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Abstract

While most models of randomly connected neural networks assume single-neuron models

with simple dynamics, neurons in the brain exhibit complex intrinsic dynamics over multiple

timescales. We analyze how the dynamical properties of single neurons and recurrent con-

nections interact to shape the effective dynamics in large randomly connected networks. A

novel dynamical mean-field theory for strongly connected networks of multi-dimensional

rate neurons shows that the power spectrum of the network activity in the chaotic phase

emerges from a nonlinear sharpening of the frequency response function of single neurons.

For the case of two-dimensional rate neurons with strong adaptation, we find that the net-

work exhibits a state of “resonant chaos”, characterized by robust, narrow-band stochastic

oscillations. The coherence of stochastic oscillations is maximal at the onset of chaos and

their correlation time scales with the adaptation timescale of single units. Surprisingly, the

resonance frequency can be predicted from the properties of isolated neurons, even in the

presence of heterogeneity in the adaptation parameters. In the presence of these internally-

generated chaotic fluctuations, the transmission of weak, low-frequency signals is strongly

enhanced by adaptation, whereas signal transmission is not influenced by adaptation in the

non-chaotic regime. Our theoretical framework can be applied to other mechanisms at the

level of single neurons, such as synaptic filtering, refractoriness or spike synchronization.

These results advance our understanding of the interaction between the dynamics of single

units and recurrent connectivity, which is a fundamental step toward the description of bio-

logically realistic neural networks.

Author summary

Biological neural networks are formed by a large number of neurons whose interactions

can be extremely complex. Such systems have been successfully studied using random net-

work models, in which the interactions among neurons are assumed to be random. How-

ever, the dynamics of single units are usually described using over-simplified models,
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which might not capture several salient features of real neurons. Here, we show how

accounting for richer single-neuron dynamics results in shaping the network dynamics

and determines which signals are better transmitted. We focus on adaptation, an impor-

tant mechanism present in biological neurons that consists in the decrease of their firing

rate in response to a sustained stimulus. Our mean-field approach reveals that the pres-

ence of adaptation shifts the network into a previously unreported dynamical regime, that

we term “resonant chaos”, in which chaotic activity has a strong oscillatory component.

Moreover, we show that this regime is advantageous for the transmission of low-fre-

quency signals. Our work bridges the microscopic dynamics (single neurons) to the mac-

roscopic dynamics (network), and shows how the global signal-transmission properties of

the network can be controlled by acting on the single-neuron dynamics. These results

paves the way for further developments that include more complex neural mechanisms,

and considerably advance our understanding of realistic neural networks.

Introduction

The existence of a chaotic phase is a common property of large networks of neurons with ran-

dom connectivity [1, 2]. Chaotic dynamics has been proposed as a mechanism for internally-

generated cortical variability [3–5] and the richness of the dynamics at the edge of chaos has

been exploited to learn complex tasks involving generation of temporal patterns [6–12]. In

these and other related approaches, the chaotic behavior of the network mainly arises from the

random interactions, whereas the dynamics of single neurons are typically given by first-order

differential equations. The simplicity of single neuron dynamics in these models allows to

quantitatively determine the chaotic phase of synaptically coupled neurons using dynamical

mean-field theory (DMFT) [1], even in networks with more realistic connectivity structure [2,

12–14].

A fascinating question is what kind of activity emerges in neural networks that are subject

to additional biological constraints. Biological neurons exhibit rich multi-dimensional internal

dynamics [15–18] that are inconsistent with first-order equations. However, a theoretical

understanding of the emergent activity patterns in networks of more realistic multi-dimen-

sional neuron models is largely lacking. Here, we develop a theoretical framework that extends

DMFT to multi-dimensional rate neurons. Using this framework, we show that the power

spectrum of the network activity in the nonlinear, strongly coupled regime, emerges from a

sharpening of the single-neuron frequency response function due to strong recurrent

connections.

Our theory uses firing rate models with two or more variables per unit. While rate-based

models [19, 20] discard information on the exact spike-timing of single neurons, they have the

advantage of being accessible to an analytical characterization of their dynamics. However,

commonly-used one-dimensional rate models cannot fully capture the dynamics of the mean

activity of a population of spiking neurons, such as the synchronization of neurons in response

to a stimulus onset [21–23], an effect that is readily observed in integrate-and-fire models [24–

28]. To capture rapid synchronization after stimulus onset in rate models, it is necessary to

consider at least two equations per rate neuron [29–31]. Multi-dimensional models also

account for additional cellular mechanisms such as refractoriness [32], spike-frequency adap-

tation (SFA) [28, 33–35], synaptic filtering [36, 37], subthreshold resonance [38] or for the

effect of dendritic compartments [39, 40].

Single neuron properties shape chaos and signal transmission in random networks
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To be specific, we focus on SFA, the decrease of a neuron’s firing rate in response to a sus-

tained stimulus, but our theory can also be applied to other phenomena. SFA is present in neu-

rons at all stages of sensory processing, and is believed to play a crucial role for efficient coding

of external stimuli [15]. Moreover, SFA over multiple timescales represents an efficient solu-

tion for information transmission of sensory signals whose statistics change dynamically [16,

18, 41]. It is therefore of great interest to understand how adaptation and recurrent connec-

tions interact to shape network dynamics and signal transmission [42, 43]. If connections and

adaptation are weak, the network dynamics can be largely understood within linear response

theory. In particular, in the presence of signals and noise, linear response theory predicts that

adaptation shapes signal and noise in precisely the same manner [35], canceling the noise-

shaping effect of adaptation [42–44]. In contrast, in strongly coupled networks generating cha-

otic fluctuations [1], linear response theory is not applicable and the effect of adaptation on the

signal transmission in this case remains poorly understood. Here, we show that introducing

adaptation into a strongly-coupled network of rate units shifts the network to a state of “reso-

nant” chaos that is qualitatively different from the chaotic behavior of the network without

adaptation. In this state, the network generates a stable rhythm corresponding to a narrow-

band peak in the power spectrum which is robust against quenched disorder in adaptation

parameters (heterogeneity). We show that in this new regime the network has two interesting

functional properties: first, the correlation time increases with the adaptation timescale; sec-

ond, the low-frequency power of the chaotic activity is strongly decreased, enabling a better

transmission of slow signals.

In the Results section, we first present the microscopic model for the network of rate

neurons with adaptation and describe its dynamical regimes. Then, we introduce the mean-

field approximation that allows us to describe the resonant chaotic state and to study its func-

tional consequences. Finally, we present the general multi-dimensional model that allows

to introduce multiple mechanisms at the single-neuron level. Detailed derivations are pro-

vided in the Methods section, while in the Discussion we examine possible extensions and

generalizations.

Results

We study the dynamics of a network of rate neurons that undergo rate adaptation. Each neu-

ron is described by two variables, xi(t) and ai(t). The first variable xi is the activation variable

that defines the output rate y via a nonlinear function ϕ, i.e. yi(t) = ϕ(xi(t)). More precisely,

ϕ(xi(t)) should be interpreted as the deviation of the firing rate from some reference rate.

Therefore, ϕ(xi(t)) can take both positive and negative values. The adaptation variable ai(t) of

neuron i is driven by the neuron activation variable xi(t) and provides negative feedback onto

xi. In what follows, we measure time in units of the timescale of x (i.e. time is considered

dimensionless). The corresponding network equations are

_xiðtÞ ¼ � xiðtÞ þ
XN

j¼1

Jij�ðxjðtÞÞ � aiðtÞ þ IiðtÞ ð1Þ

_aiðtÞ ¼ � gaiðtÞ þ gbxiðtÞ; ð2Þ

where the dot indicates the temporal derivative and N is the number of units in the network.

The synaptic weights are sampled i.i.d from a Gaussian distribution, i.e. Jij � N ð0; g2=NÞ. The

parameter γ> 0 can be interpreted as the ratio of the timescales of the two variables x and a,

while β> 0 is a parameter that controls the strength of adaptation.

Single neuron properties shape chaos and signal transmission in random networks
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Numerical simulations of the network with adaptation show that for low connection

strength g, the network exhibits transient dynamics before it settles to a fixed point in which all

xi and ai are zero (Fig 1a and 1b). By analyzing the stability of this fixed point (see Methods),

we find that, in the N!1 limit, the critical value of g at which stability is lost depends on the

adaptation parameters via

gcðg; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � gðgþ 2bÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2bð2gþ 2bþ 2Þ

pq

for b > bHðgÞ

1þ b for b � bHðgÞ

8
><

>:
; ð3Þ

where bHðgÞ ¼ � 1 � gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2 þ 2gþ 1
p

. Notice that gc(γ, β)>1 for all γ, β> 0, i.e. adaptation

stabilizes the dynamics since in the case without adaptation we have gc(0, 0) = 1 [1]. Interest-

ingly, the two different cases in Eq 3 correspond to two different bifurcation types: for β<
βH(γ) the eigenvalue spectrum is convex, exhibiting a rightmost eigenvalue (in the complex

Fig 1. Microscopic network dynamics with firing rate adaptation. In the top row (panels a and b), the network is below the

bifurcation, (g = 0.96gc(γ, β)), and it exhibits a transient activity to the stable fixed point. In the bottom row (panels c and d), the fixed

point is unstable (g = 1.3gc) and the network exhibits irregular, self-sustained oscillations. In the left column (panels a and c), the

network is in the resonant regime (γ = 0.2, β = 0.5), as it can be seen from the single-neuron linear frequency response function ~Gðf Þ (cf.

Eq 9). In the right column (panels b and d), the network is in the non-resonant regime (γ = 1, β = 0.1). For each panel, ten randomly

chosen units are shown, out of N = 1000 units. Panel c corresponds to the resonant chaotic state, while in panel d the system exhibits

chaotic activity similar to the case described in [1]. The insets show the eigenvalue spectrum in the complex plane for the four different

sets of parameters. The dashed black line indicates the imaginary axis. Comparing the eigenvalue spectrum of panel a with the one of

panel c, we see that the network undergoes a Hopf bifurcation.

https://doi.org/10.1371/journal.pcbi.1007122.g001
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plane) which is real (Fig 1b and 1d, insets). In this regime the system undergoes a saddle-node

bifurcation at g = gc(γ, β). In contrast, for β> βH(γ) the eigenvalue spectrum is deformed such

that the eigenvalues with the largest real part are complex (Fig 1a and 1c). This indicates the

presence of a Hopf bifurcation at g = gc(γ, β) which is a consequence of the introduction of

adaptation (see Methods for details). Above the bifurcation, i.e. for g> gc(γ, β), the network

exhibits self-sustained, irregular fluctuations (Fig 1c and 1d) that we will characterize in the

next section.

In all the simulations and numerical integrations, we choose ϕ(x) as a piecewise-linear func-

tion given by

�PLðxÞ ¼

� 1 for x < � 1

x for � 1 < x < 1

1 for x > 1

8
>>><

>>>:

ð4Þ

unless stated otherwise.

Resonant chaos in random networks with adaptation

The dynamics of the 2N-dimensional dynamical system in Eqs 1 and 2 for large N is too high-

dimensional to be studied at the microscopic level. In contrast, using dynamical mean-field

theory [1], we can find properties of the network dynamics that are independent of the specific

connectivity realization. In what follows, we will assume that the external input Ii(t) to each

unit is an independent realization of the same stationary Gaussian process with zero mean.

Following [1], we approximate the network input to a representative unit i with a Gaussian

process η, an approximation valid in the large-N limit [45, 46]. The mean-field equations read

(see Methods)

_xðtÞ ¼ � xðtÞ � aðtÞ þ ZðtÞ þ IðtÞ ð5Þ

_aðtÞ ¼ � gaðtÞ þ gbxðtÞ; ð6Þ

where η(t) is a Gaussian process with zero mean and whose autocorrelation must be computed

self-consistently by imposing (see Methods)

hZðtÞZðsÞi ¼ g2h�ðxðtÞÞ�ðxðsÞÞi: ð7Þ

Due to the linearity of the mean-field equations, x(t) is a zero-mean Gaussian process

which is fully characterized by its second-order statistics, i.e. the autocorrelation function in

time domain, or the power spectral density Sx (power spectrum) in frequency domain, defined

as the Fourier transform of the autocorrelation Sxðf Þ ¼
R1
� 1

e� 2pif thxðt þ tÞxðtÞi dt. By Fourier

transforming Eqs (5) and (6), we find that the power spectrum is the solution of

Sxðf Þ ¼ ~Gðf Þðg2S�ðxÞðf Þ þ SIðf ÞÞ; ð8Þ

where Sϕ(x)(f) and SI(f) are the power spectra of ϕ(x) and I respectively, defined analogously to

the one of x. Importantly, Sϕ(x)(f) is a functional of Sx(f), which can be computed semi-analyti-

cally for simple nonlinearities such as the piecewise-linear function, Eq 4, as detailed in Meth-

ods, section “Effect of nonlinearities on second-order statistics”). The factor ~Gðf Þ is the square

Single neuron properties shape chaos and signal transmission in random networks
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modulus of the linear response function of an uncoupled single unit, and is given by

~Gðf Þ ¼
g2 þ o2

o4 þ ð1þ g2 � 2bgÞo2 þ g2ð1þ bÞ
2
; ð9Þ

with ω = 2πf.
By solving iteratively the mean-field equation for the power spectrum (Eq 8) in the absence

of external input (see Methods, section “Iterative procedure to solve the mean-field theory” for

details), we find that if g< gc(γ, β), the power spectrum converges to zero, Sx(f)! 0, at all fre-

quencies. Therefore the mean-field variable x is constantly equal to zero. This is consistent

with the presence of a stable fixed point at zero and it indicates that, for large N, the fixed point

solution is the only possible one.

On the other hand, if g> gc(γ, β), the mean-field network is characterized by a nonzero,

continuous power spectral density (Fig 2). This is an indication that, at the microscopic level,

Fig 2. Self-consistent statistics in the chaotic regime. a: Resonant (narrow-band) chaos. Power spectral density obtained from mean-field theory

(solid line) and microscopic simulations (light blue, dashed) for γ = 0.25, β = 1 and g = 2gc(γ, β). The dashed, dark blue line indicates the square

modulus of the linear response function ~Gðf Þ for the same adaptation parameters. Inset: Normalized mean-field autocorrelation Cx(τ) for the same

parameters, plotted against the time lag in units of τx. b: Non-resonant (broad-band) chaotic regime. Curves and inset are the same as in a, but with γ =

1, β = 0.1 and g = 2gc(γ, β). c: Maximum-power frequency fp of the recurrent network plotted against γ, for different β. Crosses depict results obtained

from microscopic simulations, circles show the semi-analytical prediction based on the iterative method and dashed lines shows the theory based on the

single neuron response function. For γ = 0 all curves start at fp = 0. d: Power spectral density Sx(f) for different levels of heterogeneity of the parameter β
(solid lines), compared to the case without heterogeneity (dashed line). All the curves are almost superimposed, except at very low frequencies where

small deviations are visible (inset). Parameters: γ = 0.25, �b ¼ 1, g ¼ 2gcðg; �bÞ. e: Distributions P(x) of the activation x from microscopic simulation

(N = 2000, solid lines) and theoretical prediction (dashed lines). The adaptation parameter were γ = 0.25 and β = 1. f: Normalized power spectral

density Ŝ xðf Þ ≔ Sxðf Þ=maxf Sxðf Þ (solid lines) at different iterations n, for the network with adaptation. For the first iterations, the powers of

Ĝ ðf Þ ≔ ~Gðf Þ=maxf
~Gðf Þ (dashed lines), provide a good approximations of the power spectrum width. The initial power spectral density is a constant

and the network parameters are the same as in panel a.

https://doi.org/10.1371/journal.pcbi.1007122.g002
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the network is in a chaotic state [47]. However, we stress that a more rigorous proof of chaos

would require the computation of the maximum Lyapunov exponent of the network, which

we will not perform. In contrast to a network without adaptation [1], we find that in the pres-

ence of adaptation the network can be in two qualitatively different chaotic regimes. For very

weak and/or fast adaptation, the chaotic fluctuations are qualitatively the same as for the net-

work without adaptation, i.e. the power spectrum is broad-band with maximum at f = 0 (Fig

2b). We refer to this regime as to the non-resonant regime. On the other hand, for strong and/

or slow adaptation, the mean-field network settles in a new regime, characterized by an auto-

correlation that decays to zero via damped oscillations and, equivalently, by a power spectrum

that exhibits a pronounced resonance band around a nonzero resonance frequency fp (Fig 2a).

The decaying autocorrelation function and the continuous power spectral density are an indi-

cation that the network is—also in this regime—in a state of microscopic chaos. This new

dynamical state, that we refer to as resonant chaos, is qualitatively different from the one of the

non-resonant regime and from the one of the non-adaptive network.

Strikingly, whether the network settles in the resonant or in the non-resonant regime can

be predicted purely based on the single-unit adaptation properties. More precisely, if β<
βH(γ), the function ~Gðf Þ is monotonically decreasing with the frequency f, i.e. it exhibits a

low-pass characteristic (Fig 2b). This low-pass behavior of the single neuron is reflected by a

power spectrum of the network that is also dominated by low frequencies, albeit less broad.

The network power spectrum corresponds exactly to the non-resonant regime discussed

above.

In contrast, if β> βH(γ), the single neuron response amplitude ~Gðf Þ exhibits a maximum at

a nonzero frequency f0 ¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� g2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bg2ðbþ 2gþ 2Þ

pq

. Such a resonance peak is typical of a

band-pass filter (Fig 2a). The frequency f0 is identical to fm (Eq 28), which is derived from the

imaginary part of the critical eigenvalue at the Hopf bifurcation (see Methods, section “Fixed-

point stability”). The single-neuron linear response characteristics are qualitatively preserved

in the fluctuating activity of the recurrent network, which also exhibits a power spectral density

dominated by a nonzero frequency fp. This regime corresponds to the resonant regime dis-

cussed above. Interestingly, we find numerically that fp = f0, i.e. the resonance frequency is not

affected by the introduction of recurrent connections (Fig 2c, tested up to g = 5gc(γ, β)). We

notice that the non-resonant and resonant regimes are consistent with the fixed point stability

analysis of the network in the microscopic description. Indeed, the resonant and non-resonant

regimes match the regions in which we observe Hopf or saddle-node bifurcations, respectively

(see Methods).

Using simulations of the full microscopic network, we verify that the mean-field description

is a good approximation of the system for large but finite N. In Fig 2e we show that the proba-

bility density of the activation variable x measured from the microscopic simulations matches

the Gaussian distribution predicted by the mean-field theory, with relatively small finite-size

effects that increase close to the criticality (see Fig 2e, g = 1.5gc(γ, β)). Moreover, the mean-field

solution provides a good description of the system for a wide range of adaptation parameters

γ, β (Fig 2c).

To summarize, single-neuron properties determine whether the network settles in a reso-

nant or non-resonant chaotic state through the factor ~Gðf Þ. This is a general property that is

also valid for more complex rate models. Indeed, for a single-neuron model with squared lin-

ear response function given by an arbitrary ~Gðf Þ, we have that the network power spectrum

Sx(f) is the result of a nonlinear sharpening of ~Gðf Þ (see Methods, section “Qualitative study of

the iterative map” for details). As a result, the network activity exhibits the same frequency

Single neuron properties shape chaos and signal transmission in random networks

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007122 June 10, 2019 7 / 35

https://doi.org/10.1371/journal.pcbi.1007122


bands that are preferred by single neurons, albeit much narrower. We will discuss more gen-

eral rate model in section “Network of multi-dimensional rate neurons”.

Network with heterogeneous adaptation. The narrow-band oscillations in networks of

adapting neurons reported so far have been obtained for networks of identical neurons. The

variability of physiological properties of real neurons, however, suggests that adaptation

parameters differ among neurons. Heterogeneity of neuronal parameters is known to sensi-

tively influence synchronization in networks of neural oscillators [48]. In particular, mis-

matches of oscillation frequencies can impede the formation of neural rhythms. Does

heterogeneity have a similar effect in strongly coupled random networks of adapting neurons?

To address this question, we introduce a second source of disorder in the system by consider-

ing quenched randomness in the adaptation parameters. Specifically, we construct the hetero-

geneous network by adding Gaussian noise to the parameter β, i.e. by sampling b � N ð�b; s2
b
Þ

independently for each neuron. Numerical simulations of the network in the presence of het-

erogeneous adaptation show that the dynamics of the random network are surprisingly robust

to this type of noise (Fig 2d). Even for relatively high variability (sb=
�b ¼ 0:5), the only effect is

a barely visible increase of the power spectral density at low-frequencies (Fig 2d, inset). In

Methods, section “Mean-field theory with heterogeneous adaptation” we derive the mean-field

equations that correspond to the network with heterogeneous adaptation, and we compute the

effective factor ~GHðf Þ in this case. The semi-analytical solution of the mean-field theory for

heterogeneous adaptation predicts, similar to simulations, a stronger power at low frequencies

than in the homogeneous case. However, the deviations predicted by the theory are smaller

than the mismatch between theory and simulations for the homogeneous case, so that we

could not perform a quantitative verification of the mean-field theory for the heterogeneous

case.

Recurrent connectivity sharpens the single-neuron response properties. We have seen

that the power spectrum of the network activity in the presence of adaptation inherits the

properties of the single-neuron reponse function. However, the resonance band present in the

network power spectrum is much narrower than the one predicted by the linear response

function. Since the linear response function of a single unit is equivalent to the power spec-

trum of a network of unconnected units driven by white noise, we conclude that the sharpening

of the power spectrum is due to the recurrent connections. Such sharpening can be understood

by studying the evolution of the mean-field solution during the iterative procedure that leads

to the solution. In Methods, section “Qualitative study of the iterative map”, we derive the fol-

lowing first-order approximation of the power spectrum at iteration n:

ðSxÞ
ðnÞ
ðf Þ ¼ ang2nð~Gðf ÞÞn; ð10Þ

where an is a frequency-independent factor of proportionality. This approximation breaks

down for large n and hence does not allow for a self-consistent solution of the mean-field

theory corresponding to the limit n!1. However, Eq 10 is sufficient to explain the sharpen-

ing of the power spectrum. In Fig 2f we compare the evolution of the normalized network

power spectrum Ŝxðf Þ ≔ Sxðf Þ=max f Sxðf Þ over iterations with the theoretical prediction

Ŝxðf Þ ¼ ð~Gðf ÞÞ
n

according to Eq 10. We see that the theory predicts the width of the power

spectrum quite well for the first few iterations. The sharpening is clearly visible when compar-

ing the power spectrum at iteration 2 and 3 with the one at iteration 1, that is proportional to

the single-unit linear response function. As expected, the approximation breaks down after

more iterations, as the higher-order terms are necessary to reach a self-consistent solution (see

also Methods, section “Qualitative study of the iterative map”).
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We now focus on the resonant chaotic regime, that represents the novel dynamical state

that emerges from the introduction of adaptation and study the functional properties of the

network in this regime.

Adaptation increases the network correlation time

While the resonance frequency in the resonant regime seems to depend solely on the single-

neuron properties, the introduction of recurrent connections increases the coherence of the

stochastic oscillations, i.e. decreases the width of the resonance band. The narrower the reso-

nance band, the more coherent the oscillatory behavior will be. To quantify the increase of the

oscillation coherence, we measure the quality factor (Q-factor) of the stochastic oscillations,

defined as

Q ¼
fp

DfHM
; ð11Þ

where fp is the frequency of maximum height of the power spectrum Sx and ΔfHM is the fre-

quency width of the power spectrum Sx(f) at the half-maximum. Intuitively, for a narrow-band

oscillation, the quality factor quantifies the number of oscillation cycles during the characteris-

tic decay time of the autocorrelation function. For a single neuron driven by white noise, the

single-neuron power spectrum of x is proportional to ~Gðf Þ. Compared to this reference shape,

we find a higher Q-factor in the recurrent network (Fig 3a), corresponding to a sharper reso-

nance peak in the power spectrum (see also Methods, section “Qualitative study of the iterative

map”). When approaching the criticality from the chaotic phase, g! gc(γ, β)+, the quality fac-

tor diverges (Fig 3a), i.e. the dynamics approach regular oscillations.

While the Q-factor measures the decay time constant of the autocorrelation function rela-

tive to the mean oscillation period, it is also interesting to consider the absolute correlation

time of the activity. As a measure of correlation time of a stochastic process we use the normal-

ized first moment (center of mass) of the absolute value of the autocorrelation function (e.g.

Fig 3. Correlation time and effect of recurrent connections. a: Correlation time (blue solid line) and Q-factor (dashed line) as a function of the

connectivity strength. The weakest connectivity level plotted is g = 1.01gc(γ, β). Adaptation parameters: γ = 0.1 and β = 1. The dash-dotted horizontal

line indicates the Q-factor of a single unit with the same adaptation parameters, driven by white noise. b: Correlation time (blue) and Q-factor (black,

dash-dotted line) as a function of the adaptation timescale τa≔ γ−1. Both the recurrent network (solid line) and the single unit driven by white noise

(dashed line) scale with τa. β = 1 and g = 1.5gc(γ, β).

https://doi.org/10.1371/journal.pcbi.1007122.g003
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[49]),

tc ¼
R1

0
tjCxðtÞjdtR1

0
jCxðtÞjdt

: ð12Þ

Since the Q-factor diverges when g! gc(γ, β), in this limit the corresponding autocorrela-

tion exhibits sustained oscillations with a diverging correlation time. Due to the increase of the

Q-factor, the correlation time also diverges when g! gc(γ, β) (Fig 3a).

In the regime of slow adaptation, a single unit driven by white noise can have a larger corre-

lation time than a recurrent network (Fig 3b). This is due to the fact that in this regime the cor-

relation time of the single unit driven by white noise is dominated by the long tail of the

autocorrelation. The introduction of recurrent connections increases the oscillatory compo-

nent, giving a larger “weight” to the short time lags, thus decreasing tc. Nevertheless, the corre-

lation time increases with the timescale of adaptation τa for both the single unit driven by

white noise and the recurrent network (Fig 3b). Note that the Q-factor goes to zero for very

large adaptation timescale (γ! 0), so that the dominant contribution to the correlation time

in this regime is the non-oscillatory one.

Adaptation shapes signal transmission in the presence of internally-

generated noise

In order to go beyond the study of the spontaneous activity of the network, we consider its

response to an external oscillatory signal. While signal transmission in linear systems is fully

characterized by the frequency response function of the system and by the noise spectrum of

the output, the situation is different in the nonlinear neural network that we study here. Simi-

larly to previous approaches [4], we provide oscillatory input to each unit in the microscopic

network, randomizing the phase (Fig 4a)

IiðtÞ ¼ AI cos ð2pfIt þ yiÞ; ð13Þ

Fig 4. Response of the mean-field network to an oscillatory input. a: Schematic representation of the random network driven by an external input,

with phase randomization. For g> gc, the chaotic activity can be seen as internally-generated noise. b: Effect of an oscillatory external input on the

power spectral density Sx(f). In the example, γ = 0.25, β = 1, g = 2gc(γ, β), fI = 0.12, while AI = 0.5 (blue) and AI = 0 (gray). Simulations (solid blue) and

theory (dashed blue) are superimposed. c: Top: Schematic representation of the separation of the power spectral density into its oscillatory (Aosc) and

chaotic (Abkg) components. Note that these quantities depend on the size of the frequency discretization bin. Bottom: Graphical interpretation of Pbkg,

i.e. the total variance of the network activity due to chaotic activity (shaded gray area).

https://doi.org/10.1371/journal.pcbi.1007122.g004
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where θi* U(0, 2π). The corresponding power spectral density of the input is given by

SIðf Þ ¼ ðA2
I =4Þ � ðdðf � fIÞ þ dðf þ fIÞÞ. Thanks to the phase randomization, the network still

reaches a stationary state and the mean hx(t)i remains at zero. Notice that even if in the case in

which the input is a perfect sinusoidal and therefore non-Gaussian, the mean-field equation

for the power spectrum (Eq 8) is still valid. However, since x is also not Gaussian anymore, in

order to find the mean-field solution we need to modify our iterative scheme by splitting the

activation variable x into its Gaussian and its oscillatory part [4].

The presence of the input affects the dynamics of the mean-field network, quantified by the

power spectral density (Fig 4b). If the input is given while the network is in the chaotic regime

(g> gc), sharp peaks at the driving frequency fI and multiples thereof are elicited by the exter-

nal input, standing out from a background power spectrum that is deformed compared to the

case without the external input. For fI> fp, as in the example, the bumps of the background

spectrum are slightly shifted toward larger values. The opposite happens if fI< fp. Notice that

both this shift and the shaping of the chaotic activity are nonlinear effects due to the recurrent

dynamics. As an additional nonlinear effect, the network activity also exhibits harmonics at

the driving frequency of the external input.

To characterize the response to the external stimulus, we split the power spectrum Sx(f) into

an oscillatory component and a chaotic component that constitutes the background activity

Sxðf Þ ¼ Sbkgðf Þ þ Soscðf Þ

≔ Sbkg þ
X1

k¼1

bkðdðf � kfIÞ þ dðf þ kfIÞÞ;
ð14Þ

where bk are positive coefficients and we included the multiples of the driving frequency in

order to account for the harmonics. To solve the mean-field equations numerically, we have to

consider a finite frequency bin Δf (in our numerical results, Δf = 0.001). As a consequence, the

heights of the delta peaks in the power spectrum in Eq 14 are finite and depend on Δf. First, we

will look at the transmission of the oscillatory signal near the driving frequency, i.e. how much

of the peak in the power spectrum Sx(f) at f = fI is due to the oscillatory drive and how much is

due to the background activity. At the driving frequency fI we write (see Fig 4c)

SxðfIÞ ¼ Abkg þ Aosc

≔
SxðfI � Df Þ þ Sxðf þ Df Þ

2
þ

b1

Df
;

ð15Þ

i.e. we measure the contribution of chaotic activity to the power spectrum at the driving fre-

quency by interpolating the power spectrum at neighboring frequencies. The signal-to-noise

ratio (SNR) at the driving frequency fI is then given by

SNRðfIÞ ¼
Aosc

Abkg
: ð16Þ

Notice the size of the frequency bin Δf scales the SNR, but since we are interested in the

dependency of the SNR on fI and not in its numerical value, this scaling factor can be

neglected. Finally, we have seen in the example in Fig 4b that the oscillatory input can suppress

background activity at frequencies far from fI. In order to quantify this chaos-suppression
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effect, we split the total variance of x into two contributions (Fig 4c)

VarðxÞ ¼
Z 1

� 1

Sbkgðf Þdf þ 2
X1

k¼1

bk ≕ Pbkg þ Posc: ð17Þ

Weak drive and signal transmission. If the oscillatory input is weak, chaos is not entirely

suppressed and acts as internally-generated noise on the transmission of the oscillatory input.

We now study how the network transmits this oscillatory input signal, and how the transmis-

sion quality depends on the signal frequency fI. It is known from linear response theory that

the transmission of weak signals through single homogeneous populations with strong (intrin-

sic or external) noise does not benefit from adaptation [35, 50]. This is because in the signal-

to-noise ratio (SNR) both the signal and the noise are affected in the same way [35]. We won-

dered whether in a strongly coupled, large random network, adaptation could have a different

effect on the oscillatory signal than on the noise, thereby re-shaping the SNR. A particularly

interesting question is how signals are transmitted in the presence of purely intrinsically-gen-

erated chaotic fluctuations that are shaped by adaptation and recurrent connectivity.

To understand why adaptation cannot shape the SNR in a weakly-coupled network, con-

sider our random network in the non-chaotic regime, with g� gc (Fig 5a). If we drive the

non-chaotic network with oscillatory input together with a noise source η, the typical response

of one unit in the network can be approximated using the mean-field linear frequency

response function ~wbðf Þ, whose square modulus is given by (see Methods, section “Fixed point

stability in the mean-field network”)

j~wbðf Þj
2
¼

~Gðf Þ
1 � g2 ~Gðf Þ

; ð18Þ

where we add the subscript β to stress that ~wb depends on the adaptation parameters γ and β
(cf. Eq 2). If we indicate by SI(f) and Sη(f) the power spectral density of the oscillatory input

and of the external noise respectively, the power spectral density of the output (taken as the

network activity x) can be approximated by

Sxðf Þ ¼ j~wbðf Þj
2
ðSIðf Þ þ SZðf ÞÞ: ð19Þ

This means that both the signal and the noise are shaped by the same factor j~wbðf Þj
2

that

characterizes the network (Fig 5a). The SNR of the output at the driving frequency, defined as

in Eq 16, is given by

SNRðfIÞ ¼
Aosc

Abkg
¼
j~wbðfIÞj

2
ðA2

I =4Df Þ
j~wbðfIÞj

2SZðfIÞ
¼

A2
I

4SZðfIÞDf
; ð20Þ

i.e. the parameters of the network, reflected in the linear response function χβ, do not influence

the SNR (Fig 5a). Notice that we considered the activation variable x as our output. We verified

that considering instead the firing rate ϕ(x) as the output yields qualitatively the same results,

therefore we will for simplicity continue our analysis for the output x. Eq 20 implies that the

SNR depends only on the power spectra of the signal and of the noise. For example, if we con-

sider low-frequency dominated noise, high-frequency signals will be transmitted more easily,

but once again the introduction of adaptation will not play any role (Fig 5a). While this argu-

ment is based on a linear response approximation, we verified using the DMFT solution that
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the linear approximation is quite accurate. Deviations are visible very close to the criticality,

but once again the SNR is almost entirely independent of the neuron parameters.

The findings are completely different for a network in the chaotic phase, i.e. g> gc. As dis-

cussed above, in this regime the network produces internal fluctuations whose power spectrum

depends on single neuron parameters (Fig 5b, see also section “Resonant chaos in random

networks with adaptation”). For clarity, let us assume that there is no external noise, such that

the noise is only internally generated by the network. In this case, the linear response theory

framework cannot be applied; in order to predict the effect of the network in shaping both the

input and the internally-generated noise, we need to solve the DMFT equations (Eq 8)

Fig 5. Adaptation shapes the SNR in the chaotic regime. a: For small g, a recurrent network driven by an oscillatory input and external noise can be

analyzed in the linear response theory framework. Top row: response of the network to oscillatory drive and independent white noise to each neuron.

Bottom row: response of the network to oscillatory drive and independent low-frequency noise to each neuron. For each row, from left to right, we plot

the power spectrum of the input noise, the background component of the power spectrum Â osc, the oscillatory component of the power spectrum Â osc,

and the SNR as a function of the driving frequency. The hat over the symbols Abkg and Aosc indicates that, to highlight the network shaping, they are

normalized to have the same maximum height (equal to one). Notice that, since both signal and noise are shaped in the same way in the linear response

framework, the introduction of adaptation does not affect the SNR. b: For large g, the network is subject to internally generated noise and driven by

oscillatory input. We plot the same quantities as in panel a. Notice that, due to the nonlinearity of the network, signal and internally-generated noise are

shaped in different ways, with the signal being subject to a broader effective filter. As a consequence, the introduction of adaptation in the nonlinear

network shapes the SNR by favoring low frequencies. Parameters of the network with adaptation for all panels: γ = 0.25, β = 1 g = 2gc(γ, β) and AI = 0.5.

https://doi.org/10.1371/journal.pcbi.1007122.g005
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iteratively. As in the previous section, the resulting power spectrum can be split into a chaotic

component and into an oscillatory component (see Eq 14). How does the introduction of

adaptation shape these two components? We have seen that in the presence of adaptation the

network can enter a state of resonant chaos that differs from the traditional chaos of a network

without adaptation because of the presence of a dominant frequency band centered at f0 (Fig

5b, see also section “Resonant chaos in random networks with adaptation”). The state of reso-

nant chaos survives in the presence of weak input. As the driving frequency changes, the

amplitude of the transmitted signal Aosc(fI) passes through a maximum at the resonance fre-

quency f0 of the network; however, Aosc(fI) decreases with the distance from the resonance fre-

quency more slowly than the noise amplitude Abgk(fI) does (Fig 5b). As a consequence, the

SNR is maximal at very slow driving frequencies, goes through a minimum at the resonance

frequency f0 before it increases again (Fig 5b). In other words, resonant chaos acts as a notch

filter with respect to the transmission of weak signals.

The shaping of the SNR can be understood as follows: For weak signals, the noise

amplitude is AbgkðfIÞ � ~GðfIÞSð0ÞZ ðfIÞ, where Sð0Þ
Z
ðfIÞ is the spontaneous power spectrum

for I = 0. The factor Sð0Þ
Z
ðfIÞ exhibits a maximum at the resonance frequency, and

therefore sharpens Abgk(fI). The signal power that sticks out of the noise power is

AoscðfIÞ � ~GðfIÞfA2
I =ð4Df Þ þ ½SZðfIÞ � Sð0Þ

Z
ðfIÞ�g for a weak input signal, where the first term is

the direct influence of the signal on x(t) and the second term represents indirect contribu-

tions caused by recurent connections. If the direct effect dominates, the signal-to-noise ratio

is approximately SNR ¼ AoscðfIÞ=AbgkðfIÞ � A2
I =ð4S

ð0Þ
Z
ðfIÞDf Þ. Importantly, even though the

expression for the SNR looks formally similar to Eq (20) for the case of external noise, the

effect of single neuron dynamics is markedly different: As shown above, the power spectrum

Sð0Þ
Z
ðf Þ of internally generated noise depends on the single neuron filter ~Gðf Þ, whereas the

corresponding power spectrum of external noise in Eq (20) is, by definition, independent of

single neuron dynamics. Thus, in the case of internally generated fluctuations, single neuron

dynamics strongly affects the SNR through network-enhanced noise shaping. We conclude

that in the chaotic regime adaptation improves the SNR at low frequencies, whereas in

weakly-coupled, non-chaotic networks such an improvement cannot be observed, indepen-

dently of the choice of the adaptation parameters γ, β. If the strength of the input is

increased, the interaction between noise and signal becomes stronger, leading to a deforma-

tion of the SNR (Fig 6a). However, even for strong drive we observe a peak of the SNR at fre-

quencies that are lower than the resonance one.

Strong drive and chaos suppression. In the presence of strong input, chaos suppression

together with the formation of a sharp peak are indications that at the microscopic level the

network is driven towards a limit cycle. Similarly to [4], we now study how chaos suppression

depends on the driving frequency fI. By solving the DMFT equations (Eq 8) in the presence of

external input, we find that both Pchaos and Posc exhibit a non-monotonic dependence on fI
(Fig 6b). Aosc depends smoothly on fI, reaching its largest value around f0. On the other hand,

Achaos is zero for input frequencies that are close to f0, indicating that the network is driven

into a limit cycle. While a network without adaptation also exhibits such a non-monotonic

dependence [4], in our case this effect is more pronounced due to the resonant power spec-

trum of the spontaneous activity in the presence of adaptation.

Network of multi-dimensional rate neurons

We have seen how adaptation, by changing the response function of singe neurons, shapes the

chaotic dynamics of a recurrent network and consequently the signal-transmission properties
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of the network. In biology, several other mechanisms could contribute to the response proper-

ties of neurons, such as synaptic filtering, facilitation or the presence of dendritic compart-

ments [28–40]. We account for multiple of such mechanisms by considering a general D-

dimensional linear-nonlinear rate model. The first variable x1
i is an activation variable that

defines the output rate y via a nonlinear function ϕ, i.e. yiðtÞ ¼ �ðx1
i ðtÞÞ, as in the adaptation

case. The remaining D − 1 variables are auxiliary variables. We assume that the rate �ðx1
j ðtÞÞ is

the only signal that unit j uses to communicate with other units. Conversely, the signals com-

ing from other units only influence the variable x1
i , i.e. the rate of unit j is directly coupled only

to the first variable of unit i. The choice of having the same variable sending and receiving sig-

nals is dictated by simplicity and is not necessary for the development of the theory. Unit i
receives input from all the other units, via a set of random connections Jij, sampled i.i.d. from a

Gaussian distribution with mean zero and variance g2/N. The resulting network equations are

_xai ðtÞ ¼
XD

b¼1

Aabxbi ðtÞ þ d
a1
XN

j¼1

Jij�ðx
1

j ðtÞÞ þ IiðtÞ

 !

Jij � N ð0; g2=NÞ

ð21Þ

where δαβ is the Kronecker delta symbol. Subscripts (in Latin letters) indicate the index of the

unit in the network and run from 1 to N, while superscripts (in Greek letters) indicate the

index of the variable in the rate model and run from 1 to D. The matrix A is assumed to be

non-singular and to have eigenvalues with negative real parts.

By generalizing the mean-field theory to the case of the D-dimensional rate model (see

Methods, section “Mean-field theory”), we obtain the analogous of the self-consistent equation

for the power spectrum (Eq 8) for the general case

Sxðf Þ ¼ ~Gðf ÞðS�ðx1Þðf Þ þ SIðf ÞÞ; ð22Þ

Fig 6. Effect of a strong oscillatory input. a: SNR at the driving frequency fI as a function of the driving frequency, for different values of the signal

amplitude AI. As AI increases, nonlinear interaction between signal and noise become stronger, leading to a qualitative change in the SNR profile. b:

Total power of the chaotic (black dashed) and oscillatory (light blue) components of the power spectrum, in the case of strong input (AI = 1.5). For both

panels, γ = 0.25, β = 1.0, and g = 2gc(γ, β).

https://doi.org/10.1371/journal.pcbi.1007122.g006
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where Sϕ(x1)(f) is the power spectrum of ϕ(x1), i.e. the mean-field firing rate. As in the case of

adaptation, ~Gðf Þ is the squared modulus of the linear response function of single neurons in

the frequency domain (see Methods).

By solving the mean-field theory, we find that, similarly to the case of adaptation, for small

coupling the power spectrum converges to zero for all frequencies. The critical value of the

coupling g is defined implicitly by (see Methods, section “Fixed point stability in the mean-

field network”)

g2
c max

f
~Gðf Þ ¼ 1: ð23Þ

On the other hand, for g> gc we find that the network, also in this more general case, exhib-

its fluctuating activity, whose power spectrum results from a sharpening of the single-neuron

linear response function ~Gðf Þ. In Methods, section “Qualitative study of the iterative map” we

show how this property can be understood from the mean-field equations and we provide two

examples of network power spectra for higher-dimensional rate models.

Discussion

We studied how the dynamics of a random network of rate neurons are shaped by the proper-

ties of single neurons, and in particular by the presence of history-dependent mechanisms

such as adaptation. To this end, we generalized DMFT, a well-established theoretical tool [1],

to the case of multi-dimensional rate units. This allowed us to reduce the high-dimensional,

deterministic network model to a low dimensional system of stochastic differential equations.

Standard approaches to solving the mean-field equations [1] were not fruitful in the multi-

dimensional setting. However, the mean-field solution could be found efficiently in a semi-

analytical way using an iterative approach. The iterative approach highlights how recurrent

connections sharpen the response function of single neurons, i.e. how bands of preferred fre-

quencies become narrower (see also Methods, section “Qualitative study of the iterative map”).

Previous studies that considered the role of single neuron properties on random network

dynamics focused only on the role of the gain function [2, 14]. To our knowledge, this is the

first result that relates the single neuron frequency response function to the spectral properties

of random network dynamics.

We studied in detail the important case of neuronal adaptation, using a two-dimensional

rate model. We showed that adaptation extends the stability region of a recurrent network of

rate units because the transition from a stable fixed point to a fluctuating regime happens at

g = gc> 1, i.e. for higher coupling strength than for the network without adaptation. Crucially,

above the criticality and for slow adaptation, the dynamics settle in a state of “resonant chaos”

that, unlike the chaotic activity of networks of rate units without adaptation, is dominated by a

nonzero resonance frequency. We observed that the resonance frequency can be computed

from the single unit properties and it is therefore independent of the connection strength g.
On the other hand, the presence of recurrent connections increases the coherence of the oscil-

lations and therefore influences the correlation time. The oscillation coherence is maximal at

the onset of chaos and decreases with g, for g> gc(γ, β). Indeed, as it is typical of critical behav-

ior, the correlation time in the chaotic phase diverges when approaching the criticality. In the

presence of adaptation, this happens because the system approaches a limit cycle.

It is interesting to observe that for slow adaptation there are two separate contributions to

the correlation time of the network activity: an oscillatory component, related to the resonance

frequency, and a long tail that scales with the adaptation timescale. For finite τa, the correlation

time diverges when g! gc due to the oscillatory component. For τa!1, the correlation time
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also diverges, but this is due to the long tail, since both the resonance frequency and the Q-fac-

tor go to zero for large τa, yielding a finite and therefore sub-dominant contribution to the cor-

relation time. Such multi-scale structure of the autocorrelation could be advantageous for

network computations that require expressive dynamics over multiple timescales, as it is often

the case in motor control. Indeed, adaptation has been proposed to play a role in sequential

memory retrieval [51], slow activity propagation [52], perceptual bistability [53] and decision

making [54]. Moreover, SFA has beneficial consequences both for reservoir computing

approaches [10] and for spiking neuron-based machine learning architectures [55]. Further

work could explore the relation between long correlation time induced by adaptation and

computational properties.

We found that, when a network in the resonant chaotic state is driven by an oscillatory

input, chaos is more easily suppressed when the driving frequency is close to the resonance fre-

quency. In the presence of weak input, in contrast, chaos is not fully suppressed. Interestingly,

we found that in the chaotic regime the presence of adaptation shapes the SNR in frequency

space. In particular, adaptation increases the SNR for low-frequency signals, a possibly impor-

tant feature since behaviorally relevant stimuli can have information encoded in slow signal

components [56]. Crucially, this effect is not present in the sub-critical regime (g< gc), since

signal and external noise are shaped together [35]. It is known that the properties of biological

neurons, including adaptation parameters, can be dynamically adjusted using neuromodula-

tors [57, 58]. In view of our results, this would allow to dynamically shape the SNR depending

on the requirements imposed by the behavioral context.

While our theory is applicable to single units with D interacting variables, the effect of a sin-

gle adaptation variable (D = 2) on the dynamics of random recurrent networks was also stud-

ied independently and simultaneously by another group [59], who reached results consistent

with ours [60]. The authors of [59] used a slightly different network architecture and did not

focus on the relation between single neuron response and spectral properties, but rather on the

correlation time of the network activity and on the effect of white noise input. One major dif-

ference is the conclusion reached regarding correlation time: by using a different definition, in

[59] the authors conclude that the correlation time does not scale with the adaptation timescale.

Based on our analysis, we infer that the definition of correlation time used in [59] captures

only the oscillatory contribution to the correlation time, and not its long tail.

Current mean-field theories for spiking neural networks [61] are self-consistent only with

respect to mean activities (firing rates), whereas second-order statistics such as autocorrelation

function or power spectral density of inputs and outputs are inconsistent [62]. While iterative

numerical procedures are available [62–64], a self-consistent analytical calculation of the auto-

correlation (or power spectrum) via DMFT for networks of spiking neurons is known to be a

hard theoretical problem. In the present manuscript, the rate-based modeling framework

allowed us to put forward explicit expressions for the map of autocorrelations. For a general

nonlinearity ϕ(x), this map takes the form of an infinite series (according to Eq 37 in Methods,

section “Qualitative study of the iterative map”). However, for polynomial nonlinearities the

series simplifies to a finite sum, e.g. Eq 43 in Methods, section “Effect of nonlinearities on sec-

ond-order statistics”, which permits a closed-form analytical expression for the iterative map.

Therefore, our study offers a unique method for the calculation of the autocorrelation in bio-

logically constrained random neural networks, and thus represents a promising step towards a

self-consistent mean-field theory beyond first-order rate models [1, 2].

Random network models are widely used to model different biologically-relevant systems,

such as metabolic networks [65], protein regulatory networks [66–68] or in the study of epi-

demic outbreaks [69]. In all the above examples, the collective dynamics result from the inter-

play between network connectivity and the dynamics of single units.
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Extensions and generalizations

We see four extensions to the work presented in the present manuscript. First, our study is

limited to rate neurons while it would be interesting to extend the analysis to spiking neuron

models. As a first step in this direction, previous work has already investigated the introduc-

tion of white noise in random rate networks [2, 47, 59], which would be straightforward to

include in the case of D-dimensional rate units. Second, our framework can readily be

extended to multiple adaptation variables (see Methods, section “Qualitative study of the itera-

tive map” for two examples). This is a key feature in order to account for realistic SFA, which

is known to have multiple timescales and it has been shown to have power-law structure [16–

18, 41]. Interestingly, our framework can be extended to power-law adaptation, since we

require only the knowledge of the linear frequency-response function of the single neurons.

We expect that in this situation the internal noise generated by the network will also have a

power-law profile of the type f α, with α> 0. With such a noise spectrum, the signal that maxi-

mizes information transmission should be dominated by low-frequencies in a power-law fash-

ion [18, 70]. Third, the introduction of additional structure in the connectivity, such as low-

rank perturbations [12], attractor structure [71], or large scale connectivity of the brain [20],

could give rise to interesting dynamics when combined with single units with multiple adapta-

tion variables. In particular, the state of resonant chaos may also arise from an interaction of

excitatory and inhibitory spiking neurons in networks with partially random, and partially

structured connections. Finally, while our study focused on neural networks, random network

models are used in other areas of biology and physics [72]. By extending mean-field theory

techniques to more complex node dynamics, our approach also contributes to understanding

the interaction between node dynamics and network structure in more general settings. We

hypothesize that our approach can be used in the future to provide and understanding the var-

iability of single-neuron activity across trials in the presence of one or several peaks in the

power spectrum at gamma and theta frequencies.

Methods

In most of the following sections, we first present the derivations for the general D-dimen-

sional model presented in section “Network of multi-dimensional rate neurons”, and then

apply the result to the case of adaptation.

Fixed-point stability

General theory. The system of N � D coupled nonlinear differential equations (Eq 21)

becomes intractable for large N. However, because ϕ(0) = 0, the system has a fixed point at the

origin fxai ¼ 0g
a¼1;...;D
i¼1;...;N , the stability of which can be studied owing to the clustered structure of

the system. The Jacobian at the fixed point is given by

B ¼

A11IN þ �
0
ð0ÞJ A12IN . . . A1DIN

A21IN A22IN . . . A2DIN

. . . . . . . . . . . .

AD1IN AD2IN . . . ADDIN

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; ð24Þ

where J is the random connectivity matrix and IN is the N-dimensional identity matrix. The

matrix B is of size ND × ND and it therefore has ND eigenvalues. Since all the blocks of B com-

mute with each other, we can apply the result of [73] to find a relation between the eigenvalues
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of J, A and B

lJ ¼

QD
i¼1
ðlB � l

i
AÞ

�
0
ð0Þ
QD� 1

j¼1
ðlB � l

j
A� Þ

; ð25Þ

where A− is the matrix obtained by removing the first column and the first row from the

matrix A. This expression is valid for all the eigenvalues of B that are not coincident with those

of A−. Eq 25 can be transformed into a polynomial equation of degree D in λB, so that for every

value of λJ we obtain D eigenvalues of B, as expected. From now on we will assume that, with-

out loss of generality, ϕ0(0) = 1.

In the N!1 limit, the eigenvalues λJ are known to be uniformly distributed on a disk in

the complex plane, centered at zero and of radius g [74]. If one can invert Eq 25, it becomes

computationally fast to compute the eigenvalues of the Jacobian in the N!1 limit without

finite-size effects. Whether one can obtain an explicit inverse formula depends on the

dimensionality and on the entries of the matrix A.

Network with adaptation. For the two-dimensional model defined by Eqs 1 and 2, we

can invert Eq 25, and obtain an expression for the eigenvalues of the Jacobian

lBðlJÞ ¼
1

2
� 1 � gþ lJ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðlJ � 1þ gÞ
2
� 4gb

q� �

: ð26Þ

Using the mapping between the eigenvalues of the connectivity matrix J and those of the

Jacobian matrix B (Eq 26), we find the critical value of g for which the stability of the fixed

point is lost

gcðg; bÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 � gðgþ 2bÞ þ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2bð2gþ 2bþ 2Þ

pq

; b > bHðgÞ

1þ b; b � bHðgÞ

8
><

>:
ð27Þ

where bHðgÞ ¼ � 1 � gþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2g2 þ 2gþ 1
p

. The critical value gc can also be calculated from

dynamical mean-field theory (see Methods, section “Fixed point stability in the mean-field

network”).

The bifurcation that characterizes the loss of stability depends on two parameters, viz. the

ratio of timescales γ and the strength of the adaptation β. To further characterize the bifurca-

tion at g = gc(γ, β), we can study the imaginary part of the critical eigenvalue, i.e. the one with

real part equal to zero at g = gc(γ, β). If the adaptation strength β has a value β� βH(γ), then

the imaginary part of the critical eigenvalue is equal to zero corresponding to a saddle-node

bifurcation at g = gc(γ, β). On the other hand, if β> βH(γ), then the critical eigenvalue is a pair

of complex-conjugate, purely imaginary eigenvalues, a signature of a Hopf bifurcation. There-

fore, we introduce the curve β = βH(γ), which separates the positive quadrant of the γ − β plane

in two regions: one in which the system becomes unstable at the critical value gc(γ, β) via a sad-

dle-node bifurcation, and another one in which the instability occurs via a Hopf bifurcation

(Fig 7a). In the Hopf-bifurcation region, the imaginary part of the critical eigenvalues can be

computed analytically:

ImðlcBÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

� g2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bg2ðbþ 2gþ 2Þ

pq

≕ 2pfm: ð28Þ

The parameter fm is the frequency of low-amplitude oscillations close to the bifurcation, if

N<1. In the finite-N case, we find numerically that these low-amplitude oscillations are sta-

ble. When N!1, however, we find that chaotic dynamics onset right above the bifurcation
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(see section “Resonant chaos in random networks with adaptation”). The frequency fm is

monotonic in β but non-monotonic in γ (Fig 7b), indicating that a slower adaptation variable

(smaller γ) does not necessarily correspond to slower oscillations. When considering codimen-

sion-two bifurcations, we have that for g = gc and β = βH(γ) the system undergoes a Bogdanov-

Takens bifurcation.

Mean-field theory

General theory. The dynamics of the ND-dimensional dynamical system in Eq 21 for

large N is too high-dimensional to be studied at the microscopic level. In contrast, using

dynamical mean-field theory [1], we can find properties of the network dynamics that are

independent of the specific connectivity realization. In what follows, we will assume that the

external input Ii(t) to each unit is an independent realization of the same Gaussian process.

Following [1], we approximate the network input to a representative unit i with a Gaussian

process η and substitute the average over time, initial conditions and network realizations with

the average over realizations of η. This approximation is valid in the large-N limit, in which

neurons become independent [45, 46]. In the mean-field description, the activity of each indi-

vidual unit in the network follows a realization of the following system of D stochastic differen-

tial equations, to which we refer to as mean-field equations (see Methods, section “Mean-field

theory derivation” for more details)

_xaðtÞ ¼
XD

b¼1

AabxbðtÞ þ da1ðZðtÞ þ IðtÞÞ; ð29Þ

where η(t) is a Gaussian process. The mean hη(t)i vanishes, because the averaging over the

Gaussian process statistics mimics the average over different neurons and network realiza-

tions, and the connections Jij in Eq 21 are sampled from a Gaussian distribution with mean

zero. Thanks to the fact that neurons become independent in the large-N limit [1], the average

Fig 7. Stability of the fixed point and local properties. a: Critical value of the coupling gc (color code, right) for different adaptation parameters γ
(horizontal axis) and β (vertical axis). The curve βH(γ) (solid black line) separates the regions of the γ − β plane in which for increasing g we encounter a

Hopf bifurcation (above βH(γ)) or a saddle-node bifurcation (below βH(γ)). Cross and filled circle: parameters used in Fig 1. Left inset: dependence of gc
on β for fixed γ = 0.9. Top inset: dependence of gc on γ for fixed β = βH(γ = 0.9). Blue line: Hopf bifurcation; red line: saddle-node bifurcation. b:

Resonance frequency fm for different adaptation parameters γ, β. Notice that in the non-resonant region the resonance frequency is not defined. Left

inset: square-root increase of fm as a function of β for fixed γ = 0.9. Top inset: non-monotonic behavior of fm as a function of γ, for fixed β = βH(γ = 0.9).

https://doi.org/10.1371/journal.pcbi.1007122.g007
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of the network input over network realizations is also zero (see Methods, section “Mean-

field theory derivation” for more details). On the other hand, the autocorrelation function

hη(t)η(s)i needs to be determined self-consistently by imposing (cf. Methods, section “Mean-

field theory derivation”)

hZðtÞZðsÞi ¼ g2h�ðx1ðtÞÞ�ðx1ðsÞÞi: ð30Þ

Thanks to the mean-field approximations, we reduced the ND-dimensional, deterministic,

nonlinear system of Eq 21 to the D-dimensional, stochastic system of Eq 29, which looks linear

at first glance. However, the nonlinearity is important and is hidden in the self-consistent

match of the second moment, as expressed by Eq 30. The linear mathematical structure of Eq

29 allows us to write, in the frequency domain

~x1ðf Þ ¼ ~w0ðf Þð~Zðf Þ þ ~Iðf ÞÞ; ð31Þ

where ~w0ðf Þ is the linear response function (susceptibility) of the mean-field system (Eq 29),

which is equal to the linear response function of an uncoupled single neuron in the micro-

scopic description. For the linear dynamics given by Eq 29, the linear response function ~w0ðf Þ
is given by

~w0ðf Þ ¼ ½ð2pif ID � AÞ� 1
�
1;1
; ð32Þ

where ID is the D-dimensional identity matrix and the upper indices 1,1 indicate the first ele-

ment of the first row of the matrix inside the square brackets.

In what follows, we assume that the external input I(t) is stationary and zero-mean, and

that the network is in the stationary regime. Therefore, the mean of all variables is equal to

zero. The second-order statistics must be determined self-consistently. In the frequency

domain, this requires a self-consistent determination of the power spectral density (“power

spectrum” for short) Sx(f) of the activation variable x1, defined as the Fourier transform of the

autocorrelation function, Sxðf Þ ¼
R1
� 1

e� 2pif thx1ðt þ tÞx1ðtÞi dt. Using the squared modulus of

the linear response function ~Gðf Þ ≔ j~w0ðf Þj
2
, the power spectrum can be expressed as

Sxðf Þ ¼ ~Gðf ÞðSZðf Þ þ SIðf ÞÞ; ð33Þ

where Sη(f) and SI(f) denote the power spectral densities of η(t) and I(t), respectively. Impor-

tantly, from Eq 30 we have that Sη(f) depends implicitly on Sx(f) through the self-consistency

condition

SZðf Þ ¼ g2S�ðx1Þðf Þ: ð34Þ

The factor ~Gðf Þ can be expressed as a function of the matrix A as

~Gðf Þ ¼
j½adjð2pif ID � AÞ�1;1j2
QD

i¼1
j2pif � liAj

2
; ð35Þ

where adj(2πifID − A) is the adjoint matrix of (2πifID − A) and l
i
A are the eigenvalues of A. In

Methods, section “Fixed point stability in the mean-field network”, we show that knowing the

maximum of ~Gðf Þ is sufficient to compute the critical value of the coupling gc:

g2
c max

f
~Gðf Þ ¼ 1: ð36Þ
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Iterative procedure to solve the mean-field theory

The traditional approach in the DMFT literature is to consider the time-domain version of Eq

22 [1]. Applying the inverse Fourier transform to Eq 22 would lead to a differential equation of

order 2D. Unfortunately, by contrast with the case D = 1, for the multi-dimensional case D> 1

the dynamics is no longer conservative, which precludes the determination of the initial condi-

tions (see [1]). We propose an alternative approach to find a self-consistent solution to Eq 22

in the Fourier domain. This approach is based on an iterative map, the fixed point of which is

the self-consistent solution. Iterative methods have been proposed previously both in the con-

text of spiking [62, 64] and rate-based networks [75] using Monte-Carlo methods. Here, we

use a semi-analytical iteration method that allows to rapidly solve for the self-consistent power

spectrum, and hence to qualitatively understand several features of the network dynamics.

In the frequency domain, the linear transform associated with ~Gðf Þ is simple, whereas the

nonlinearity ϕ(x) is difficult to handle. Concretely, we need to express Sϕ(x1) as a functional of

Sx(f). This calculation can be performed semi-analytically for the piecewise-linear nonlinearity

(a detailed treatment of the nonlinear step is given in Methods, section “Effect of nonlinearities

on second-order statistic”). The idea of our iterative method is to start with an arbitrary initial

power spectral density Sð0Þ
�ðx1Þ
ðf Þ, which we choose to be constant (white noise). We then apply

multiple iterations each consisting of a linear step followed by a nonlinear one (Fig 2f). At

each iteration, the linear step is simply a multiplication by g2 ~Gðf Þ and it allows us to compute

(Sx)(n+ 1)(f). The nonlinear step afterwards transforms (Sx)(n+1)(f) into Sðnþ1Þ

�ðx1Þ
ðf Þ.

By studying the iterative map that defines the mean-field solution, we conclude that the

power spectrum of the network activity emerges from a sharpening of the linear response

function ~Gðf Þ of single units. The sharpening mainly arises from repeated multiplications with

the factor g2 ~Gðf Þ in the iteration, which however is balanced by cross-frequency interactions

and saturation effects of the nonlinear steps (see Methods, section “Qualitative study of the

iterative map” for a detailed discussion). As a result, the network activity exhibits the same fre-

quency bands that are preferred by single neurons, albeit much narrower.

Qualitative study of the iterative map

For a qualitative understanding of the effect of the iterations on the power spectral density, we

exploit the fact that x1 is a Gaussian process, for which the following formula holds [76]

C�ðx1ÞðtÞ ¼
X1

n¼0

1

n!

dn�
dðx1Þ

n

� �� �2

Cn
x1ðtÞ; ð37Þ

where the angular brackets indicate the mean over the statistics of x1. Eq 37 gives the effect of a

nonlinearity ϕ on a the autocorrelation of a Gaussian process x1. By truncating the series after

the first term, we get

C�ðx1ÞðtÞ ’ ðh�
0
ðx1ÞiÞ

2Cx1ðtÞ: ð38Þ

Fourier transforming this equation we get an approximation of the power spectral density

of ϕ(x1)

S�ðx1Þðf Þ ’ C1

Z 1

� 1

Sxðf
0Þdf 0

� �

Sxðf Þ; ð39Þ

where we we introduced the function C1ð
R1
� 1

Sxðf 0Þdf 0Þ ≔ ðh�
0
ðx1ÞiÞ

2
to highlight the fact

that the coefficient that multiplies Sx(f) depends on the area under the power spectral density,
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i.e. on the variance of x1, and is therefore nonlocal in frequency space. We stress that retaining

only the first term in Eq 37 is different than considering a linear approximation of ϕ, since the

dependence of the coefficient on the variance would not appear in that case.

Using this approximation, we can express the power spectral density at the nth iteration of

the iterative method, as a function of the initial power spectral density Sð0Þ
�ðx1Þ
ðf Þ from which we

started to iterate. We obtain

ðSxÞ
ðnÞ
ðf Þ ¼

Yn� 1

k¼1

C
ðkÞ
1

 !

ðg2 ~Gðf ÞÞnSð0Þ
�ðx1Þ
ðf Þ; ð40Þ

whereC
ðnÞ
1
≔ C1ð

R1
� 1
ðSxÞ

ðnÞ
ðf 0Þdf 0Þ. If we take Sð0Þ

�ðx1Þ
ðf Þ to be constant and we define

an ¼ ð
Qn� 1

k¼1
C
ðkÞ
1
Þ, we can rewrite the above expression as

ðSxÞ
ðnÞ
ðf Þ ¼ anðg2 ~Gðf ÞÞn: ð41Þ

If g> gc, there will be a range of frequencies for which g2 ~Gðf Þ > 1, which implies that its

nth power diverges when n grows. In a purely linear network, this phenomenon would lead

to a blow-up of the power spectral density, in agreement with the fact that activity in a linear

network is unbounded for g> gc. If ϕ is a compressive nonlinearity however, the coefficient

an will tend to zero for growing n, counterbalancing the unbounded growth of ðg2 ~Gðf ÞÞn.

Based on Eq 41, we would predict that all the modes for which ~Gðf Þ > 1=g2 will get ampli-

fied over multiple iterations, while all the other modes will get suppressed. While this is a

highly simplified description, the suppression and the amplification of modes is clearly visi-

ble when observing the evolution of the power spectrum over iterations (Fig 2f) and when

comparing the dynamics of the self-consistent solution (Fig 8c and 8f, parameters in

Table 1) to the corresponding linear response function (Fig 8b and 8e, parameters in

Table 1). When truncating the series after the first order however, the mean-field network

does not admit a self-consistent solution, for which we need to retain also higher order

terms. Such terms will balance the progressive sharpening of the power spectrum, allowing

for a self-consistent solution.

As an example of higher-order term, consider the next term in the series in Eq 37, given by

1

2
ðh�

00
ðx1ÞiÞ

2
ðCx1ðtÞÞ

2
�!
FT

�!
FT 1

2
C2

Z 1

� 1

Sxðf
0Þdf 0

� �

Sx � Sxð Þðf Þ
ð42Þ

whereC2 is defined analogously to C1. In general, higher-order terms will contain convolu-

tions of the power spectral density with itself, which are responsible for the creation of higher

harmonics. To qualitatively understand this effect, consider the case in which Sx(f) is a Dirac

δ-function with support in f0. In this case, the two-fold convolution of Sx(f) with itself is again

equal to a Dirac δ-function, but centered in 2f0. A similar argument can be given for resonant

power spectral densities, which implies that a self-consistent solution should exhibit harmonics

of the fundamental resonance frequency. Note that in this paper we considered odd functions,

for which only odd terms in the series are nonzero.

For higher values of g, the relative importance of higher-order terms in the series in Eq 37

will increase, leading to a broader power spectrum. The self-consistent power spectrum how-

ever, seems to be always narrower than the single neuron linear response function. For a possi-

ble explanation of this phenomenon, we consider the g!1 limit, which was already studied
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Fig 8. Two examples of multi-dimensional rate models. Parameters defining both models can be found in Table 1. a-b-c: Analysis of a three-

dimensional rate model. Eigenvalue spectra (a) corresponding to the coupling values g1 = 1.28, g2 = 1.4 and g3 = 2. The dashed line indicates the

imaginary axis. In b we plot the linear response function of the single unit ~Gðf Þ (solid line), and the instability threshold corresponding to the three

coupling values g1, g2 and g3 (dashed lines). In c we plot the solution of the mean field theory obtained with the iterative method for the three values of g,
g1 = 1.5, g2 = 2 and g3 = 3. d-e-f: Same as a,b,c, but for a four-dimensional rate model.

https://doi.org/10.1371/journal.pcbi.1007122.g008

Table 1. Parameters of the models in Fig 8. Matrix A defining the rate model for the different examples in Fig 8.

Fig 8a, 8b and 8c Fig 8d, 8e and 8f

� 1 � 1 � 1

0:1 0:1 1:7

0:1 � 0:4 � 0:5

0

B
B
@

1

C
C
A

� 1 � 1 � 1 � 1

1 � 0:5 � 0:65 � 0:6

1 0:35 � 0:05 � 0:57

1 0:35 0:28 � 0:005

0

B
B
B
B
B
@

1

C
C
C
C
C
A

https://doi.org/10.1371/journal.pcbi.1007122.t001
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in [46] for the network without adaptation. Using the same technique, we conclude that in this

limit the autocorrelation decay tends to be the same as one obtained for a single unit driven by

white noise [46]. In the frequency domain, this is equivalent to say that the power spectral den-

sity of the network tends to the one of a single unit driven by white noise.

Effect of nonlinearities on second-order statistics

In this section, we provide some additional details on how to compute the effect of nonlineari-

ties on the second order statistics (autocorrelation or power spectral density) of a Gaussian

process. We consider three cases of interest: polynomials, piecewise linear functions and arbi-

trary nonlinear functions. To simplify our notation, we drop the superscript of and consider a

generic Gaussian process x.

The effect of polynomial nonlinearities can be expressed in closed form in time domain.

This can be seen by considering again the infinite series expression (Eq 37), valid for stationary

Gaussian processes x

C�ðxÞðtÞ ¼
X1

n¼0

dn�
dxn

� �� �2

Cn
xðtÞ; ð43Þ

where the angular brackets indicate the average over the statistics of x. In the case in which ϕ is

a polynomial of degree p, only the terms in the sum up to p are nonzero. As an example, we

can compute the effect of a cubic approximation of the hyperbolic tangent, i.e.

�ðxÞ ’ �3ðxÞ ≔ x � x3

3

C�3ðxÞ
ðtÞ ¼ 1þ C2

xð0Þ � 2Cxð0Þ
� �

CxðtÞ þ
2

3
C3

xðtÞ: ð44Þ

As expected, the effect of the nonlinearity depends on Cx(0) i.e. on the variance of x itself.

Notice that the coefficient of the first term is compressive (i.e. smaller than one) only if Cx(0) is

smaller than one itself. This type of behavior is expected since ϕ3 is unbounded.

Another interesting case are piecewise linear nonlinearities. In this case, we use Price’s the-

orem twice to get

@
2C�ðxÞðtÞ
@ðCxðtÞÞ

2
¼ C�00ðxÞðtÞ: ð45Þ

For a piecewise linear ϕ, the second derivative ϕ00 is a sum of Dirac’s delta functions with

variable coefficients. More precisely, we consider

�PLðxÞ ¼ Yðx1 � xÞc0x

þ
XP� 1

p¼1

Yðx � xpÞYðxpþ1 � xÞcpxp þYðx � xPÞcPx;
ð46Þ

where xp are the points in which the first derivative is discontinuous, cp are some arbitrary

coefficients and Θ(�) is the Heaviside function. The second derivative of ϕPL is given by

�
00

PLðxÞ ¼
XP

p¼1

ðcp � cp� 1Þdðx � xpÞ: ð47Þ
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The delta functions allow us to compute the correlation function C�00PL
ðtÞ explicitly

C�00PL
ðtÞ ¼

XP

p;p0¼1

ðcp � cp� 1Þðcp0 � cp0 � 1Þ

2pCxð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � r2ðtÞ

p �

� exp �
x2
p þ x2

p0 � 2rðtÞxpxp0
2Cxð0Þð1 � r

2ðtÞÞ

� �

;

ð48Þ

where we defined rðtÞ ≔ CxðtÞ
Cxð0Þ

. Inserting Eq 48 in Eq 45 and integrating twice with respect to

Cx(t) we get

C�PLðxÞ
ðtÞ ¼ f�ð0;Cxð0ÞÞ þ f�0 ð0;Cxð0ÞÞCxðtÞ

þ
XP

p;p0¼1

Z CxðtÞ

0

Z s0

0

ðcp � cp� 1Þðcp0 � cp0 � 1Þ

2pCxð0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

C2
x ð0Þ

q �

� exp �
x2
p þ x2

p0 � 2 s

Cxð0Þ
xpxp0

2Cxð0Þ 1 � s2

C2
x ð0Þ

� �

0

@

1

Adsds0 :

ð49Þ

In the case in which ϕ is an odd function, the term fϕ(0; Cx(0)) is equal to zero. For the spe-

cific case of the piecewise linear approximation of the hyperbolic tangent considered in this

paper, i.e.

�PLðxÞ ¼

� 1 for x < � 1

x for � 1 < x < 1

1 for x > 1

8
>>><

>>>:

; ð50Þ

the expression in Eq 49 reduces to

C�PLðxÞ
ðtÞ ¼ Erf2 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cxð0Þ

p

 !

CxðtÞ þ
2

pCxð0Þ

Z CxðtÞ

0

Z s0

0

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � s2

C2
x ð0Þ

q �

� exp �
1

Cxð0Þ 1 � s2

C2
x ð0Þ

� �

0

@

1

A sinh
s

C2
xð0Þ 1 � s2

C2
x ð0Þ

� �

0

@

1

Adsds0:

ð51Þ

For the piecewise linear function, an alternative approach is based on the infinite series in

Eq 37, which yields [77, 78]:

C�PLðxÞ
ðtÞ ¼ s2

X1

n¼1

Fðn� 1Þ 1

s

� �

� Fðn� 1Þ � 1

s

� �� �2 Cn
xðtÞ
n!

ð52Þ

with input variance σ2 = Cx(0) and cumulative Gaussian distribution function

FðxÞ ¼ 1ffiffiffiffi
2p
p
R x
� 1

e� y2=2 dy. For the figures in this paper, we used the map in Eq 51.

For an arbitrary nonlinear function, we can use two methods. The first method is a semi-

analytical approach that relies on the integral form of the autocorrelation of the rate Cϕ(x)(τ) as
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a functional of the autocorrelation Cx(τ) of x [45]

C�ðxÞðtÞ ¼

Z Z

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cxð0Þ �
C2
xðtÞ

Cxð0Þ

s

xþ
CxðtÞffiffiffiffiffiffiffiffiffiffiffi
Cxð0Þ

p z

 !

�
ffiffiffiffiffiffiffiffiffiffiffi
Cxð0Þ

p
z

� �
DxDz; ð53Þ

where 1ffiffiffiffi
2p
p . Notice that a slightly different version of this formula was already proposed in [1].

Therefore, to obtain the effect of ϕ on the power spectral density, one should 1) inverse Fourier

transform Sx(f) to get Cx(τ) 2) apply Eq 53, by computing the two integrals numerically 3) Fou-

rier transform Cϕ(x)(τ) to get Sϕ(x)(f). Practically, this procedure requires the application of the

fast Fourier transform algorithm and the numerical evaluation of two integrals.

The second method is fully numerical and it can be useful in cases in which the integrals in

the first method are expensive to evaluate numerically. This method consists in approximating

the power spectral density Sϕ(x) via Monte Carlo sampling. More precisely, we sample multiple

realizations in frequency domain of the Gaussian process with zero mean and power spectral

density Sx(f). We then transform each sample to time domain and apply the nonlinearity ϕ(x)

to each sample x(t) individually. Finally, we transform back to Fourier domain and get Sϕ(x) by

averaging. Despite being computationally more expensive than the closed form expressions,

this sampling method provides a solution of the mean-field theory for an arbitrary nonlinear-

ity and it is computationally much cheaper than running the full microscopic simulation.

Moreover, this method can easily be extended to be used in the presence of a non-Gaussian

sinusoidal input (cf. section “Adaptation shapes signal transmission in the presence of inter-

nally-generated noise” and [4]).

Mean-field theory derivation

In this section, we extend the derivation of dynamical mean-field theory (DMFT) to the case

of the network of multi-dimensional rate units. Since there are no additional complication

with respect to the standard case, we report here only the main steps. For a review of the path-

integral approach to DMFT, see e.g. [45, 46]. The moment-generating functional correspond-

ing to the microscopic system in Eq 21 is given by

Z½j;~j�ðJÞ ¼
Z

DxD~x exp ½S0½x; ~x� � ð~x
1Þ

TJ�ðx1ðtÞÞ þ jTx þ~jT~x�; ð54Þ

where

S0½x; ~x� ≔ ~xTðID@t � AÞx ð55Þ

and we introduced the notation ~xTx ¼
P

a

P
i

R
~xai ðtÞx

a
i ðtÞdt. The integral is over paths and

bold symbols indicate vectors, over both the network space and the rate model space, so that

Dx ≔
Q

a

Q
iDxai .

We are interested in properties that are independent of the particular realization of the cou-

pling matrix J. In order to extract those properties, we average over the quenched disorder by

defining the averaged generating function

�Z½j;~j� ≔
Z Y

ij
dJijN 0;

g2

N
; Jij

� �

Z½jx;~jx�ðJÞ: ð56Þ

The average over each Jij can be computed by noticing that the terms corresponding to dif-

ferent Jij factorize and the integral can be solved by completing the square. Since the details of
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this calculation are analogous to the one-dimensional case, we directly report the result

�Z½jx;~jx� ¼
Z

DxD~x exp ½S0½x; ~x� þ jTxþ~jT~x� �

� exp
1

2

Z 1

� 1

X

i

~x1

i ðtÞ~x
1

i ðt
0Þ

 !
g2

N

X

j

�ðx1

j ðtÞÞ�ðx
1

j ðt
0ÞÞ

 !

dtdt0
" #

:

ð57Þ

We now aim to decouple the interaction term in the last line by introducing the auxiliary

field

Q1ðt; sÞ ≔
g2

N

X

j
�ðx1

j ðtÞÞ�ðx
1

j ðsÞÞ: ð58Þ

We introduce Q1 in the generating functional by inserting the following representation of

the unity

Z

DQ1d �
N
g2
Q1ðs; tÞ þ

X

j

�ðx1

j ðsÞÞ�ðx
1

j ðtÞÞ

" #

; ð59Þ

where δ[�] is the delta functional. Using the integral representation of the delta functional leads

to the introduction of a second auxiliary field, which we call Q2. We obtain

�Z½jx;~jx� ¼
Z

DQ1DQ2DxD~x exp ½S0½x; ~x� þ jTx þ~jT~x� �

exp
�

1

2

Z 1

� 1

�
X

i

~x1

i ðtÞQ1ðt; t
0Þ~x1

i ðt
0Þ þ

X

i

�ðx1

i ðtÞQ2ðt; t
0Þ�ðx1

i ðt
0ÞÞþ

�
N
g2
Q1ðt; t

0ÞQ2ðt; t
0Þ

�

dtdt0
�

:

ð60Þ

This expression has the advantage that any interaction between different units is removed

and all the contribution coming from different units factorize. It is convenient to rewrite the

averaged generating functional as a field theory for two auxiliary fields Q1, Q2, i.e. we remove

the vectorial response terms jTx;~jT~x and we add two scalar response terms for the auxiliary

fields. The result is

�Z½j;~j� ¼
Z

DQ1DQ2 exp �
N
g2
QT

1
Q2 þ N lnZ½Q1;Q2� þ jTQ1 þ

~jTQ2

� �

Z½Q1;Q2� ≔
Z

DxD~x exp S0½x; ~x� þ
1

2
ð~x1Þ

TQ1~x
1 þ �ðx1Þ

TQ2�ðx
1Þ

� �

;

ð61Þ

where we extended our notation to QT
1
Q2 ≔

R R
Q1ðs; tÞQ2ðs; tÞdsdt. The crucial observation

to make is that essentially all factors associated to different units factorized yielding the factor

N. For this reason, the integration is now not over all rate model indices but over only one unit

index. The remainder is the problem of one unit, characterized by D variables, interacting with

two external fields Q1, Q2.
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The final step is to perform a saddle-point approximation, i.e. replace Q1, Q2 by their values

that make the action stationary. To do this, we need to solve the two saddle-point equations

d

dQf1;2g

N
g2
QT

1
Q2 þ N lnZ½Q1;Q2�

� �

¼ 0 ð62Þ

These equations are analogous to the ones in the one-dimensional case, and lead to the sad-

dle-point solution

Q�
1
ðs; tÞ ¼ g2C�ðx1Þðs; tÞ

Q�
2
ðs; tÞ ¼ 0

; ð63Þ

where Cϕ(x1)(s, t) is the autocorrelation function of ϕ(x1) evaluated at the saddle point solution.

The averaged generating functional at the leading order in N can be written as

�Z� /
Z

DxD~x exp S0½x; ~x� þ
g2

2
ð~x1Þ

TC�ðx1Þ~x
1

� �

: ð64Þ

This is the statistical field theory corresponding to D linearly interacting variables, with x1

that receives a Gaussian noise whose autocorrelation is given by Cϕ(x1). Writing the corre-

sponding differential equations results in our mean-field description (Eq 29).

Mean-field theory with heterogeneous adaptation

In this section, we will extend the derivation of the dynamic mean-field theory (DMFT) for the

case of the network with heterogeneous adaptation. We consider the case in which each neu-

ron has different parameters, sampled i.i.d from the same distributions, and different parame-

ters of the same neuron are uncorrelated with each other. More precisely, we sample the

elements of the matrix Ai for neuron i as

Aab

i � N ð�Aab; ðsabÞ
2
Þ; ð65Þ

where the subscript i runs over the neurons in the network.

In deriving the mean-field theory, most of the steps are identical to those in Methods, sec-

tion “Mean-field theory derivation”, so we will focus on the additional terms due to the new

source of disorder. We separate the contribution of mean adaptation parameters �Aab from the

deviations, so that the generating functional reads

Z½j;~j�ðJÞ ¼
Z

DxD~x exp
�

S0½x; ~x� � ð~x
1Þ

TJ�ðx1ðtÞÞ �
X

k

xTk ðAk �
�AÞxkþ

þjTx þ~jT~x
�

;

ð66Þ

where

S0½x; ~x� ≔ ~xTðID@t �
�AÞx ð67Þ

and �A is the matrix of the expected values of A.

The action S0 is the same as for the network without heterogeneity, and when averaging

over the connectivity disorder, we obtain the same result as for homogeneous network. In this

case however, we need to also average over the disorder due to heterogeneity, i.e. over all the
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Aab

k . The averaged generating functional will then result from the average

�Z½j;~j� ≔
Z Y

ij

dJijN 0;
g2

N
; Jij

� � !
Y

abk

dAab

k N �Aab

k ; s
ab; Aab

� �
 !

Z½j;~j�ðJÞ : ð68Þ

The new terms due to the heterogeneity result in integrations of the type

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2pðsabÞ
2

q

Z

exp �
1

2ðsabÞ
2
ðAab � �AabÞ

2
� Aab � �Aab
� �

Z

~xi
aðtÞxbi ðtÞdt

 !

; ð69Þ

that can be solved by completing the square. After averaging over both the connectivity disor-

der and the heterogeneity disorder, the generating functional reads

�Z½jx;~jx� ¼
Z

DxD~x exp ½S0½x; ~x� þ jTxþ~jT~x� �

� exp
1

2

Z X

i

~x1

i ðtÞ~x
1

i ðt
0Þ

 !
g2

N

X

j

�ðx1

j ðtÞÞ�ðx
1

j ðt
0ÞÞ

 !

dtdt0
" #

�

� exp
X

iab

ðsabÞ
2

2

Z

~xai ðtÞx
b

i ðtÞx
b

i ðt
0Þ~xai ðt

0Þ

" #

:

ð70Þ

The last term, which is due to the heterogeneity, factorizes into the contributions associated

to different units. From this point on, in order to derive the mean-field equations, we follow

exactly the same steps as in Methods, section “Mean-field theory derivation”, so we do not

report those steps here. The mean-field equations read

_xaðtÞ ¼
XD

b¼1

�AabxbðtÞ þ ZabH ðtÞ
� �

þ d
a1
ðZðtÞ þ IðtÞÞ; ð71Þ

where Z
ab
H are Gaussian processes associated to the heterogeneity, that all have mean zero and

autocorrelation

hZ
ab
H ðtÞZ

ab
H ðsÞi ¼ ðsa;bÞ

2
hxbðtÞxbðsÞi: ð72Þ

For the particular case of adaptation with heterogeneity on the parameter β, as studied in

section “Resonant chaos in random networks with adaptation”, we have the following mean-

field equations

_xðtÞ ¼ � xðtÞ � aðtÞ þ ZðtÞ þ IðtÞ ð73Þ

_aðtÞ ¼ � gaðtÞ þ g�bxðtÞ þ gZHðtÞ; ð74Þ

where ηH(t) is a Gaussian process with mean zero and autocorrelation

hZHðtÞZHðsÞi ¼ s2
b
hxðtÞxðsÞi: ð75Þ

From Eqs 73 and 74, we can find the self-consistent equation for the power spectrum:

Sxðf Þ ¼ ~GHðf Þðg2S�ðxÞðf Þ þ SIðf ÞÞ; ð76Þ
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where ~GHðf Þ is an effective filter given by

~GHðf Þ ¼
~Gðf Þ

1 �
g2s2

b

g2þo2
~Gðf Þ

; ð77Þ

where ω = 2πf. The effective filter ~GHðf Þ predicts a larger power at low frequencies, similar to

what is observed in simulations (cf. Fig 2d).

Fixed point stability in the mean-field network

Here we consider the full matrix of linear response functions (see below), to conclude that the

only quantity that matters for the stability at the fixed point is ~Gðf Þ.
Starting from the microscopic network equations (Eq 21), we derive a set of differential

equations, that we write in matrix form

ðID@t � AÞwikðtÞ ¼
XN

j¼1

JijD1wjkðtÞ þ dikIDdðtÞ; ð78Þ

where Δ1 = δα1 δβ1 is a matrix whose only nonzero element is [Δ1]11 = 1. χik(τ) is a D by D
matrix, whose component are defined as w

ab

ik ðtÞ ¼
dxai ðtÞ

dhbk ð0Þ
, where hbk is a small perturbation given

to the variable xbk at time τ = 0. Notice that in deriving Eq 78, we have assumed stationarity and

that ϕ0(0) = 1. We now Fourier transform Eq 78 and get

ð2pif ID � AÞ~w ikðf Þ ¼
XN

j¼1

JijD1~w jkðf Þ þ dikID: ð79Þ

Inverting the matrix (2πif ID − A) and recognizing the linear response function of the single

unit ~w0ðf Þ, we obtain

~w ikðf Þ ¼
XN

j¼1

Jij~w0ðf ÞD1~w jkðf Þ þ dik~w0ðf Þ; ð80Þ

where ~w0ðf Þ is a D by D matrix whose elements are ~w
ab
0 ðf Þ, defined in section “Mean-field

theory”.

Since in the mean-field approximation the mean of the linear response function is zero, we

look for the second moments [2]. We multiply every element of the matrix equation (Eq 80)

by its complex conjugate and average over the quenched disorder. We obtain

j~wðf Þj2 ¼ g2j~w0ðf ÞD1~wðf Þj
2
þ ~Gðf Þ; ð81Þ

where the absolute value is intended element-wise. Due to the structure of the matrix Δ1, we

have that j~w0ðf ÞD1~wðf Þj
2
¼ ~Gðf ÞD1j~wðf Þj

2
, as it can be verified simply by using the definition

of Δ1. Finally, we can solve for j~wðf Þj2

j~wðf Þj2 ¼ ðID � g2 ~Gðf ÞD1Þ
� 1
ð~Gðf ÞÞ: ð82Þ
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Since the only nonzero eigenvalue of the matrix ~Gðf ÞD1 is j~w11
0
ðf Þj2, the stability condition

for the fixed point is given by

g2 max
f

~Gðf Þ < 1: ð83Þ
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