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Abstract. The Hopfield network provides a simple model of an associative memaory in a
neuronal structure. It is, however, based on highly artificial assumptions, especially the
use of formal two-state neurons or graded-response newrons. In this paper we address
the question of what happens if formal neurons are replaced by a model of ‘spiking'
neurons. We do so in two steps. First, we show how to include refractoriness 2nd noise
into a simple threshold model of neuronal spiking. The spike trains resulting from such
a model reproduce the distribution of interspike intervals and gain functions found in
real neurons. In a second step we connect the mode! neurons so as to form a large
associative memory system. The spike transmission is described by a synaptic kernel
which includes axonal delays, 'Hebbian’ synaptic efficacies, and a realistic postsynaptic
response.  The collective behaviour of the system is predicted by a set of dynamical
equations which are exact in the limit of a large and fully connected network that has to
store a finite number of patterns. We show that in a stationary retrieval state the statistics
of the spiking dynamics is completely wiped out and the system reduces to a network

of graded-response neurpns. In the case of an oscillatory retrieval state, however, the
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spiking noise ancﬁ the internal time constants of the neurons become important and
determine the behaviour of the system.

1. Introduction

Real biological networks are complex systems built of neurons with a variety of
electrical and biochemical properties. In a mathematical model of these networks
one has to neglect a lot of details and concentrate on some important properties. But
what are the relevant facts? Information received at the sensory level is encoded in
spike trains which are then transmitted to different parts of the brain where the main
processing step occurs. Since all the spikes of any particular neuron look alike, the
information of the spike train is obviously not contained in the exact shape of the
spikes, but rather in their arrival times in relation to earlier spikes or in correlatlon
with other neurons. A model neuron which tries to keep track of the voltage trace
even during the spiking—like the Hodgkin-Huxley equations (Hodgkin and Huxley
1952) and similar models (FitzHugh 1961, Nagumo er a! 1962)—carries therefore
non-essential details if we are interested in the information of the spike train only.
On the other hand, a simple two-state neuron or threshold model! is too simplistic
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since it cannot reproduce the variety of spiking behaviour found in real neurons. The
same is true for continuous or analogue neurons which disregard the stochastic nature
of the spiking process completely. In this work we construct a model neuron which
is intermediate between these extremes: we are not concerned with the shape of the
spikes and detailed voltage traces but we want to model spike trains with realistic
interval distributions and rate functions.

In the first part of the paper (section 2) we present the model neuron and give
examples of its firing behaviour. Depending on the internal and external parameters,
the model neuron will produce random or regular firing, oscillating, bursting or
adaptive behaviour. In the second part of the paper (section 3), the model neurons are
linked together via synapses. The description of the synaptic connections in section
3.1 emphasizes axonal delays, 2 ‘Hebbian’ learning rule for the synaptic efficacies, and
a realistic postsynaptic response function. Thus, we construct an associative memory
for a finite number of patterns. In the more technical sections 3.2-3.4 we derive exact
equations of motion and give an analytical solution for the fuily connected Retwork in
terms of the overlaps with the learnt patterns. We show that in the case of stationary
solutions the system can be reduced to a network of graded-response neurons. In
section 3.5 we discuss the static solutions ard give analytical results for two typical
examples. Sections 3.6 and 3.7 feature oscillatory solutions. Here we emphasize

the influence of the spiking noise and the internal time constants of the model on
the collective behaviour of the network., We finish with a couple of conclusions in
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section 4.

2. Properties of a single model neuron

2.1. Definition of the model neuron

From a neural network point of view it is often convenient to consider a neuron as
a simple computational unit with no internal parameters. In this case, the neuron is
described either as a ‘digital’ threshold unit or as a nonlinear ‘analogue’ element with
a sigmoid gain function. If we interpret the input as the driving current of the neuron
and the output as its firing rate, we achieve a simple mapping to real neurons. While
such a simple model might be useful for formal considerations in abstract networks, it
is hard to see how it could be modified to inciude other features of neuronal spiking:
How can we account for the statistical properties of the spike train beyond the mean
firing rate? And what about bursting, adapting or oscillating neurons? Tb mention
but a few of the problems with real neurons.

On the other hand, a model which takes into account all the known biological
details of a particular neuron should start with the microscopic dynamics of electrically
or chemically gated ion channels. Thus it confronts us with the task of integrating

a large number of coupled nonlinear differential equations, a task which is not only
rather infeasible for larger networks but might not even be necessary since the only
information relevant to the network seems to be the spiking event of the neuron.
We would therefore like to adopt an intermediate approach and go one step
beyond the simple input-output unit without worrying, though, about too many mi-
croscopic details. Qur description of the spiking dynamics emphasizes three basic
notions of neurcbiology: threshold, refractory period and noise. In particular, we de-
scribe the internal state of the neuron by a continuous vatriable A which depends on
the synaptic contributions from other ncurons as well as on the spiking history of the
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neurcon itself. Though A is a formal variable with no direct physical meaning, it is
useful to think of it as some current through the membrane of the soma. In a simple
threshold crossing process, a spike would be initiated as soon as h(#) crosses the
threshold #. Due to the statistical fluctuations of the momentary ion currents around
h(#), however, the spiking will be a statistical event, spikes coming a bit t0o early or
a bit too late compared to the formal threshold crossing time, This fact will be taken
into account by introducing a stochastic spiking ‘rate constant’ p which depends on
the difference between the membrane current k and the threshold 6. We choose the
rate constant p in analogy with the kinetic reaction constant to have an exponential
dependence upon this difference:

p(h) = ;};expw(h — 9)] (1)

where the formal temperature 8~! is a measure for the noise and 7, is an internal
time constant of the neuron characterizing the rate at threshold. For 8 — oo the
rate constant p changes from 0 to oc when % passes from values below threshold
to a value above threshold. This means that a spike will be fired immediately after
h has crossed the threshold. For finite 3 the spiking will be delayed or advanced
stochastically. The rate constant p of stochastic spiking is the relevant parameter in
a continuous-time description and should not be confused with the probability Fr
of firing during one time step in a discrete-time representation. If the variable h
changes only slowly during a conveniently chosen time At (dh/dt << h/At), we
can integrate the spiking rate constant p over At yielding the probability Fr of firing
during a time step of length At:

Pe(h) = 1 - expl-Atp()] = 1 -exp { - 2L explB(h - 601} @)

This is a sigmoid function with Pr(h) — 1 for A >> @ and Pp(h) — 0 for h << 8.
It is similar to the firing probability Pp(h) = 1(1 + tanh 8h) usually assumed in
statistical neural networks, but it lacks the ‘antisymmetry’ under inversion. With
equation (2} we have an analytical procedure to go from the continuous-time model
to a dynamics with discrete time-steps which we will use later on.

If a spike is initiated in a real neuron, the neuron goes through a cycle of ion
influx and eflux which changes the internal currents on a fast time scale and prevents
immediate firing of another spike. To model this, we reset the variable h after each
spike by adding a negative refractory field h(t),

R(t) = h*(t) + h'(2) )
with

HOEDPIESN )

i

where ¢, is the firing time of the ith spike and A*(t) is the sum of the postsynaptic
contributions due to incoming spike§ from other neurons. The refractory function
€’(r) is the central notion of our model. The introduction of such a function is
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justified at this point purely phenomenologically. It is based on the traditional neu-
robiological ideas of the refractoriness of a neuron and it allows us to model neurons
with different spiking characteristics. On a microscopic level we consider the refrac-
tory function as a means to describe the effects of the various ion currents. Simply
speaking, the main effect of the ion currents immediately after the spike is to raise (or
lower) the effective threshold value. This is exactly what is modelled by the refractory
function €"( ).

2.2, Examples of spiking behaviour

Instead of integrating the unknown ion currents to get the refractory function, we
adopt a phenomenological approach and guess a refractory function which will lead
to a realistic spiking behaviour of the model neuron. As a first example we assume a
simple refractory function with an absolute and a quickly decaying relative refractory
period. A neuron with such a refractory function shows the desired sigmoid depen-
dence of the firing frequency on the input current and at the same time realistic
spiking statistics (figure 1). Indeed, the interval distribution changes from approxi-
mately Poisson for driving currents below threshold to approximately Gaussian above
threshold. This can be compared with the experimental spike discharge patterns of
spontanecus and stimulated activity (figure 2) that have been found in the cochlear
nucleus of anesthetized cats (Pfeiffer and Kiang 1965). The general shape of the
distribution and its stimulus dependence is rather similar to figure 1(c).

An analytical expression for the interval distribution can be found as follows.
Consider an ensemble of model neurons that af! have fired at 7 = 0, Due to
absolute refractoriness, they cannot spike immediately afterwards, but then the effect
of refractoriness as modelled by the refractory function () decays and more and
more neurons of the ensemble will fire again. The portion of neurons that have not
spiked for a time T after the spike at = = 0 is given by the ‘survival function® (Perkel
et al 1967)

p(r) =exp (- [ dsots) o)
with the firing rate constant, equation (1),

p(s) = (1/7o) exp{Blh"(s) + h* - 6]}. (6)

The interval distribution D(7)d is the portion of neurons that have ‘survived’ for
the time r and fire between 7 and = 4+ dr, ie.

D(r) = p(r)o(7) = - 2op(7). @

This is the function that has been plotted in figure 1(c).
The mean interval length is obviously given by

E—"-'_-‘.[om TD(r)dr =-./0°° p(7)dr. | ®)

The mean firing rate can then be defined as the inverse of the mean interval length
7, and if we plot the mean firing rate as a function of the input current h* we get
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Figure 1. Standard neuron. (g) Refractory function e (r) with an absolute refractory
period of 5 ms and an exponentially decaying relative refractory period (time constant
2 ms} yielding the gain function and spiking characteristics shown in (B)—(f). (b} Gain
function with the typical sigmoid dependence of the spiking frequency upon the input
current. {c) Interval distribution D(r). For large input currents the distribution is
sharply peaked and of ‘Gaussian’ shape indicating regular firing {input I = 0, lefimost
curve; [ = —1, second curve). Low input yields a flat distribution with a long exponential
tail as expected for stochastic firing (J = —2, third curve; I = =3, bottom curve). (d)-
(f) examples of spike wains. For Jarge input~current the firing of the model neuron is
regular (I = -1 in (d)), for low input currents it is stochastic (J = -2 in (¢); I = -3

in ().
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the gain function f(h®) of the neuron (figure 1(b)). Thesc notions will be again of
importance in section 3 where we discuss a large network of the model neurons.

Other forms of the refractory function lead to a variety of different firing charac-
teristics including oscillating or bursting behaviour, While it remains an open question
whether bursting is a collective effect of an ensemble of neurors or else an intrinsic
property of a single neuron, it is interesting to see that there exist simple models
which are capable to produce bursting as a single neuron effect. Figure 3 shows such
a ‘bursting’ neuron at three different input levels. At a low input level the bursts
are noise induced and appear at irregular intervals (figure 3(b)), with higher input
currents the bursts are more frequent and appear in regular intervals (figure 3(c)).
If the input current rises even further, the ‘bursting’ neuron switches to a regularly
oscillating behaviour (figure 3(d)). The suppression of the long interburst intervals
leads to a marked increase in the mean firing rate (figure 3(e)). Pleasc note the
pronounced adaptation effect in figure 3(d). This is due to the slow time constant
of the refractory function and can be seen in any model neuron with a long-tailed
rcfractory function (figure 4). In these cases, the gain function reaches only slowly its
saturation value (figure 4(b)); even at a high input level, the neuron scttles to a state
with a comparatively small firing rate.
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Figure 3. Bursting neuron. (#) Refractory function € (7) with a slight overshooting
at intermediate time scales leading to the bursting behaviour shown in (B){e). (B)~(d)
Examples of spike trains. At a low input level (7 = —3 in (b)) the bursis have various
lengths and appear in irregular intervals. For higher input current (I = -2 in (¢)) the
bursting is regular. (d) Strong input leads 3 regular oscillations of the model neuron.
Note the adaption at the beginning of the spike train. (¢) Gain function of the bursting
model seuron.
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Figure 4. Adaptive neuron. A refractory function €"(r) with a long relative refractory
period (a) leads to a adaptive behaviour. This is seen in the spike trains (¢) and {d)
which start with a couple of short intervals before they settle at a much longer spiking
period. With an input of [ = 4 (¢) the interval length is growing from 3 to 7 ms; with
J = 2 (d) intervals range between 4.8 and 8 ms. The firing rate after an adaptation
period of 50 ms is plotted in {b}.

2.3. Comparison to the Hodgkin-Huxley model

As a fina} application of the ideas presented here, we would like to compare our
approach to the well-known Hodgkin-Huxley model (Hodgkin and Huxley 1952).
Numerical integration of the Hodgkin-Huxley equations for a realistic set of parame-
ters shows that the current flow during the spiking process and immediately afterwards
is always the same, independent of the level of the driving current. This is the under-
lying reason why we can hope to replace the internal dynamics by a simple refractory
function €*(7) which can be found as follows. The ideal refractory function should
be designed in a way that the simplified model exactly reproduces the gain function
F{I) of the Hodgkin-Huxley equations. We identify now the driving current [ of
the Hodgkin-Huxley model with the input #° of our model. For a fixed 2* > 0, a
noiseless mode] neuron (8 — oo) fires regularly with a period T which can be found
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from
e(T) = A°(T) = ¢ — h°. ©

The period T should equal the firing period of the Hodgkin-Huxley model at the
same input

T=1/f(I) (10)

with [ = h®. Solving equations (9), (10) for different driving currents we can construct
the ideal () which we have plotted in figure 5(a). To simplify it further, we can
approximate this function in the relevant region of input currents by an ansatz

—00 for 0 < 7 £ 1
(r)mallr =) = (m—1)71]  forty<r<m, (1)
0 for > 7,

with parameters o = 48,7, = 19.1 ms and t{; = 9 ms. For the threshold # in
equations (1) and (10) we take the threshold current of the Hodgkin~Huxley model.
The gain function of both the Hodgkin—Huxley model and the approximated model
are plotted in figure 5(b). The finite range of the refractory function, ie. ¢ (1) =0
for + > T, results in a discontinuity of the gain function at threshold.

a)
10.0 . .

0.0 10.0 20.0 20.0
tirme [ms]

frH=z] [

50.0

Q.0 5.0 10.0 15.0 20.0
input

Figure 5. Hodgkin-Huxley neuron. () Refractory function ¢"(r). Starting from the gain
function of the full set of equations we derive the refractory function of this model (dotted
curve, see texi for details). An approximat'cd refractory [unction is shown by the full
curve. It vanishes for 7 > ry = 19.1 ms. (b) Gain function of both the approximated
model (futl curve) and the full model (dotted curve). Note the discontinuity at threshold.
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The above model may be compared with the approach of Abbott and Kepler
(1991) who systematicaily reduce the Hodgkin-Huxley equations to various model
systems, in particular to a dynamic binary model. They have shown that it is possible
to describe the simplified system by a continuous variable u combined with a fire-and-
reset process which is taken care of by a two-state variable S. This result may give a
qualitative justification of our ansatz, but the details of our description are different
from their model. Abbott and Kepler concentrate on the dynamic description of
refractoriness and recharging after firing, putting less emphasis on the driving current
I. Our approach, however, can exactly reproduce the I-dependence and thus the
gain function of the Hodgkin-Huxley model, at the coSt of neglecting details of the
underlying dynamics.

The comparison to the Hodgkin—Huxley model, however, should not be overesti-
mated. One has to realize that Hodgkin and Huxley have proposed their equations to
describe a rather special experimental system, ie. the giant axon of the squid. Their
equations give an accurate description of this system under well defined conditions,
but they should not be taken to be general and to describe the spiking of all other
types of neuron. On the other hand, our extremely simplified model which does not
aim at a detailed description of the internal ion currents is flexible enough to account
for various spiking features like adaptation, oscillation, ‘bursting’, and randomness of
firing. Since the description of an individual neuron is comparatively simple it seems
worthwhile to couple many of these neurons together into a large neural network.

3. Behaviour of a network of model neurons

3.1, Definition of the network

So far we have only described a dynamics that initiates the spikes in the neurons. Now
we have to describe the synaptic transmission of the spikes to other neurons. To keep
track of the spikes we assign to each neuron a two-state variable S; which usually
rests at —1 and flips to 41 only when a spike has been initiated. In the discrete-time
representation that we assume in this and the following subsection the output of each
neuron is described by a sequence of Ising spins S;(t,). It is convenient to choose
the length of a time step At to be equal to or slightly less than a spike width, say
0.5 ms. According to the considerations of section I, this should enable us to resolve
afl the information contained in a spike train with a reasonable number of discrete
steps.

With the choice of the spike width as the length of a single time-step we have
already selected the basic time scale of our model. The model contains, however,
another time scale which is associated with the maximum spiking frequency of the
neurons. Even when firing at maximum frequency the output of a neuron is still a
well resolved spike train, the spikes being nicely separated from one another. Let us
assume that a maximally firing neuron is quiet for (~ — 1) time-steps before it fires
again. In terms of our model this implies that the absolute refractory period has a
duration of (v — 1)At while the maximum firing frequency is (1/vyAt).

The length of the absolute refractory period is an important parameter of our
model and ~ can be used to normalize the output of neuron 7 so as to allow a
comparison with formal two-state neurons. We define

5= (v/2)(S: + 1) (12)
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This definition leads to a time-averaged output of 41, if the peuron ¢ fires with
maximum frequency, and an average output of 0, if the neuron is inactive. These
limiting cases correspond therefore to a formal (1-0)-neuron o, where o; = +1 has
the usual interpretation of firing with maximum frequency, o; = 0 as inactive.

Now we want to gather these model neurons into a large network. In the spirit of
the Hopfield model (Hopfield 1982) we assume a fully connected network in which
we store a finite number of patterns.

If a neuron i receives a spike from another neuron j, the spike will evoke a
postsynaptic potential at i, the strength of which depends on the synaptic efficacy
J;;- The time course of this response, however, can be taken to have a generic
form independent of the strength of the synapse. If the synaptic transmission of a
single spike evokes postsynaptic currents of the functional form e*(7), then the total

postsynaptic response will be

Tmax

Ri(t) =D Jiy Y €(rn)5i(t, = 7) (13)
b

Tm=0

where we assumed a linear superposition of the synaptic contributions. The function
€*(7) can be the experimentally measured response function of a particular neuron or
a typical model function normalized such that 1 = f° *(7) d7. In our simulations
we typically take

. _fo for 7 < A,
O ={{trsnsmriontr- a0l 75 s,

where 7, is the characteristic response time of the synapse and A, is the axonal delay
(figure 6). For the synaptic efficacies we assume the Hebbian matrix

4

2 < .
Ty =yl for i j (15)

where the variables £/ € {1} with 1 £ ¢ £ N and 1 < p £ ¢ describe g random
patterns with Prob(ff‘ = +1) = 1. The prefactor 2/N is useful for normalization.
0.20 T ¥ T
e® | ]
Q.10 —
Ke) L
° OO.O 5.0 1.0 15.0 =20.0

Fa VN time [Mms]

Figure 6 The synaptic response funciion €¥{r} as a function of time r after the firing
of a presynaptic neuron. Due to the axonal delay, there is no response during a time
A,. The response function reaches its maximum after a rise time {7; = 2 ms) and
decays to zero afterwards,
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The synaptic weights J;; together with the synaptic response function €°(r) are
the basic quantities in the linear ansatz (13) to describe the effect of the incoming
spikes. After we have defined these quantities it is straightforward to incorporate the
internal dynamics of the neurons as described in the preceding section. The refractory
field can be introduced as the diagonal element of the synaptic connection matrix,

Tmax

Ri(t,) = D Julr)lSi(t, — 1) +1]/2 (16)

o =0

which is a kind of self-intcraction. If all neurons are equivalent, the diagonal elements
must be independent of i and J;(7) = €"(r) describes the generic response of a
neuron after emission of a spike. For later calculations we note that in the case of
discrete-time dynamics and a finite range of ¢"(7,) with 7, £ 7, the refractory
field takes only a finite number of values.

3.2. Derivation of the equation of motion

Through equation (2) we have defined the spiking probability Pp(h;) of neuron 7 as
a function of the variable h;. At every time-step ali neurons are updated in parallel,
We have also defined h; in terms of the spiking history of all neurons

hi(t) = hi(t) + hi(1). 17)

The synaptic contribution h} , equation (13) couples neuron : to all other neurons

while the refractory field At gives a self-interaction of neuron ¢ with itself. Thus we

are left with a set of highly coupled stochastic equations, which we are going to solve.
We start by rewriting equation (17) in terms of the overlaps

N
2 -
mlu(t) = ﬁ E E;SJ(t) for u=1i,..,¢9 (18)
i=t

which measure the cortelation of the firing state with the patterns. The overlap m,
takes its maximum value -+ only if the firing state is identical to pattern u. It is 1,
if all neurons that should be active during retrieval of pattern u fire incoherently
and with maximum rate while all other neurons stay quiescent. Using equations (13)
and (16) we find

hi(t,) = hi(ta) + hi(t,)

= Z Z'E?Es(rm)my(?n - Tm) + Z Er(Tm)[Si(tn - Tm) + 1]/2

H=1Tm=0 Tm=0

(19)

Since m,, is a global quantity independent of the index ¢ of the neuron, all neurons
which have learnt the same local information & = (¢/, 2 = 1,...,¢) and which have
the same momentary refractory field Af, will experience the same momentary field
h = h(z,h" t,).

For a finite number of patterns and finite range of the refractory ficld, the number
of different = and A" is finite. To be specific we assume n + 1 possible values for
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the- refractory field A € {h% h!,...,h"™)} and there are 29 different states for the
vector * € {£1}9. At each time-step we can therefore separate the N neurons
into a finite number of different classes, the sublattices I(z,h",¢,) (van Hemmen
and Kithn 1986, van Hemmen et al 1986, 1988), each class containing neurons which
experience the same field h(x,h",t,). The number of neurons belonging to the
same class, |I(x, h",t, )|, may be different for different classes and may change in
time. In the limit of N — oo, however, each class contains an infinite number of
_ID It follows that the activity A of the suhlattice T(:r ht, ﬂ

=]
o
2]
o
7~}
o~

3

=

r — 1 — ~.
A(m,h ,tn) - [I(:ﬂahrst )I Z S‘(tn) (20)

i€ M,k ty)
takes exactly its average value
1 ~
A(m BTy t,) = lim e S Sty
Np(ﬂ.’. h t ) icHe, b t,) (21)
= vFp(h(=, hr:tn--l))

where p(=z,h,,) is the probability for a neuron to belong to the class I(x, A", ¢, )
at time t, , ie. Np(=z, k", 1) = |I(e, h*,1,)|. Using these concepts (van Hemmen
and Kiihn 1986, van Hemmen et af 1986, 1988, Riedel er al 1988, Herz ez al 1988,
1989) we derive an exact expression for the evolution of the overlaps

9 N
m”(tnﬂ) = llmm N Si(tne1)
. 2 %
= lim 3~ N 2o &8t

:,hr jEI(ﬂ!,h"tn,i.l)

1 ~
= lim 3 2p(z,htt )t D o 8(1,4). (22)
N—oo ﬁqh' j’EI(X,h‘,I“_Jr‘} Np(m5 h ,tn)

Using (21) we obtain

(1) =27 3 2*p(x, k", 1,) Pr(=, BY, 1,,) (23)
x,ht
and
g Tmax
h(z, hTot,) =Y 2 3 ()M, (t, — 7)) + A% (24)

u=1 Tm=0

In this implicit equation for the overlaps m,, the values of the p(w,h",t,} are
still unknown., In 2 second sten we must thprpf‘nrp find the eauations whmh de-

Siil eaidalSY pats -. e aiaveddy  aabea walfafe axiiia e Raad i L LR

scribe the relative probability of a neuron to belong to one specific sublattice.
This, however, is not a difficult problem. For randomly drawn patterns each vec-
tor £ = (z!,2%,...,29) € {£1}? is equally likely. For a given = on the other hand
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the time evolution of p{z,h",t,) i given by the master equation
P(Is huatn.{.l) - p(:t:, huatn)[l - PF(hO)} + p(:c, hl’tn)[l - PF(hl)]

p(=, k¥ 1, 0) = (=, R, 2 )1 = Pp(RF)] 1€kgn—-1 05

plz, A" 100} = > pla, hF, 1) Pe(hF)

which can be solved for the stationary distribution in terms of the known firing
probabilities Pr(h*).
3.3. Continuous time limit and interpretation

For analytical considerations it is more convenient 1o consider the corresponding

system in continuous time. We write

Pr = pAt

h™ = h7(s)

plx, A", 1) =P(x,h"(s),1})As
T )= ()AL

Nt/

(26)

and take the continuum limit At — O while keeping the duration of the absolute
refractory period vAt = -, fixed. Then (23) and (24) turn into a set of coupled
integral equations

t) = 27,_21'” J[ds';'o‘(a:,hr(s),t)p(a:,h"(s),t) 27
and

hiz,h7(s),1) =Z:r:*‘fdf?‘(r)mp(t—r)%-h"(s). (28)
p=l

In this limit, the spike train of each neuron {S;(%,),...,8;(¢,),...} reduces to a
sequence of §-functions, while the master equation (25) becomes

2 pa k() 1) = —p(@, 7 (5), (e, (), ) + Bz, h7(5), 1) k" (5)

29)
with
Blo k(0 8)= [ dsB(a,h7(s), oz, h7(s), 1) @0)
and the normalization conditions
Bz, "(0),1) = 0
(31)

ja dsp(z,h7(s),1) = p(=)
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where p(z) is the probability to belong to the sublattice .

Equations (27)~(30) are the main result of this section. Let us discuss the
various quantities in these equations. Instead of equation (27) we can write
m, = 27, L, " p(®) A(w, 1) with the sublattice activity

Az, 1) = ﬁfowds-ﬁ(m,hf(s),t)p(z,hf(s),t)- (32)

Comparing this with equation (30) we find p(z,h"(0),1) = p(x}A(=,t). Let us
analyse the meaning of equation (32). The expression B(x,h"(s),t)ds in the inte-
grand of equation (32) is the probability of a neuron to belong to the sublattice =
and to experience at time ¢ a refractory field A" with h"(s) < A" € A"(s + ds).
The factor p(=,h"(s),t) in the integrand is the firing rate constant, equation (1), of
such a neuron, i.e.

p(x, h7(s),1) = (1/mp) exp{B[A"(1) + R7(s)]}. (33)

Here we have set @ = . Thus the quantity A(z, ) is the ensemble averaged activity
at time t of the neurons in sublattice = independent of the refractory field ~7™(s) the
neurons had before firing. Or, to phrase it differently, A{=,t)dt gives the number
of neurons in sublattice z which emit a spike during the time between ¢ and ¢ 4 di
divided by the total number of neurons in this sublattice.

The neurons which are inactive at time ¢ give no explicit contribution and are
coupled only via the variable h(x,h"(s),t) in (28) which consists of two parts.
The first one stems from the synaptic connections to other neurons and is a sum
over the activities at earlier times, weighted with the response function €°(1), ie.
he(t) = ‘“q o z* fdre(r)m (1‘ - 1), the second is the refractory field. The
refractory term h" takes care ol‘ the spakmg history of the neuron 1tself while h?*
includes the spiking history of all other neurons.

A major problem, of course, is to find an explicit form of the B(x,h"(s},1). As
a first step, we integrate equation (29) yielding

1 — 3'\ r'l.e“-l 341
;48 W

which suggests the following interpretation. A neuron of sublattice = with a refractory
field h7(s) at time ¢ must have spiked earlier at time (£ — s) (first factor of product)
and may not have spiked since then (second factor).

The set of integral equations (27), (28), (30) and (34) provides a complete description
of the dynamic evolution of a network starting from some initial conditions. An
attempt to solve these equations analytically, however, seems rather infeasible. But
with some additional assumptions regarding the type of behaviour that might be
expected, it is possible to find special solutions.

First, let us asume that there exists a stationary solution to these equations. By
this we mean that all macroscopic quantities, i.e, the order parameters m () and the
sublattice activitics A(x,t), take constant values. Since the m, involve an average
over many neurons, such constant solutions might be possible, despite the fact that
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every single neuron has an internal spiking dynamics. In fact, we expect that a solution
which retrieves the (stationary} pattern {£/'} has a large and constant overlap m,
with this pattern.

If the overlaps are constant, m (i) = m,, then the local field in equation (28)
reduces to

9
hiz, hT(s),%) = Z ztm, + h"(s) = h° + A"(s) (35)
p=1
with no explicit dependence upon t. The same is true for the ratc constant

plx,h7(s),1) = (1/mp) exp{-B[R° + R7(s)]} = p(2,h"(5)). (36)

We can thus drop the explicit ¢-dependence in equations (31) and (34) which yields

=] a3
p(®) ='ﬁ(m,h’"0)/ dsexp [—/ ds’'p(z, h"(s")) (37
0 o
and with (30) and (34)
~1
Alz) ={J[°° dsexp [—st olz, h7(s") ds’]} . (38)
0 0

This might still look rather complicated, but if we compare the final expression with
equations (5) and (8) in section 2.2, we realize that the term in braces is just the
mean interval length of the spike train of a neuron in sublattice =. Thus the activity
A(z) is equal to the mean firing rate of the neurons in sublattice . At the same time
A(a), as defined by equation (32), is directly related to the overlaps m , equation
(27), which characterize the macroscopic states of the network. We can therefore
express the stationary overlap m, in terms of the mean firing rate f(h°} at some
input level h®(x). And if we know the mean firing rate as a function of the input
current h*, ie. the gain function f(h®) of the neurons, then we can immediately
find all the stationary solutions of the network equations (27)-(30). In particular, the
explicit dependence on the refractory state h™ has been eliminated, This does not
imply, however, that the internal state variable has disappeared altogether, but, as we
have seen in section 2, the refractory function e"(7) is implicitly present in the shape
of the gain function f(h*).

3.5, Examples of stationary solutions

In summary, we have reduced the task of finding the stationary solutions to a set of
simple equations

m, = 27, »_ p()z* f[A(z)]
g (39)
hix) = Z zHm,

where f(A)} is the gain function of the neurons and hA(z) = A® is the synaptic input
of neurons in sublattice .
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This result is much more general and independent of the specific model of the
neuron that is used (Amit and Tsodyks 1991, Gerstner and van Hemmen 1992). It
is based on the high connectivity of the network which allows application of the law
of large numbers. It implies that all traces of stochastic spiking are wiped out and
the gain function of the neuron is the only object that matters. Thus we are led to
a description by ‘graded-response neurons’ which are often used as the basic units in
models of neural networks (Hopfield 1984). Our derivation of equation (39) shows
that it is in fact possible to justify such an ansatz for the stationary solutions of a
highly connected network. In section 3.6 we will show that in the case of oscillatory
solutions the spiking of the neurons becomes impottant—a description by mean firing
rates that is a condition for graded-response models is under these circomstances not
realistic. We now turn to some specific examples.

3.5.1. Model with absclute refractory period. As a simple, but instructive example, let
us consider a model with an absolute refractory period only, ie. €"(7) = —oo for
T < =, and 0 otherwise. Using equation (8) of section 2.2 we find the gain function

f(h) = exp(Bh)/[ro + v, exp(Bh)]. (40)

Assuming that there is overlap with one pattern only, ie. m, = mé,,, we find

wy?
m == sinh h{ 8m)/[a + cos h({ fm)}] (41)

where we have introduced the parameter o = 3{(v,/7) + (70/7,)]. In figure 7
we have plotted the function G{h) = sinh A/[e + cosh k] for different values of
the parameter «. The intersection of G(h) with a straight line of slope 1 /3 yields
the stationary overlap m. In figure 8 we show m as a function of T = 38~!, For
parameters o < 2 (figure &(a)), the overlap decreases continuously with temperature
and reaches 0 at a critical noise level T. = (1 + «)~!. The trivial state m = 0
is unstable for T < T_ and stable for T > T,. We thus have a continuous phase
transition similar to the one that has been found in the Hopfield network (Hopfield
1982, Amit et af 1985) o which the system formally reduces in the limit & — 0.

oy

0.0 2.0 4.0 &.0 8.0 10.0
h

Figure 7. Model with absolute refractory period. The function G(h) == sinh & /[ +
cosh k] has been plotted as a function of the field kb for two different values of 2 o
(o = 1, full curve; o = 12, broken curve). The intersection of G( k) with a straight line
of slope 1/8 (dotted curves) yields the stationary overlap |m|. The critical f.emperalure
is lower for large o and an additional {unstable) salution appears.

The behaviour, however, is completely different for parameter values o > 2. In
this case (figure 8(b), (c)) a regime of bistability occurs in which both the trivial
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state and the retrieval state are stable stationary states of the system. (This does not
exclude that these states might be unstable with respect to oscillatory solutions, see
section 3.6.) The bistability has two effects on the behaviour of the system. To discuss
the first one, we keep the noisc level 3 fixed and assume that the system starts with
some initia} overlap. Depending on whether the overlap is larger or smaller than
the overlap m' of the unstable fixed point, the system either reconstructs the pattern
and goes to the retrieval state, or it reduces the overlap and goes to the trivial state.
Thus, the unstable fixed point acts as a threshold value for the retrieval of the pattern

(figure 8(c)).
a)

0.0 o.z G.a c.6 o.8

b}

Q.00 .10 o.20 Q.20 .40

“0.00 .10 o.20 0.30 0.40
T

Figure 8. Overdap for a medel with absolute refractory period. The overtap mt is given
as a functlon of temperature T for two values of the parameter o, « = 1 (a) and
o =38 (b) and (c), of fipure 7. For &« = 1 we have a oontinuous phase transition with
a critical temperature T = 0.5. For a = 8 we have z regime of bistability between
T} = 1/9 and T? leading to a hysteresis behaviour, if the temperature is varied ().
At fixed T the unstable solution acis as a threshold for retrievat {¢).

The second effect is a hysteresis behaviour as shown in figure 8(b). If we start at
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a high noise temperature and ‘cool’ the sysiem, the overlap changes discontinuously
from m = 0 to m = 1 at the lower critical temperature TV = 1/{(1 + ). On the
other hand, if we ‘heat’ the network starting at zero temperature, the network stays in
the retrieval state until the upper critical temperature T T is reached where it jumps
discontinuously into the trivial state. In terms of thermodynamlcs this behaviour
indicates a first-order phase transition. Thus, a network of neurons with large o, ie.
very long or extremely short refractory period compared to the intrinsic time constant
Ty, belongs to a different universality ciass than the Hopfield network

Note that in the noiseless case, ie. T = 0, the overlap m is equal to 1 and
all neurons fire with maximum frequency. This effect, however, is an artifact of
the model with absolute refractoriness which in the noiseless case has a step-like gain
function. If we include a relative refractory period, then the gain function is smoother
and solutions with low firing rates are possible—even in the noiseless case.

3.5.2. Model with relative refractory period. We now want to generalize the above
arguments and include relative refractoriness. To keep the formulas simple we take
a refractory function of the form

r R for0 < rg,
(= {—Gu/(f —~)  for v >, (“42)

In the noiseless case, the gain function of this model is given by

0 for h <0
()=
hi{(es + v, ) forh>0

As before we assume that we have a macroscopic overlap with one pattern only, ie,
m, = mb,,. Using (39) and introducing the parameter ¢ = ¢;/~, we find

Im| = {m{/(c + [m]) (44)

with the solutions m =0 and |m|=1—e.

Two things are worth noticing. First, non-trivial solutions exist only for ¢ € 1.
This corresponds to the well known result for graded-response neurons that the slope
of the gain function must exceed onc at the origin (Hopfield 1984). In terms of our
model, it means that the relative refractory function must decay fast compared to the
length of the absolute refractory period. Second, for 0 < ¢ < 1 solutions with low
spiking rates are possible. This clarifies an old problem of associative neural networks.
An extensive discussion of the ‘problem of low spiking rates’ has been presented by
Amit and Tsodyks (1991) who use an argument based on the ‘mean firing rate’ for its
solution. To see that there are solutions with low firing rates in our model, we notice
that |m/| gives the firing rate of neurons that are active in the retrieval state in units
of the maximum firing rate. Thus, adjusting ¢, it is possible to construct solutions
with arbitrarily Jow spiking rates, at least in the noise-free case (figure 9(a)).

What happens if we add noise? In this case, the mean firing rate can be found by
numerical integration of equation (8). The dependence of the mean firing rate upon
the input current i yields the gain function f(h) which determines via equation (39)
the overlap m. In figure 9(b) we have plottcd the function ~,.[ f(h) f(— h,)] for a
neuron with ¢ = 0.25 at various noise levels. The intersection with a eralguL line of
unit slope yields the retrieval overlap. If we add more noise, the intersection point
moves continuously down to zero. Thus we have a continuous phase transition and
retrieval solutions with Jow spiking rates are possible.

(43)
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Figure 9. Model with relative refractory period. {(#) Gain function. The intersection
of the gain function f{h} (solid curves) with a sirajght line of slope 1 (broken) vields
the stationary solutions in the limit § — co. For models with a long refractory period,
¢ > 1, the gain function has low gain and retrieval is not possible (lower full curve,
c = 2). For 0 € ¢ < 1 retrieval solution with overlap |m| = 1 ~ ¢ exist which allows
for retrieval at Jow spiking rates (upper full curve, ¢ = 0.25). The critical value is
¢ =1 (middie fuii curve). {p) in the case of finiie 5, we have i0 consider ihe funciion
F(R) - f(—h) which we have plotted for § =8 and @ = 4 (broken curves) with the
parameter ¢ = 0.25. The intersection of this function with a line of unit slope (dotted)
vields the retrieval overlap |m) which is smaller than in the noise-free case (full curve).

3.6, Oscillatory solutions

So far we have been concerned with stationary sofutions only. In this case it has
been possible to reduce the system to an equivalent network of graded-response
neurons, equation (39), where the gain function of the neurons is the only object
that matters. This is due to the fact that for constant solutions the mean firing rate
which is defined by a time-averaging procedure becomes equal to the activity A which
involves an ensemble average over all neurons of a given sublattice. In the case of
time-dependent solutions, however, this is no longer true and we have to deal with
the full set of equations for the ensemble, equations (27)-(31).

To get some insight into the type of solutions that might be possible, we consider
the noise-free case, ie. @ — co. In this case the rate constant p, cf equations (1)
and (33), reduces to a strict threshold condition and the peurons fire immediately, if
h(t) = h"(1)+h*(1) > 0. We could take the set of equations in the limit 8 — oo and
try to derive conditions for the stability of the stationary solutions that we have found
and discussed in the preceding sections. Instabilities could lead to time-structured
sclutions, in particular to collective oscillations of the activity. Instead of this, we
take the opposite approach. We assume that there are coherent oscillations and we
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discuss the self-consistency of such an ansatz. To be specific, we assume that all
nevrons that should be active during the retrieval of pattern u, ie. neurons with
z# = 1, have fired coherently at times ¢ = 9,--T,-27T, ... while the ‘off’-neurons
with z# = —1 stay quiescent. With these assumptions we can calculate the period
T. For the ‘on’-neurons, the activity A in equation (32) reduces to a sequence of
é-functions

A(z* =1,1) =“2=_§° §(t+nT) (45)
n=0

which yields for the overlap
m (D =m) =73 §(t+aT). (46)
NS N L—J d LY 4

Using this in equation (28), we find the synaptic contribution

=00

h’(a:“,t):qrx"/d‘r'e‘"(r) Z §5(t+nT—1)

= .24 Y & (t+ nT). (47)

n=0
Similarly we find for the refractory field of the ‘on’-neurons (equation (4))

2]

RU(t) =Y € (14 nT). (43)

n=0

If the system approaches ¢ = T, the threshold condition A™(T) 4 A*(T) = 0 must
be fulfilled to support the coherent spiking cycle of period 7. Evaluation for m =1
yields for neurons with =* = 1,

ca [}
S €(nT) =7, 3 & (nT). {49)
a=1 n=1

Neurons with z# = —1 should stay quiescent, which requires
(= +]
Y e(t+nT) 20 for all ¢ (50)
n=0

which is trivially fulfilled if €°(+) 2 0 for all T.
Equation (49) yields the period T If furthermore E‘,’f L€ (nT) € €(T), and

o0
En_zc {w..: -4 Er{.( b then T can be found b oY & auu}nu yayuxwl PLG%dU:u In

figure (%) we have plotted ~,€°(r) and also (—¢"(7)) as a function of the time
+ after the last spike. The intersection of the two functions yields the period T
of a coherent oscillation. By a slightly more involved argument, it can be shown
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Figure 10. Network oscillations. The negative of the refractory funetion —e"(r} (dotted
curve) and the synaplic response -y, €*{7) (full curves) have been plotted as a function
of the time T after a coherent spiking event in the network at r = 0. We consider
wo different axonal delay times, short delays (A,A, = 2.5 ms) and long delays
(B.A, = 5§ ms). The intersection point +;¢*(r) 4+ €7{r) = 0 yields the oscillation
period T. Note that in both models the oscillation period is approximately ihe same,
but the oscillation is stable only if the slope of * is positive at the intersection point,
as in B.

analytically (Ritz 1991) that the collective oscillation is stable only if the slope of the
synaptic field

a L
52717 >0 (51)

which in the case of a quickly decaying refractory function reduces to

3.
=T > 0.

o

Thus we can predict from figure (10) that in a model with short axonal delays (network
A) oscillations are unstable and the system returns to a stationary state, while a long
axonal delay time supports synchronized spiking (network B).

3.7. Examples of ascillatory solutions

We have simulated a network of neurons with a refractory function

—00 for 0 < €,
T} = 52
e {—eo/(r c) forT> 7, ¢
with the parameters v_ = 4.5 ms and ¢, = 1 and a synaptic response function
0 forr <A
e{r) = : ¢ (53
O={(r ool -aym) rrsa, ’

with a responsg time r, = 2 ms. The axonal delay time A, is then the only free
parameter and we have considered two different cases, ie. a short delay A, = 2.5 ms
(network A) and a longer delay A, = 5 ms (network B). Both functions are plotted
in figure 10. The simulation results for a network of 900 neurons are shown in
figure 11 where we have plotted the instantaneous overlap m(t) and the postsynaptic
field h*(¢) as a function of time. In the simulations the time-step A¢ was taken to
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be 0.5 ms. In the low-noise limit, the network A with short delays approaches a
stationary state, whereas the network with long delays (B) is driven into a coherent
oscillation. Both the oscillation period of 6 4+ 0.5 ms and the stability of the solution
can be predicted from the argument of the preceding section. The magnitude of the
stationary overlap |m| = 0.77 of network B is consistent with the calculations in
section 3.5. If we add noise, the perfect synchronicity of the spiking is destroyed and
the oscillation amplitude is smaller (figure 12). At high noise level (3 = 2) retrieval

is no longer possible. Thus noise is an important parameter that determines not only

the magnitude of the retrieval overlap, but also the time structure of the solutions.

2}

mh

.0 EOI.O 100.0 150.0

time [m=l
time [ms]
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Figure 1. Dependence upon the axonal delay A,. The overlap m(t) (full curves) and
the postsynaptic field h*(t) (dolted curves) have been plotied as a function of time, The
network A with short delays (A, = 2.5 ms) settles into a stationary state (), while
system B with long delays (A, = 5 ms) goes into 2 state of synchronized spiking with
period T' =2 6 ms {b). Note that the spiking in B occurs when 8/3th#(t) > 0, which
is a condition for stable oscillations (noise # = 8); of figure 10.

4. Discussion and conclusions

The present paper leads to four conclusions. First, we have presented a general
model of 2 neuron based on the notions of firing threshold, refractory period and noise.
This class of model neurons contains a variety of different neuron types including
randomly or regularly firing neurons, oscillating or bursting neurons, all characterized
by their specific refractory function. The simplest refractory function is the absolute

refractory period, a model most convenient for formal considerations.
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Figure 12. Influence of noise. The postsynaptic field h*{t) of the oscillatory system B
(cf figure 11) has been plotted as a function of time at different noise levels (3 = 6,
lop; 8 = 4, middle; 8 == 2, bottom). Noise destroys the synchronicity of spiking and
thus lowers the oscillation amplitude of the synaptic field. At high noise level (8 = 2)
retrieval is no longer possible.

Our model neurons are biological in the sense that they produce spike irains com-
parable to those in real ncurons, ie. realistic spiking rates as well as realistic interval
distributions. It is our assumption that all the information of neuronal signals is con-
tained in these spike trains. A more detailed model of a neuron is thus unnecessary,
if the problem is posed in the context of information storage and processing in neural
systems. The main ideas of our model are certainly not new; see, for exampie, Buh-
mann and Schuiten (1986), Choi (1988), Amit (1989) and Horn and Usher (1989),
who all include refractoriness and neuronal spiking into formal association networks.
Our unified approach, however, helps to understand the variety of neural spiking
phenomena in terms of a single refractory function, thus making neuron spiking easy
to program and amenable to mathematical analysis.

Second, we have constructed a network consisting of these ‘spiking’ neurons, each
pair of neurons being connected by synapses with a realistically delayed response
function. The network had to learn a finite number of random patterns using a
Hebbian learning rule. We have derived exact equations of motion in terms of
overlaps with the learnt patterns. For stationary states we have shown that the model
can be reduced to a network of graded-response neurons and the usual analysis can
then be applied to find the retrieval solutions. Thus, in a stationary state, the mean
firing rate is the only object that matters, The statistics of the firing noise and the
internal dynamics of the neurons is completely wiped out.

The third conclusion js, however, that this is not true in an ascillatory state. In
the case of collective oscillations, the internal spiking dynamics of the neurons as
modelled by the refractory function €"(7) becomes an important parameter of the
problem, and so does the synaptic transmission which is characterized by the axonal
delay A, and the synaptic response time r,. The relation between these quantities
determines the existence and stability of oscillatory retrieval solutions. Furthermore,
the randomness introduced by the spiking noise § may not only lower the retrieval
overlap but also destroy the synchronicity of the spiking, Thus, a more detailed
description of the spiking dynamics and synaptic connections allows for additional
effects which are beyond the scope of an approach based on formal two-state or
graded-response neurons.

Finally, of course there still remain a lot of unbiological features in the model.
Most of these, however, can be eliminated—at least in principle. One of the most
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strikingly unbiological properties is the assumption of full connectivity. This assump-
tion can be dropped and we could consider a randomly diluted high-connectivity
network instead. In passing we note that we could also have taken an asymmetric
low-connectivity network (Derrida et al 1987), The main difference to the present
work is that the right-hand side of Equations (27), (28) has to be averaged over a
Gaussian distribution. The nature of the solutions remains the same. Another ob-
jection concerns the fact that we have neglected the effect of the inhibitory neurons.
Inhibition can, however, be added in a straightforward manner (Ritz 1991, van Hem-
men e al 1992). In this case, collective oscillations with a frequency of approximately
50 Hz appear which are in agreement with experimental observations in the visual
cortex of the cat (Eckhorn et al 1988, Gray and Singer 1989) and which may be im-
portant in the context of feature linking and pattern segmentation (von der Malsburg
and Schneider 1986, Eckhorn e af 1988, Wang er ol 1990).

The use of random patterns is a further unbiological feature of our model, but
there are standard ways to overcome these problems (Amit er a/ 1987, Vicente and
Amit 1988, Buhmann er @/ 1989, for an overview see Amit 1989). Another set of
questions is connected with the use of the specific synaptic connection matrix and
the ‘Hebbian® learning rule. But many of the guestions concerning synaptic learning
itself are unsolved. The importance and mechanisms of long-term potentiation (LTP)
and long-term depression (LTD) are still open problems, experimental results are
scarce and their interpretation js difficult (Kelso et al 1986, Brown ef al 1989, Lisman
1989, Stanton and Sejnowski 1989). Thus it is often not even clear so far, what the
‘biclogical features really are.

Acknowledgments

WG would like to thank William Bialek and his students at Berkeley for their generous
hospitality and numerous stimulating discussions. Thanks are also due to Andreas
Herz for many helpful comments and advice and to Raphael Ritz for calculations on
the Hodgkin-Huxley model. We are grateful to the referees for their comments on
the paper which helped to improve it substantially. W G acknowledges the financial
support of the German Academic Exchange Service (DAAD) for making possible the
stay at Berkeley.

References

Abbott L F and Kepler T B 1990 Model neurons: from Hodgkin—Fluxley to Hopfield Statistical Mechanics
of Neural Networks {Lecture Notes in Physics 368) ed L Garrido (Berlin: Springer) pp 5-18

Amit D J 1989 Modeling Brain Funcrion {Cambridge: Cambridge University Press)

Amit D J, Gutfreund H and Sompolinsky H 1985 Spin-glass models of neural networks Phys. Rev A 32
1007-32

—— 1987 Information storage in networks with low levels of activity Phys. Rew A 35 2293-303

Amit I ] and Teodyks M V 1991 Quantitative study of attractor neural networks retrieving at low spike
rates: 1. Substrate—spikes rates and neuronal gain Network 2 259-73

Brown T H, Ganong A H, Kairiss, E W, Keenan C L and Kelso § R 1989 Long-term potentation in two
synaptic systems of the hippocampal brain slice Neural Models of Plasticity ed J H Byrne and W O
Berry (San Diego, CA: Academic) pp 266-306

Buhmann J and Schulten K 1986 Associative recognition and storage in a model network with physiological
neurons Biol Cybern. 54 319-35



164 W Gerstner and J L van Hemmen

Buhmann I, Divko R and Schulten K 1989 Assocative memory with high information content Phys. Rev.
A 39 2689-92

Choi M Y 1988 Dynamic mode! of neural networks Phys. Rev Let 61 2809-12

Derrida B, Gardner E and Zippelius A 1987 An exactly soluble asymmetric neural network model
Europhys. Lewt. 4 167

Eckhorn R, Bauer R, Jordan W, Brosch M, Kruse W, Munk M and Reitboeck H J 1988 Coherent
oscillations: a mechanism of feature linking in the visual cortex? Biol Cybern. 60 121-30

FitzHugh R 1961 Impulses and physiological states in theoretical models of nerve membranes Biophys. J.

aemdon mee VEF oa A P AT Timiimenalite: m mansal wabesr;edoas tha lacmastnnoes A0 tha weans
CIDI.HCI ¥ and vai r.ll;l.lll.li';ll J A— AFFe UNIVELsallly I ICULaAl HELWULRS. UIC LU L UL WIS 1gall

firing rate Biol Cybern. 67 in press

Gray C M and Singer W 1989 Stimulus-specific neuronal oscillations in oncntanon columns of cat visual
cortex Proc. Natl Acad, Sci USA 86 1698-702

Herz A, Sulzer B, Kithn R and van Hemmen J L 1988 The Hebb rule: representation of static and
dynamic objects in neural nets Europhys, Lett. 7 663-3

—— 1989 Hebbian learning reconsidered: representation of static and dynamic objects in associative
neural nets Biol Cybern. 60 457-67

Hodgkin A L and Huxley A F 1952 A guantitative description of ion currents and its applications to
conduction and excitation in nerve membranes L Physiol 117 500-44

Hopfield J J 1982 Neural networks and physical systems with emerpent collective computational abilities
Proc. Nai Acad. Sci. USA 79 2554-8

—— 1984 Neurons with graded response have computaional properties like those of two-state neurons
Proc. Natl Acad. Sci. USA 81 3088-92

Horn D and Usher M 1989 Neural networks with dynamical thresholds Phys. Rew A 40 1036-40

Kelso 8 R, Ganong A H and Brown T H 1986 Hebbian synapses in hippocampus Proc. Natf Acad. Sci.
iS4 83 5326-30

Lisman J 1989 A mechanism for Hebb and anti-Hebb processes underlying learning and memory
Proc. Nail Acad Sci USA 86 9574-8

Nagumo J, Arimoto S and Yoshizawa § 1962 An active pulse transmission line simulaling nerve axon
Proc. IRE 50 2061-70

Perkel D H, Gerstein G L and Moore G P 1967 Neuronal spike trains and stochastic point processes L.
The sing]c spike train Biophys. J. 7 391418

eificr R R and Kiang Y 5 1565 Spike dischiarge paiierns of sponiancous and conlinuously silmulated

activity in the cochlear nucleus of anesthetized cats Biophys. J. 5§ 301-16

Riedel U, Kihn R and van Hemmen J L 1988 Temporal sequences and chaos in neural ncts Phys. Ren
A 38 1105-8

Ritz R 1991 Kollektive Oszillationen in Neuronalen Netzwerken Diplomarbeit Technischen Universitdt
Minchen

Stanton P K and Sejpowski T J 1989 Assogative long-term depression in the hippocampus induced by
Hebbian covariance Namwre 339 215-8

van Hemmen J L and Kithn R 1986 Nonlinear neural networks Phys. Rew Lett 57 913-6

van Hemmen J L, Gerstner W and Ritz R 1992 A microscopic model of collective oscillations in the
cortex Complex Dynamics in Neural Neworks ed J § Taylor (Berlin: Springer) in press

van Hemmen J L, Grensing D, Huber A and Kihn R 1986 Elementary solution of classical spin glass
models Z. Phys. B 65 53-63

—— 1988 Nonlinear neural petworks LTI J. Stat. Phys. 50 231-93

von der Malsburg C and Schneider W 1936 A neural cocktail-party processor Biol Cybern. 54 29-40

Vieente C T P and Amit D J 1988 ﬂn!-mxscd network for sparsely coded patterns . Phys, A: Math Gen.
22 559-69

Wang D, Buhmann J and von der Malsburg C 1990 Pattern segmentation in associalive memory Neu-
ral Comp. 2 94-106



