈ N, (2.20)

Exponentially Long Orbits in Hopfield Neural Networks 469

Figure 3: Maximal-length sequences and co-prime chains. (A) Co-prime chains
of lengths 2 and 3 give rise to a periodic orbit of length 6. (B) The maximal-length
sequence with the same number of units, constructed according to algorithm 1
for comparison. (C) Increase of the sequence length with N. The scaling of the
co-prime chains seems to be slightly subexponential.

where εi(t) ∼ N (0, 1) and γd is a parameter controlling the dynamical noise
intensity.

The maximal-length orbit covers the whole state space; therefore, the
orbit cannot be attractive. Indeed, for any “mistake” in the update, the
network state jumps to a different point of the orbit. We define the size of a
jump as the distance measured along the noiseless orbit, and we estimate the
distribution of jump sizes for different network sizes and noise intensities
γd. The result for the case N = 7 can be seen in Figure 4A. The probability
of having a jump of a certain size decreases rapidly with the size itself and
increases with γd. This result is due to the fact that the average distance
from the threshold of the input onto a unit increases approximately linearly
with the unit index (not shown) and to the fact that large jumps require
a large-index unit to flip sign. The distributions are slightly asymmetric
toward positive jump sizes, as can be seen by looking at their means (orange
dots). Nonetheless, the probability of mistakes increases with N and, due
to the asymmetry in the jump size distribution, errors accumulate more
for larger N, causing an effective shortening of the orbit for high levels of
noise.

470 S. Muscinelli, W. Gerstner, and J. Brea

Figure 4: Effect of dynamical noise and weight noise. (A) Top: Jump size dis-
tribution as a function of the dynamical noise level. Small jump sizes dominate
(note the logarithmic grayscale). There is a slight asymmetry toward positive
jumps, as revealed by the mean jump size (orange dots). Bottom: Jump dis-
tribution for γd = 1.0. (B) Distribution of longest orbits for perturbed weight
matrices. For every N, the longest orbit was determined for 100 different weight
matrices obtained according to equation 2.21 with γ

w
(N) = 0.5

N . We note that at
least in this range of N, the orbit lengths lie approximately between the orbit
lengths of co-prime chains and the maximal lengths.

2.5.2 Weight Noise. In the presence of weight noise, the weights wi j ob-
tained with algorithm 2 are perturbed according to

w
noisy
i j = wi j + γw(N)εi j, (2.21)

where εi j ∼ N (0, 1) and γw(N) is a parameter regulating the weight noise
intensity that can depend on N. The fact that the wi j span increasing orders
of magnitude for increasing N suggests that this type of noise could be
detrimental for the length of the orbit for large N. For this reason, we decided
to characterize how the period of the orbits scales with N in the presence
of weight noise, using three different functional forms of γw(N). For all the
forms of γw(N) and for each N = 2, . . . , 17, we generated 100 independent
weight matrices according to equation 2.21 and measured the longest orbit
that is produced by each matrix. In the analysis of the effect of the weight
noise, we removed the dynamical noise to assess the effects independently.
If γw(N) ∼ O

(
2−N

)
, we found (not shown) that the orbit length still scales

exponentially with N. If γw(N) ∼ O
(1

N

)
, the distribution of orbit length

seems to slowly saturate, as shown in Figure 4B. However, it is interesting
to note that the distribution for this range of Ns and noise levels lies almost
entirely between the maximal lengths and the length of co-prime chains
constructed with the same number of units. This is noteworthy because it
shows the existence of other weight matrices that produce very long orbits.

Exponentially Long Orbits in Hopfield Neural Networks 471

Finally, if the noise scales as O(1), we found the presence of a critical N(γw),
above which the distribution of orbit lengths becomes dominated by very
short orbits.

2.6 A Substrate to Read Out Slow Sequences. We are interested in
evaluating how the orbit we devised can be used for the readout of se-
quences. In this section, we refer to the recurrent network with the weight
matrix constructed according to algorithm 2 as the reservoir network. We
consider two types of readout units: binary units and real-valued units. bi-
nary readout units 1 ≤ i ≤ M are driven by the network activity according
to

yi(t) = sign

⎛
⎝

N∑
j=1

vi jξ j(t − 1) + bi

⎞
⎠ , (2.22)

where vi j are readout weights and bi is a bias parameter, i ∈ {1, . . . , M} and
j ∈ {1, . . . , N}. Similarly, real-valued readout units evolve according to

yi(t) =
N∑

j=1

vi jξ j(t − 1) + bi. (2.23)

Using these simple linear units, it is not possible to read out arbitrary
sequences. This can be seen, for example, in the case of binary readout units.
Suppose we want to generate a desired output sequence so that at each time
point, we fix an arbitrary target

yi(t) = ±1 for t ∈ {1, . . . , 2N}. (2.24)

Finding the readout weights vi = (vi1, . . . , viN) for one binary readout unit
is equivalent to finding a hyperplane that separates two sets defined on the
vertices of an N-dimensional hypercube. The two sets are determined based
on the desired activity yi(t), for t ∈ {1, . . . , 2N}. One set corresponds to the
points in which yi(t) = +1 and the other to the points in which yi(t) = −1.
Finding such a hyperplane is not possible for all arbitrary pairs of sets;
therefore, we cannot read out an arbitrary output sequence of length 2N

(Hertz et al., 1991).
However, the orbit constructed according to algorithm 1 is well suited to

read out sequences with slow timescales. Indeed, if we measure the average
number of time steps between two switches across the whole sequence
for each unit (mean interswitch interval), we see that it is exponentially
increasing with the index (not shown). We can therefore say that higher
index units have longer effective timescales, because they change their state
with an average interval much longer than the intrinsic timescale, which is

472 S. Muscinelli, W. Gerstner, and J. Brea

Figure 5: Examples of readout unit activities. (A) Example of a real-valued read-
out unit in which the slow component of the oscillations is clearly visible. The
reservoir network has N = 7 units (T = 27 = 128) and γd = 0.05. The addition
of noise to the network dynamics does not disrupt the slow component, adding
only small shifts, with a tendency for forward jumps, as also observed in Figure
4A. (B) Example of a binary readout unit set up to be a pattern detector. Its
period, 128 time steps in the noiseless case, is perturbed when noise is added to
the dynamics of the reservoir network. However, for small levels of noise, the
distribution of periods remains centered around a value close to the noiseless
case.

equal to one time step. It is therefore possible to read out sequences that
evolve on a slow timescale. A trivial example is a readout unit that copies the
activity of one of the slow units. Combining the activity of several “slow”
units, one could generate nontrivial sequences. Since the readout is not the
main focus of this letter, we provide only two examples of how this can be
done.

If a real-valued variable is read out from our maximal-length orbit, it will
produce some form of oscillations on possibly multiple timescales. Figure
5A shows an example, generated with random readout weights, in which
the slow timescales are well visible. As expected, if we add dynamical noise
to the reservoir network, the slow timescales are maintained more than the
fast ones. Noise has the effect of producing small shifts either backward or
forward, but it will very rarely cause a jump to a very distant point.

A second possible application could be the readout of a pattern
detector—a binary readout unit that takes the value +1 only when the
network is in a specific pattern. Since the reservoir network is in a specific
pattern only once per cycle, the unit will be regularly active at intervals of
2N time steps in the noiseless case. In order to set up this kind of readout,
one could choose v1 j = x̄ j, where x̄ j are the components of the pattern that
we want to detect and b1 = −N + 1. As before, we can study what happens
in the presence of noise in the reservoir dynamics. In Figure 5B, we show the
distribution of the activation periods of the readout unit for N = 7. We see
that for small amounts of noise, the performance of this type of readout unit

Exponentially Long Orbits in Hopfield Neural Networks 473

degrades gracefully, with an asymmetric diffusion caused by the positive
bias of jump sizes that was observed in Figure 4A.

3 Discussion

We have shown that a simple recurrent binary neural network with de-
terministic synchronous update dynamics can exhibit periodic orbits of
maximal length T = 2N. To prove this result, we explicitly built a weight
matrix that produces such an orbit. Although in principle it would have
been possible to perform a search of long orbits or transients using ran-
dom weights, the limit of learnability in the perceptron (Hertz et al., 1991;
Gardner, 1988) suggests that the expectation of finding a long orbit or tran-
sient would have been very low. However, the improvement on the length
of the orbit comes at the cost of fine-tuning the weights: the bounds in
equation 2.19 become progressively tighter and the weights need to span
multiple orders of magnitude. This requirement is rather unlikely to be
exactly met by biological neural networks, but the simulations with weight
noise showed that very long orbits are also possible with less finetuning.
The bounds in equation 2.19 were found in a constructive proof that relies,
in the inductive step (N to N + 1), on appending a row and a column to the
N × N-weight matrix while keeping the rest of the weight matrix fixed. It is
possible that by using a different procedure, one would find a larger region
of the weight space whose elements produce the desired orbit. However,
the limit of learnability in the perceptron (Hertz et al., 1991; Gardner, 1988)
suggests that fine-tuning would be necessary anyway.

3.1 Other Maximal-Length Orbits. The sequence presented above is
not the unique maximal-length orbit. Trivially, if we have one maximal-
length orbit, we can find other ones by relabeling unit indices, provided
that one also permutes rows and columns of the weight matrix accordingly.
Another allowed operation is to flip the sign of one unit along the entire
orbit. Indeed, it is easy to show that changing the signs of all the weights in
the row and column containing the flipped index, except for the diagonal
element, can produce the modified orbit.

On the other hand, lemma 1 provides a tool to exclude linear separability
of other maximal length sequences. Two examples are binary count and
Gray code (Gray, 1953), which do not have reflection symmetry and are
therefore not linearly separable.

3.2 Noise Robustness and Other Approaches. In section 2, we showed
that in the presence of dynamical noise, the network state is unlikely to
jump to an exponentially distant state on the orbit; rather, it goes to the
vicinity of the “correct” state. However, already small perturbations of the
weights can significantly reduce the length of the longest orbit produced by
the system unless the noise level is also scaled down exponentially with N.

474 S. Muscinelli, W. Gerstner, and J. Brea

This behavior is in contrast to what happens with co-prime chains that are
robust to weight noise, since no fine-tuning of the weights is needed. How-
ever, dynamical noise is detrimental for co-prime chains. First, if individual
chains are unstable, the activity in one subnetwork may vanish (all units
inactive) or saturate at a maximal level (all units active). Second, even if we
enforce only one unit per subnetwork to be active at each time step, such
that jumps relative to the noiseless orbit can be measured as described in
the paragraph after equation 2.20, the distribution of jumps is not peaked
around small values (not shown). This is not surprising, since the subnet-
works are uncoupled. For similar reasons, temporal versions of grid cell
coding with different periods (Fiete et al., 2008; Sreenivasan & Fiete, 2011;
Mathis et al., 2012) are likely to suffer from a high sensitivity to dynamical
noise.

Models with continuous state space that rely on chaos to produce long
transients are by definition sensitive to noise. It has been shown that the
time interval in which the activity of a noisy network is reliable scales
only linearly with the number of neurons (Ganguli, Huh, & Sompolinsky,
2008). Therefore, reading out from a chaotic or nearly chaotic network also
presents severe limitations in terms of noise robustness.

Although there is no obvious mapping between a binary network and a bio-
logical system, Hopfield networks have been shown to be useful conceptual
tools. For example, the Hopfield model (Hopfield, 1982) had a strong con-
ceptual influence on many associative memory models (Amit, Gutfreund,
& Sompolinsky, 1985; Amit & Fusi, 1994; Brunel, 2000). Moreover, a Hop-
field network can be approximately mapped to a biological substrate, such
a multistable neural population (Zenke, Agnes, & Gerstner, 2015). Seen
from this perspective, the orbit discussed above could provide a method to
produce long timescale sequences in a system that has only fast timescales,
without exploiting any intrinsic slow timescale. Interestingly, this feature
of the orbit would be largely robust to dynamical noise, because as we have
already mentioned, the “slower” units are also more resistant to dynamical
perturbations.

Appendix: Proof of the Theorem

For convenience, we rewrite here the theorem of the section 2.

Theorem. For all N ∈ N there are weights wi j , i ∈ {1, . . . , N} and j ∈ {1, . . . , N}
such that the dynamics in equation 2.2 admits a maximal-length sequence X� as
orbit:

∃ t0 : ξi (t0 + k · 2N + t) = xi (t) ∀k ∈ N. (A.1)

Exponentially Long Orbits in Hopfield Neural Networks 475

The sequence covers the whole state space: it has the property xi (t) �= xi (t + τ), ∀t ∈
{1, . . . , 2N}, ∀i ∈ {1, . . . , N}, ∀τ ∈ {1, 2, . . . , 2N − 1}.
Proof. To prove the theorem, we need to show the existence of at least one
sequence that covers the whole state space and is linearly separable. Our
approach is to explicitly construct one particular maximal-length sequence
and show that it is linearly separable. The theorem does not contain any
restriction on the structure of the weights; therefore, we are free to constrain
them in any way as long as we show their existence.

We proceed by induction, building recursively both the sequence X�,
according to algorithm 1, and the weight matrix wi j. For X� to be a periodic
orbit of the dynamics in equation 2.2, the weights have to satisfy linear
separability constraints. We choose to perform the inductive step by ex-
tending the weight matrix (i.e., adding one column and one row without
changing the other matrix elements). We stress that this does not restrict
the statement of the theorem since it requires only the existence of one set
of weights, regardless of how this is constructed.

Our inductive hypothesis contains the linear separability of the se-
quence for the (N − 1)-dimensional case and an additional constraint on
the weights that is necessary to be able to construct the weights by exten-
sion. This procedure not only shows the existence of a linearly separable
sequence of maximal length but also provides a construction method for
both X� and wi j.

A.1 Inductive Hypothesis and Base Case. The inductive hypothesis
for a given N ∈ N contains the linear separability constraints

xi(t) ·
N∑

j=1

wi jx j(t − 1) > 0, i ∈ {1, . . . , N}, t ∈ {1, . . . , 2N}. (A.2)

Additionally, in order to prove the linear separability of X� constructing wi j
recursively, we assume that wi j satisfies

N∑
j=1

wi jx j(2
N) < min

t∈T +
i (2,2N)

[
N∑

j=1

wi jx j(t − 1)

]
, i ∈ {1, . . . , N}, (A.3)

where T +
i (2, 2N) is the set of all time points from t = 2 to t = 2N for which

xi(t) = +1.
We now prove the base case of the linear separability. For N = 1, the

maximal-length sequence is (1,−1). The sequence is linearly separable since
for w11 = −|w11|, we have

x1(t = 2)w11 x1(t = 1) =−1 · (−|w11|) · 1 > 0, (A.4)

x1(t = 1)w11 x1(t = 2) = 1 · (−|w11|) · (−1) > 0. (A.5)

476 S. Muscinelli, W. Gerstner, and J. Brea

The base case of the property in equation A.3 is given by N = 2, since for
N = 1, the min(·) operator would be evaluated in an empty set. For N = 2,
equation A.3 is satisfied by choosing

w11 < 0, (A.6)

w22 > 0. (A.7)

We notice that the first inequality is consistent with the one derived previ-
ously.

A.2 The Inductive Step for Linear Separability Requires Bounds on
the Weights. We now assume that both equations A.2 and A.3 are true for
N − 1, and we prove that they also hold true for N.

We start with the linear separability condition. We split the sum in equa-
tion A.2 into the contributions that were already present in the case N − 1
and into the new one:

xi(t)
N−1∑
j=1

wi jx j(t − 1) + xi(t)wiNxN(t − 1) > 0,

i ∈ {1, . . . , N}, t ∈ {1, . . . , 2N}. (A.8)

Then we divide the time range into four distinct sets

t = 1 ⇒ xN(t) = 1, xN(t − 1) = −1,

t ∈ {1, . . . , 2N−1} ⇒ xN(t) = 1, xN(t − 1) = 1,

t = 2N−1 + 1 ⇒ xN(t) = −1, xN(t − 1) = 1,

t ∈ {2N−1, . . . , 2N} ⇒ xN(t) = −1, xN(t − 1) = −1,

and for each of these sets, we consider separately the case i = N and i ∈
{1, . . . , N − 1}. In the remainder of the proof, the range of index i is between
1 and N − 1. We arrive at a system of eight inequalities:

N−1∑
j=1

wN jx j(t − 1) + wNN > 0, t ∈ {1, . . . , 2N−1}

−
N−1∑
j=1

wN jx j(t − 1) + wNN > 0, t ∈ {2N−1 + 1, . . . , 2N}

Exponentially Long Orbits in Hopfield Neural Networks 477

N−1∑
j=1

wN jx j(2
N) − wNN > 0,

−
N−1∑
j=1

wN jx j(2
N−1) − wNN > 0,

xi(1)

N−1∑
j=1

wi jx j(2
N) − xi(1)wiN > 0,

xi(2
N−1 + 1)

N−1∑
j=1

wi jx j(2
N−1) + xi(2

N−1 + 1)wiN > 0,

xi(t)
N−1∑
j=1

wi jx j(t − 1) + xi(t)wiN > 0, t ∈ {1, . . . , 2N−1}

xi(t)
N−1∑
j=1

wi jx j(t − 1) − xi(t)wiN > 0. t ∈ {2N−1 + 1, . . . , 2N} (A.9)

Using the symmetry of X� (line 7 in algorithm 1), these equations can be
reduced to four by performing the substitution xi(t) → −xi(t − 2N−1):

N−1∑
j=1

wN jx j(t − 1) + wNN > 0, t ∈ {1, . . . , 2N−1}

−
N−1∑
j=1

wN jx j(2
N−1) − wNN > 0,

−xi(1)

N−1∑
j=1

wi jx j(2
N−1) − xi(1)wiN > 0,

xi(t)
N−1∑
j=1

wi jx j(t − 1) + xi(t)wiN > 0. t ∈ {1, . . . , 2N−1} (A.10)

In the remainder, we consider t ∈ {1, . . . , 2N−1} unless explicitly stated. Intu-
itively, the first two inequalities represent the requirements on the influence
of the first N − 1 units on the Nth one and on the influence the Nth unit has
on itself, while the last two inequalities represent the requirements on the
influence of the Nth unit on the others.

478 S. Muscinelli, W. Gerstner, and J. Brea

From the first two inequalities in equation A.10, we have, for the new
diagonal element,

wNN > −
N−1∑
j=1

wN jx j(t − 1),

wNN < −
N−1∑
j=1

wN jx j(2
N−1) ⇒, (A.11)

⇒ −
N−1∑
j=1

wN jx j(t − 1) < wNN < −
N−1∑
j=1

wN jx j(2
N−1). (A.12)

We now show that it is possible to construct wi j in such a way that the last
inequality is satisfied.

We take wN j = −x j(2
N−1)|wN j| with |wN j| �= 0, ∀ j ∈ {1, . . . , N − 1} and

we find

N−1∑
j=1

|wN j|x j(2
N−1)x j(t − 1) < wNN <

N−1∑
j=1

|wN j|. (A.13)

The consistency condition
∑N−1

j=1 |wN j|x j(2
N−1)x j(t − 1) <

∑N−1
j=1 |wN j| is al-

ways satisfied, since to have an equality, we would need that ∃t ∈
{1, . . . , 2N−1} such that

x j(2
N−1)x j(t − 1) = 1, j ∈ {1, . . . , N − 1}, (A.14)

but this is not possible due to the structure of X�. The case in which the
lower bound in equation A.13 is the closest to the upper one is when only
one unit is flipped with respect to the state x j(2

N−1), for which we obtain

N−1∑
j=1

|wN j| − 2 min
j

|wN j| < wNN <

N−1∑
j=1

|wN j|. (A.15)

Equation A.15 gives upper and lower bounds on wNN. We notice that w11 is
not constrained by equation A.15, only by w11 < 0.

We now perform a similar analysis on the last two inequalities in equation
A.10.

xi(1)wiN < −xi(1)

N−1∑
j=1

wi jx j(2
N−1),

Exponentially Long Orbits in Hopfield Neural Networks 479

xi(t)wiN > −xi(t)
N−1∑
j=1

wi jx j(t − 1). (A.16)

Since the right-hand side of the first equation is negative due to the inductive
hypothesis and since xi(1) = 1 due to the way the sequence is devised, we
need

wiN = −|wiN|,

|wiN| >

N−1∑
j=1

wi jx j(2
N−1) > 0, (A.17)

xi(t)|wiN| < xi(t)
N−1∑
j=1

wi jx j(t − 1). (A.18)

The first inequality gives us a lower bound to the value of |wiN|, while we
can derive an upper bound from the second one.

For all i, we can divide the time interval into the time point in which
xi(t) = 1 from those in which xi(t) = −1. If xi(t) = −1, the inequality is
satisfied since the left-hand side is negative, while the right-hand side is
positive due to the inductive hypothesis, equation A.2. If xi(t) = 1, we have

|wiN| <

N−1∑
j=1

wi jx j(t − 1), t ∈ {2, . . . , 2N−1}, where xi(t) = 1. (A.19)

Therefore, the upper bound is

|wiN| < min
t∈T +

i (2,2N−1)

[
N−1∑
j=1

wi jx j(t − 1)

]
. (A.20)

For the wiN to exist, we need the lower bound, equation A.17 and the upper
bound, equation A.20, to be consistent:

N−1∑
j=1

wi jx j(2
N−1) < min

t∈T +
i (2,2N−1)

[
N−1∑
j=1

wi jx j(t − 1)

]
, (A.21)

which is ensured by the weight constrains that are part of the inductive
hypothesis, equation A.3.

480 S. Muscinelli, W. Gerstner, and J. Brea

A.3 The Inductive Step on the Weight Constraints Requires Tighter
Bounds on the Weights. We now prove that equation A.3 holds true given
the inductive hypothesis.

We write the left-hand side of equation A.3 as

N∑
j=1

wi jx j(2
N) =

N−1∑
j=1

wi jx j(2
N) + wiNxN(2N). (A.22)

As before, we treat the case i = N and i ∈ {1, . . . , N − 1} separately.
For i = N, we have to ensure that

N−1∑
j=1

wN jx j(2
N) + wNNxN(2N)

< min
t∈T +

N (2,2N)

[
N−1∑
j=1

wN jx j(t − 1) + wNNxN(t − 1)

]
. (A.23)

Using the structure of wi j obtained previously and the properties of X�, we
can rewrite this inequality as

N−1∑
j=1

|wN j| − wNN < min
t∈{2,...,2N−1}

[
−

N−1∑
j=1

|wN j|x j(2
N−1)x j(t − 1)

]
+ wNN

⇒ wNN >
1
2

{
N∑

j=1

|wN j| − min
t∈{2,...,2N−1}

[
−

N−1∑
j=1

|wN j|x j(2
N−1)x j(t − 1)

]}

⇒ wNN >
1
2

{
N−1∑
j=1

|wN j| + max
t∈{2,...,2N−1}

[
N−1∑
j=1

|wN j|x j(2
N−1)x j(t − 1)

]}
.

(A.24)

Following the same reasoning used in the previous section for the lower
bound on the diagonal elements (after equation A.13), we rewrite the last
bound as

wNN >

N−1∑
j=1

|wN j| − min
j

|wN j|. (A.25)

Exponentially Long Orbits in Hopfield Neural Networks 481

This expression gives a stricter lower bound for the diagonal elements of
the weight matrix. The bounds then read

N−1∑
j=1

|wN j| − min
j

|wN j| < wNN <

N−1∑
j=1

|wN j|. (A.26)

We now consider the case i ∈ {1, . . . , N − 1}. We can rewrite the left-hand
side of equation A.22 as

N−1∑
j=1

wi jx j(2
N) + wiNxN(2N) =

N−1∑
j=1

wi jx j(2
N) + |wiN|. (A.27)

Then we rewrite the right-hand side of equation A.3 as

min
t∈T +

i (2,2N)

[
N∑

j=1

wi jx j(t − 1)

]

= min

{
min

t∈T +
i (2,2N−1+1)

[
N∑

j=1

wi jx j(t − 1)

]
,

min
t∈T +

i (2N−1+2,2N)

[
N∑

j=1

wi jx j(t − 1)

]}

= min

{
min

t∈T +
i (2,2N−1+1)

[
N−1∑
j=1

wi jx j(t − 1) − |wiN|
]
,

min
t∈T +

i (2N−1+2,2N)

[
N−1∑
j=1

wi jx j(t − 1) + |wiN|
]}

. (A.28)

First, we suppose that the second term is the minimum. Therefore, in
order to prove equation A.3, we need to show that the following inequality
holds:

N−1∑
j=1

wi jx j(2
N) + |wiN| < min

t∈T +
i (2N−1+2,2N)

[
N−1∑
j=1

wi jx j(t − 1)

]
+ |wiN|

⇒ −
N−1∑
j=1

wi jx j(2
N−1) < min

t∈T +
i (2N−1+2,2N)

[
N−1∑
j=1

wi jx j(t − 1)

]
. (A.29)

482 S. Muscinelli, W. Gerstner, and J. Brea

The terms inside the minimum operator on the right-hand side are all pos-
itive since we are considering only terms that lead to xi(t) = 1 and because
of the inductive hypothesis on linear separability, as can be seen by per-
forming the substitution t′ = t − 2N−1. For the same inductive hypothesis,
the left-hand side is negative. Therefore, this inequality is always satisfied,
and it does not bring any additional requirements on the weights.

We now consider the case in which the first term in equation A.28 is the
minimum. We require that the following inequality holds:

N−1∑
j=1

wi jx j(2
N) + |wiN| < min

t∈T +
i (2,2N−1)

[
N−1∑
j=1

wi jx j(t − 1)

]
− |wiN|

|wiN| <
1
2

{
min

t∈T +
i (2,2N−1)

[
N−1∑
j=1

wi jx j(t − 1)

]
+

N−1∑
j=1

wi jx j(2
N−1)

}
. (A.30)

Note that in the time range of the minimum operator, we could remove the
time point t = 2N−1 + 1 since we consider only xi(t) = 1 and xi(2

N−1 + 1) =
−1 ∀i ∈ {1, . . . , N − 1}. We also exploited again the symmetry of X� (line
7 of algorithm 1) x j(2

N) = −x j(2
N−1) for j < N.

Equation A.30 gives us a new stricter upper bound on |wiN|. Finally, we
need to show that this bound is consistent with the lower one:

N−1∑
j=1

wi jx j(2
N−1) <

1
2

{
min

t∈T +
i (2,2N−1)

[
N−1∑
j=1

wi jx j(t − 1)

]
+

N−1∑
j=1

wi jx j(2
N−1)

}
,

(A.31)

which can be rewritten as

N−1∑
j=1

wi jx j(2
N−1) < min

t∈T +
i (2,2N−1)

[
N−1∑
j=1

wi jx j(t − 1)

]
, (A.32)

which is ensured by the inductive hypothesis on equation A.3.

Acknowledgments

S.P.M. was supported by the Swiss National Science Foundation, grant
200020_147200. J.B. was supported by the European Research Council, grant
agreement 268 689.

Exponentially Long Orbits in Hopfield Neural Networks 483

References

Amit, D. J., & Fusi, S. (1994). Learning in neural networks with material synapses.
Neural Comput., 6(5), 957–982.

Amit, D. J., Gutfreund, H., & Sompolinsky, H. (1985). Storing infinite numbers of
patterns in a spin-glass model of neural networks. Phys. Rev. Lett., 55(14), 1530–
1533.

Bach, E., & Shallit, J. (1996). Algorithmic number theory, vol. 1: Efficient algorithms.
Cambridge, MA: MIT Press.

Brea, J., Senn, W., & Pfister, J.-P. (2013). Matching recall and storage in sequence
learning with spiking neural networks. J. Neurosci., 33(23), 9565–9575.

Brunel, N. (2000). Dynamics of sparsely connected networls of excitatory and in-
hibitory neurons. J. Comput. Neurosci., 8, 183–208.

Eichenbaum, H. (2014). Time cells in the hippocampus: A new dimension for map-
ping memories. Nature Reviews Neuroscience, 15, 732–744.

Elizondo, D. (2006). The linear separability problem: Some testing methods. IEEE
Trans. Neural Networks, 17(2), 330–344.

Fee, M. S., Kozhevnikov, A. A., & Hahnloser, R. H. (2004). Neural mechanisms of
vocal sequence generation in the songbird. Ann. N.Y. Acad. Sci., 1016(1), 153–
170.

Fiete, I. R., Burak, Y., & Brookings, T. (2008). What grid cells convey about rat location.
Journal of Neuroscience, 28(27), 6858–6871.

Ganguli, S., Huh, D., & Sompolinsky, H. (2008). Memory traces in dynamical systems.
Proc. Natl. Acad. Sci. U.S.A., 105(48), 18970–18975.

Gardner, E. (1988). The space of interactions in neural network models. J. Phys. A.
Math. Gen., 21(1), 257–270.

Gorchetchnikov, A., & Grossberg, S. (2007). Space, time and learning in the hip-
pocampus: How fine spatial and temporal scales are expanded into population
codes for behavioral control. Neural Networks, 20(2), 182–193.

Gray, F. (1953). Pulse code communication. U.S. patent 2,632,058.
Hahnloser, R. H. R., Kozhevnikov, A. A., & Fee, M. S. (2002). An ultra-sparse code

underlies the generation of neural sequences in a songbird. Nature, 419(6902),
65–70.

Hertz, J., Krogh, A., & Palmer, R. G. (1991). Introduction to the theory of neural compu-
tation. New York: Basic Books.

Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective
computational abilities. Proc. Natl. Acad. Sci. U.S.A., 79, 2554–2558.

Laje, R., & Buonomano, D. V. (2013). Robust timing and motor patterns by taming
chaos in recurrent neural networks. Nat. Neurosci., 16(7), 925–933.

Mathis, A., Herz, A. V. M., & Stemmler, M. B. (2012). Resolution of nested neuronal
representations can be exponential in the number of neurons. Physical Review
Letters, 109(1), 1–5.

Sloane, N., & Conway, J. (2011). The on-line encyclopedia of integer sequences.
http://oeis.org/A002110

Sreenivasan, S., & Fiete, I. (2011). Grid cells generate an analog error-correcting code
for singularly precise neural computation. Nature Neuroscience, 14, 1330–1337.

484 S. Muscinelli, W. Gerstner, and J. Brea

Sussillo, D., & Abbott, L. F. (2009). Generating coherent patterns of activity from
chaotic neural networks. Neuron, 63(4), 544–557.

Zenke, F., Agnes, E. J., & Gerstner, W. (2015). A diversity of synaptic plasticity mech-
anisms orchestrated to form and retrieve memories in spiking neural networks.
Nat. Commun., 6, 6922. doi:10.1038/ncomms7922

Zillmer, R., Brunel, N., & Hansel, D. (2009). Very long transients, irregular firing,
and chaotic dynamics in networks of randomly connected inhibitory integrate-
and-fire neurons. Physical Review E, 79(3), 1–13.

Zumdieck, A., Timme, M., Geisel, T., & Wolf, F. (2004). Long chaotic transients in
complex networks. Physical Review Letters, 93(24), 1–4.

Received March 14, 2016; accepted September 21, 2016.

