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Abstract
We study how neuronal connections in a population of spiking neurons affect
the accuracy of stimulus estimation. Neurons in our model code for a one-
dimensional orientation variableφ. Connectivity between two neurons depends
on the absolute difference |φ − φ′| between the preferred orientation of the
two neurons. We derive an analytical expression of the activity profile for
a population of neurons described by the spike response model with noisy
threshold. We estimate the stimulus orientation and the trial-to-trial fluctuations
using the population vector method. For stationary stimuli, uniform inhibitory
connections produce a more reliable estimation of the stimulus than short-
range excitatory connections with long-range inhibitions, although the latter
interaction type produces a sharper tuning curve. These results are consistent
with previous analytical studies of the Fisher information.

1. Introduction

The response of most neurons in the central nervous system shows a high degree of variability
(Werner and Mountcastle 1965, Shiller et al 1976, Vogels et al 1989, O’Keefe et al 1997).
Since neuronal noise has a detrimental impact on information processing, redundancy is needed
to average out the noise. The primary visual cortex, for example, is organized in columns
composed of neurons that respond preferentially to the same stimulus orientation (Hubel
and Wiesel 1968, 1974). Using a population of neurons with similar properties to encode
information has the advantage of reducing the noise. On the other hand, if neurons in the
population are connected to each other or share input, they cannot be treated as independent.
Because it is likely that nearby neurons share more common inputs than distant neurons,
correlated variability is expected to decrease with interneuronal distance (Braitenberg and
Schuz 1991, Zohary et al 1994, Douglas et al 1995). Although the experimentally measured
correlation coefficients are quite small, correlated variability is thought to limit the information
processing capacity of neuronal ensembles (Zohary et al 1994). However, several researchers
have shown that the effect of correlated noise is not always harmful to information processing
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(Snippe and Koenderink 1992, Abbott and Dayan 1999, Yoon and Sompolinsky 1998). Snippe
and Koenderink (1992) have indicated that, if the spatial range of correlated noise is larger than
the receptive field width of neurons, it can lead to improvement of the discrimination thresholds
in psychophysical tasks. Recently, Abbott and Dayan (1999) and Yoon and Sompolinsky
(1998) have used Fisher information to provide an estimation of the accuracy of the population
code using neurons described by a rate model. Under the hypothesis that the neuronal activity
follows a multivariate Gaussian distribution, they have shown some effects of the shape of
the correlation matrix on the population code accuracy. For instance, Yoon and Sompolinsky
(1998) have found that negative correlations enhance the Fisher information relative to the
uncorrelated case, whereas positive correlations almost always decrease it. Only in the extreme
case of very long correlations can positive correlations produce a higher information value than
in the case of an uncorrelated population. Thus, depending on the form of the correlation matrix,
correlated variability can either increase or decrease the information capacity in comparison
to the uncorrelated case.

In these studies correlated noise was introduced explicitly into the model by the definition
of a correlation matrix (Snippe and Koenderink 1992, Abbott and Dayan 1999, Yoon and
Sompolinsky 1998). Nevertheless, these correlations must somehow be generated inside the
neural network. Correlations induced by common input have been considered in other studies
(Shadlen and Newsome 1998). In this paper, we explore the possibility that correlated noise
originates from the lateral connections inside the neural network. We study how correlations
induced by lateral connections affect the accuracy of the population code. We compare
two types of interactions: uniform inhibition (homogeneous interactions) and short-range
excitation with long-range inhibition (modulated interactions). It has been suggested that
these interaction types play an important role in the mechanisms for orientation selectivity in
the primary visual cortex. Indeed, V1 neurons receive a broad input from the LGN but their
tuning curve is much sharper. Several models have been proposed to explain the sharpening
of the tuning curve in V1. Some models suggest that orientation selectivity is mainly caused
by lateral inhibition (Ferster and Koch 1987, Wörgötter and Koch 1991, Wehmeier et al
1998) whereas other authors have proposed that orientation tuning is the result of short-range
excitations together with longer range inhibitions (Ben-Yishai et al 1995, Somers et al 1995),
producing a Mexican-hat-shaped interaction between orientation columns.

As in previous studies of Ben-Yishai et al (1995) and Hansel and Sompolinsky (1998),
we use a one-dimensional population of spiking neurons, where each neuron codes for a
particular orientation of the stimulus. In section 2, the model is defined. In section 3, an
analytical expression of the activity profile is derived. In section 4, we define how we assess
the accuracy of the estimation and discuss how lateral interactions induce correlation.

2. The model

2.1. The network model

We consider a population of N interconnected neurons evenly distributed on a one-dimensional
line. Each neuron i codes for a particular scalar feature φi . The feature φ can represent any
external physical variable with which neural activity is correlated. For simplicity we will
assume periodic boundary conditions, and interpret φ as the orientation of a stimulating light
bar. All functions of φ are periodic functions with period π .

Each neuron i is selective for a range of orientations and responds maximally when a
particular value φi of the stimulus orientation, called the preferred orientation, is present. The
values of preferred orientations φi are uniformly distributed among the neurons in the interval
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Figure 1. Sketch of the network architecture. The input stimulus potential (equation (2)) is broad
and periodic (top). The neuronal network is fully connected. Here, we have represented only
the lateral connections from one neuron (middle). The connection strengths are described by
equation (6). Neurons are characterized by their preferred orientation (bottom).

0 < φi � π . The total input hi to each neuron consists of two parts, i.e. an external input hext
i

(stimulus) and the input hint
i from the other neurons of the network (figure 1):

hi(t) = hint
i (t) + hext

i (t). (1)

If the stimulus has orientation φ0, the external input to neuron i is represented by a Von
Mises function (Fisher 1993):

hext
i (φ0) = hmax

exp(α−1)
exp

{
α−1 cos [2(φ0 − φi)]

}
. (2)

This function is similar to a Gaussian but is π -periodic. The parameter α corresponds to the
width of the function. We choose a large value of α so that the stimulus is broadly tuned. The
first term of equation (2) normalizes the function, so that the maximum amplitude is equal to
hmax. A neuron i responds maximally when the orientation of the input stimulus φ0 is equal
to its preferred orientation φi .

The lateral input hint
i is characterized by the coupling strength Jij and the time course

εij (t) of the postsynaptic potential

hint
i (t) = 1

N

N∑
j=1

∑
t
(f )

j

Jij ε(t − t
(f )

j ) (3)

where the sum runs over all firing times t (f )j and over all neurons in the network. Note that we
have taken the interaction strength to scale inversely with the total number of neurons N . The
kernel ε can be chosen arbitrarily. Here, we take

ε(s) = 1

τs − τm

[
exp

(
− s

τs

)
− exp

(
− s

τm

)]
H(s) (4)

where τs and τm are respectively the synaptic and membrane time constants. To ensure causality
we have added the Heaviside function H(·) with H(s) = 1 for s > 0 and 0 otherwise. ε is
normalized so that

∫ ∞
0 ε(s) ds = 1. For τm = τs = τ , equation (4) reduces to

ε(s) = s

τ 2
exp

(
− s

τ

)
H(s). (5)
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Figure 2. Coupling strength function for a neuron at 90◦ preferred orientation as a function of
the preferred orientation. Two types of interaction described by equation (6) are plotted here. The
solid line represents uniform inhibition (J0 = −2, J2 = 0) and the dashed curve shows modulated
interaction (J0 = −2, J2 = 10).

For the sake of simplicity, we assume that neurons can have both excitatory and
inhibitory connections with each other. This coupling model is of course not biologically
plausible. However, Ben-Yishai et al (1995) and Hansel and Sompolinsky (1998) have
shown that many qualitative properties of the stationary states remain when the one-
type population is replaced by a population with excitatory and inhibitory neurons. The
interaction strength Jij is assumed to be strongest in magnitude for neurons with similar
preferred orientations. This hypothesis is consistent with the anatomical and physiological
evidence available in the primary visual cortex (Ferster 1986, Martin 1988). In order
to describe the orientation dependence of the coupling strength, we choose the type of
interaction used by Ben-Yishai et al (1995) to study the properties of the orientation
tuning curves in the visual cortex. It is expressed using the first two terms of the Fourier
series

Jij = J (φi − φj ) = J0 + J2 cos(2(φi − φj )). (6)

Only even terms are non-null, as the period of J is π . The coupling equation is represented
in figure 2 for two different values of J2.

2.2. The neuronal model

The membrane potential ui of neuron i describes the state of the neuron. In the spike response
model, the membrane potential is given by (Gerstner 1995):

ui(t) = η(t − t̂i ) + hi(t) (7)

where hi(t) is the total input (equation (1)) described in section 2.1 and t̂i is the firing time of
the last spike of neuron i. The function η describes the refractory period following a spike.
We use

η(s) = −η0 exp

(
− s − δabs

τm

)
H(s − δabs) + K H(δabs − s)H(s) (8)
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where δabs is the absolute refractory period, K is a large negative constant and τm is the
membrane time constant. We set η0 = 1.

In order to reproduce the variability in the firings of cortical neurons, we add noise to
the neuronal model. To do so, we introduce an escape rate ρ that depends on the difference
between the present value of the membrane potential u(t) and the threshold ϑ :

ρhi (t |t̂i ) = f [u(t) − ϑ] = f [η(t − t̂i ) + hi(t) − ϑ]. (9)

The second equality follows from (7). The escape rate ρ is implicitly time dependent, since
the membrane potential u(t) varies over time. The choice of the function f is arbitrary; since
the results that we have obtained are qualitatively independent of the form of the escape rate,
we use for simplicity a piecewise linear function

ρ = γ0 · (u − ϑ)H(u − ϑ) (10)

where γ0 is a parameter that determines the noise level. The higher the value of γ0 the lower the
noise. It should be noted that with an appropriate choice of f , the escape rate ρ can reproduce,
to a high degree of accuracy, noise due to stochastic spike arrival (Plesser and Gerstner 2000).

Given the escape rate function, we can calculate the survivor function, that is the probability
that the neuron, after having emitted a spike at t̂i , will not emit a spike up to time t (Cox 1962,
Gerstner and Van Hemmen 1992, Gerstner 2000):

Shi (t |t̂i ) = exp

[
−

∫ t

t̂i

ρhi (s|t̂i ) ds

]
. (11)

The survivor function obviously depends on t̂i , the last firing time of neuron i. The lower index
hi in the survivor function is intended to remind the reader that Shi (t |t̂i ) also depends on the
input potential hi(t).

3. Activity profile

The activity profile describes the firing rate of the neurons as a function of their preferred
orientations. Since the network is completely axisymmetric, the coupling between two neurons
only depends on the absolute difference |φ−φ′| between their preferred orientation. Therefore,
the form of the activity profile is identical to the form of the tuning curve of a single neuron.
For a time-stationary state the activity profile of a large population of neurons (N → ∞) can
be obtained from a set of self-consistent equations. Indeed, in a stationary state,

hci = 1

N

N∑
j=1

Jij rj + hext
i (12)

where we have used the fact that
∫ ∞

0 ε(s) ds = 1. Equation (12) becomes exact in the limit
of N → ∞; see appendix B. The mean firing rate ri for neuron i can be calculated from the
survivor function (Gerstner and Van Hemmen 1992)

ri =
[∫ ∞

0
Shci (s) ds

]−1

, (13)

where for a constant potential hi(t) = hci , the survivor function Shci (t |t̂i ) depends only
on the time difference t − t̂i . So far, analytical expressions for the activity profile have
been obtained with rate models (Ben-Yishai et al 1995, Hansel and Sompolinsky 1998)
and integrate-and-fire models in the absence of internal noise (Laing and Chow at press).
Equations (12) and (13) give a theoretical solution for the activity profile in a network
of spiking neurons with internal noise. Figure 3 shows that the activity profile resulting
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Figure 3. Activity profile obtained from simulations (dots) compared with theory (solid curve).
The rate in simulations is estimated from spike counts over 2 s following the onset of the stimulus
with a population of 200 neurons. The amplitude of the external stimulus hmax = 2, the width
α = 4 and the orientation is φ0 = 90◦, cf equation (2). The values for the interaction strength are
(a) J0 = −2 and J2 = 0 and (b) J0 = −2 and J2 = 10. Neurons have an absolute refractory
period of 2 ms and the synaptic and membrane time constants are both equal to 4 ms. The neuronal
noise is described by a linear escape rate model with γ0 = 1.

from these equations matches to a high degree of accuracy the one obtained by simulating
a population of spiking neurons described by the model in section 2. The sharper tuning
curve obtained with the local excitation with long-range inhibition can be understood as the
result of the similarity between the shape of the tuning curve and that of the connection
pattern: a neuron in the centre of the stimulus (φ = 90◦) strongly stimulates its neighbours
(and therefore reinforces the peak) while it inhibits neurons with orthogonal preferred
orientations.

4. Accuracy of the stimulus estimator

An estimation of the stimulus orientation φest is obtained using the population vector method
(Georgopoulos et al 1983, Salinas and Abbott 1994). The accuracy of the estimator is measured
by the variance of the trial-to-trial fluctuations. Because the variable φ is distributed on a circle,
we use the circular standard deviation (CSD) to measure the fluctuations in the orientation
(Mardia 1972) (see appendix A). The CSD of the orientation estimator is computed for different
time window durations T , starting from the initiation of the stimulus. For stationary stimuli,
the longer the duration of the time window, the better the estimation. For long time window
duration (>100 ms) the CSD decreases approximatively with 1/

√
T . The stimulus is initiated

at t = 0 ms. Before the start of the stimulus all neurons are silent1.

4.1. Effect of lateral connections

We would like to understand how the lateral connections affect the accuracy of the population
code. To do so we compare the CSD obtained using uniform inhibition (equation (6) with
J2 = 0) and the one obtained using modulated interactions (equation (6) with J2 > 0).
Figures 4(a) and (b) represent the theoretical activity profiles and the CSD obtained by these
two interaction types. We find that although short-range excitation sharpens the tuning curve
1 We do not take into account any spontaneous activity for t < 0, in order to simplify the comparison of the CSD for
different parameters. Indeed, the spontaneous activity would change each time we change the value of a parameter.
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Figure 4. (a) Activity profile and (b) CSD for a network with uniform inhibition (J0 = −2,
J2 = 0) (solid curve) and for a network with short-range excitation and long-range inhibition
(J0 = −2, J2 = 10) (dashed curve). In the two cases, the stimulus amplitude is equal to
hmax = 2. We see that even though the tuning curve is shaper for J2 = 10, the estimation is
worse. (c) Activity profile. The stimulus amplitude hmax has been adjusted in order to obtain the
same activity profile for the two types of interaction. The activity profiles for uniform inhibition
(J0 = −5, J2 = 0, hmax = 1.96) and modulated interactions (J0 = 0, J2 = 2, hmax = 1.55) lie
on top of each other and are indistinguishable. (d) CSD for uniform interactions (solid curve) and
modulated interactions (dashed curve). In all cases the orientation of the stimulus is 90◦ and the
CSD is calculated from 500 trials with a population of 200 neurons. The network and neuronal
parameters are the same as in figure 3.

(figure 4(a)), the reliability of the estimation decreases (figure 4(b)). Modulated interactions
produce a less reliable estimation even when the activity profile generated by modulated
interactions is exactly identical to the one obtained by uniform inhibition (figures 4(c)
and (d)). The spatial dependence of the interactions therefore appears to be important in
the determination of the accuracy of the population code.

In order to better understand what determines the accuracy of the estimator, we compare
the standard deviation obtained by the population vector method with the one obtained using
Fisher information. The Fisher information, through the Cramer–Rao bound, gives a measure
of the lowest variance of an unbiased estimator (Blahut 1988).

σ 2
φ � 1

I (φ)
(14)

where I (φ) is the Fisher information for orientation φ. If the neuronal activities follow a
Gaussian distribution, the Fisher information can be expressed as a function of the covariance
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Figure 5. Lower bound of the standard deviation using Fisher information for a network with
uniform inhibition (solid curve) and for a network with short-range excitation and long-range
inhibition (dashed curve). The coupling parameters are the same as in figure 4(b) for (a) and in
figure 4(d) for (b). The covariance matrix has been estimated from a simulation over 500 trials.

matrix and of the tuning curve derivative (Abbott and Dayan 1999, Yoon and Sompolinsky
1998):

I (φ) =
∑
i,j

f ′
i (φ)C

−1
ij f ′

j (φ) (15)

where fi(φ) represents the tuning function of neuron i and f ′
i (φ) ≡ ∂fi (φ)

∂φ
. The covariance

matrix Cij (φ) of the firing rates (ri, rj ) is defined as follows:

Cij (φ) = 1

K

K∑
k=1

(rki − fi(φ))(r
k
j − fj (φ)) (16)

where rki is the firing rate of neuron i on trial k and K is the total number of trials. We
measure the covariance matrix (equation (16)) from simulations over 100 ms (figure 6) and
calculate the Fisher information via equation (15). This gives a lower bound on the variance (cf
equation (14)). Due to the refractory period, the distribution in spike counts of our model is well
approximated by a Gaussian distribution even for short time window durations. We found that
the standard deviation calculated using Fisher information gives slightly lower values than the
population vector method as it should be, since Fisher information gives the optimal estimator.
However, we find that the effect of a network or neuronal parameter on the accuracy of the
stimulus estimation is qualitatively similar for both methods (figure 5). This means that the
measure of the standard deviation is mostly independent of the decoding method.

The Fisher information allows an interpretation of our results. Equation (15) shows that
the accuracy of the population code is determined by (i) the derivative of the tuning curve
and (ii) the correlation matrix. In the case that the two tuning curves are the same as in
figure 4(c), differences in Fisher information can only be generated by the second term, i.e.
negative correlations induced by inhibitory interactions are advantageous to the accuracy of
the population code. Figure 5(b) confirms that correlations induced by uniform inhibition lead
to a lower value of the Fisher information than those induced by modulated interactions.

Figure 6 represents the covariance matrix for the two type of interactions (uniform
inhibition and by modulated interactions). The diagonal terms have been removed for the
purpose of visualisation. For uniform inhibitory interactions, the non-diagonal terms of the
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(a) (b)

Figure 6. Covariance matrix of the firing rates for network of 200 neurons with uniform inhibition
(J0 = −2, J2 = 0) (a) and modulated interactions (J0 = −2, J2 = 10) (b). A stimulus is applied
with α = 4, hmax = 2 and φ0 = 90◦. The values on the diagonal have been removed for the
purpose of visualization. The covariance matrix is estimated from a simulation over 100 ms.

covariance matrix are uniformly negative but of very low amplitude2 (figure 6(a)); this remains
true even for very strong inhibition (Spiridon 2000). On the other hand, correlated noise
produced by modulated interactions is positive for nearby neurons and negative between two
distant neurons. Moreover, the same pair of neurons can have different correlations, depending
on the type of stimulus. This can be seen in figure 6(b). Due to the complete symmetry of the
system, measuring correlation between a given pair of neurons while changing the stimulus
orientation would correspond to measuring correlations for different pairs of neurons (separated
by the same preferred orientation difference) for a given stimulus orientation. Compare for
example in figure 6(b) the pair of neurons at 45◦ and 50◦ and the pair at 90◦ and 95◦. Even though
lateral interactions are the same, correlations are quite different. The effect of a correlation
matrix as generated by this type of interaction on the Fisher information has not been studied
yet analytically. Yoon and Sompolinsky (1998) have shown that local positively correlated
noise decreases the estimation reliability. In our case, the estimation reliability is not only
decreased by locally positively correlated noise but also by the negatively correlated noise
between neurons with dissimilar preferred orientation. Indeed, we have estimated that the
accuracy is improved by about 20% when the negatively correlated noise between distant
neurons is removed and only the local positive correlations are retained.

5. Discussion

In contrast to previous work (Ferster and Koch 1987, Ben-Yishai et al 1995, Somers et al 1995),
we were not interested in the shape of the tuning curve, but rather in correlations. In particular,
we did not optimize parameters so as to obtain realistic profiles and we did not discuss how the
form of the tuning curve changes with stimulation. Instead, we have studied how the accuracy
of a population code depends on the lateral connection of a one-dimensional population of
spiking neurons with periodic coupling. We have derived an analytical expression for the
activity profile for stationary stimuli in a network of spiking neurons with internal noise. We
have also studied the CSD of the stimulus orientation, estimated from simulations using the
population vector method. We have shown that sharp activity profiles do not necessarily yield

2 Mathematically, a covariance matrix cannot have only large negative values, because it must be positive-definite.
This explains why, even with strong uniform negative couplings, the amplitude of the negative correlations remains
quite small.
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a better estimation accuracy (Brunel and Nadal 1998, Pouget et al 1999). By comparing the
CSD between a network with uniform inhibition and a network with short-range excitation
and long-range inhibition we have found that the latter interaction produces a less reliable
stimulus estimation. Modulated interactions generate correlated noise that is positive for
nearby neurons and negative for distant ones and this type of correlated noise reduces the
accuracy of the orientation estimate. We have also simulated networks without any lateral
connections (Spiridon 2000). The results are qualitatively similar to those obtained with
uniform inhibition with a slightly lower value of the accuracy.

The effect of lateral connections on the stimulus estimation reliability can also be
understood with intuitive arguments: a neuron k with a preferred orientation different from the
stimulus orientation may increase its activity as a result of its intrinsic noise. For modulated
interaction, this will also increase the activity of its neighbouring neurons because of the local
excitatory inputs. On the other hand, the activity of distant neurons will decrease because
of the long range inhibition. Thus, the total effect is that the instantaneous activity profile
will slightly shift towards the preferred orientation of neuron k. In contrast, with uniform
inhibition, the spontaneous increase in the activity of a given neuron will not develop further,
as neurons close to the orientation of the stimulus will send it a strong inhibitory signal. This
simple reasoning shows that statistical fluctuations are amplified by a network with short-range
excitatory connections, and suppressed by a network with uniform inhibitory connections.

Our studies show that uniform inhibition is more advantageous than modulated
interactions, if stimuli are to be represented as accurately as possible. Stimulus representation
is, of course, only one among many possible tasks of the nervous system. For a working
memory task, for example, modulated interactions with local excitation are useful to stabilize
activity patterns that have been triggered by an external stimulus (Redish et al 1996, Camperi
and Wang 1998).

Appendix A

The performance of the population vector in estimating the orientation is measured by the
variance of the trial-to-trial fluctuations. Special treatment is required to describe the variability
of a directional measure such as the stimulus angle. Because the variable φ is distributed on a
circle, we use the CSD to measure the fluctuations in the orientation.

Suppose we have a set of angles φk , k = 1 . . . K in a range of [0 ;π ]. We calculate

C =
K∑
k=1

cos 2φk, S =
K∑
k=1

sin 2φk, R2 = C2 + S2. (17)

The measure of the circular variance is given by

V = 1 − [1 − (1 − R/K)]1/4 . (18)

The CSD is defined as

CSD = [−2 log(1 − V )]1/2 (19)

where log is the natural logarithm. If the variance is small, equation (19) reduces to

CSD = (2V )1/2. (20)

A theoretical justification of these results is given in Mardia (1972). The CSD as defined
in equation (19) is used to assess the reliability of the angle estimation.
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Appendix B

We start from equation (3) and write it in the form

hint
i (t) = 1

N

N∑
j=1

J (φi − φj )
∑
t
(f )

j

∫ ∞

0
ε(s) δ(t − t

(f )

j − s) ds. (21)

We will show that for a large number of neuronsN 
 1 equation (21) approaches in a stationary
state a constant value hint

i = N−1 ∑
j J (φi − φj ) r(φj ) where r(φj ) is the mean firing rate of

a neuron with preferred orientation φj .
To do so, we will think of our N neurons as being organized in a finite number of distinct

populations. Within each population neurons are assumed to be homogeneous. Only at the
end will we drop the assumption of separate populations; see e.g. Gerstner (1995). Since
the preferred angles φj are evenly distributed over [0, π ], the number n((φ) of neurons in a
population

Gk = {
j |φi + (k − 0.5)(φ � φj < φi + (k + 0.5)(φ

}
(22)

increases linearly with N , i.e. n((φ) = N (φ/π . Let us assume that (φ is sufficiently
small so that J (φi − φj ) ≈ J (φi − k(φ) for all neurons j in population Gk . Since we are
interested in the limit of a large number of neurons, we imagine now that we increase the
number of neurons so that n((φ) 
 1 (i.e. N 
 π/(φ). The number of spikes emitted by
population Gk in a short interval (t is

∑
j∈Gk

∫ t+(t

t

δ(t ′ − t
(f )

j ) dt ′ ≈ n((φ)A(φi − k (φ, t)(t (23)

where A(φi − k (φ, t) is the population activity of population Gk (Gerstner 2000). We may
therefore rewrite equation (21) in terms of the population activities

hint
i (t) = 1

N

∑
k

J (φi − k (φ) n((φ)

∫ ∞

0
ε(s)A(φi − k (φ, t − s) ds. (24)

As an aside we note that in the limit of (φ → 0 equation (24) turns as expected into a
continuum model

hint(φ, t) = π−1
∫ π

0
J (φ − φ′)

∫ ∞

0
ε(s)A(φ′, t − s) ds dφ. (25)

In a stationary state, the average over the firing times of a large group of identical neurons
(receiving the same constant stimulus) is equivalent to the temporal average of the spikes of
a single neuron in that population (Gerstner 1995). In a stationary state, we may therefore
identify the population activity with the neuronal firing rate

A(φi − k (φ) ≡ r(φi − k (φ). (26)

Hence, with
∫ ∞

0 ε(s) ds = 1

hint
i (t) = 1

N

∑
k

J (φi − k (φ) n((φ)r(φi − k (φ) (27)

= 1

N

∑
j

J (φi − φj ) r(φj ). (28)

Note that the concept of discrete populations has only been used for the intermediate steps of
the argument. In the transition from (27) to (28) we have replaced the sum over the populations
by the original sum over all neurons.
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