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Abstract

The response of a neuron to a time-dependent stimulus, as measured in a Peri-Stimulus-Time-Histogram (PSTH), exhibits an
intricate temporal structure that reflects potential temporal coding principles. Here we analyze the encoding and decoding
of PSTHs for spiking neurons with arbitrary refractoriness and adaptation. As a modeling framework, we use the spike
response model, also known as the generalized linear neuron model. Because of refractoriness, the effect of the most recent
spike on the spiking probability a few milliseconds later is very strong. The influence of the last spike needs therefore to be
described with high precision, while the rest of the neuronal spiking history merely introduces an average self-inhibition or
adaptation that depends on the expected number of past spikes but not on the exact spike timings. Based on these
insights, we derive a ‘quasi-renewal equation’ which is shown to yield an excellent description of the firing rate of adapting
neurons. We explore the domain of validity of the quasi-renewal equation and compare it with other rate equations for
populations of spiking neurons. The problem of decoding the stimulus from the population response (or PSTH) is addressed
analogously. We find that for small levels of activity and weak adaptation, a simple accumulator of the past activity is
sufficient to decode the original input, but when refractory effects become large decoding becomes a non-linear function of
the past activity. The results presented here can be applied to the mean-field analysis of coupled neuron networks, but also
to arbitrary point processes with negative self-interaction.
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Introduction

Encoding and decoding of information with populations of

neurons is a fundamental question of computational neuroscience

[1–3]. A time-varying stimulus can be encoded in the active

fraction of a population of neurons, a coding procedure that we

will refer to as population coding (Fig. 1). Given the need for fast

processing of information by the brain [4], population coding is an

efficient way to encode information by averaging across a pool of

noisy neurons [5,6] and is likely to be used at least to some degree

by the nervous system [7]. For a population of identical neurons,

the instantaneous population firing rate is proportional to the Peri-

Stimulus Time Histogram (PSTH) of a single neuron driven

repeatedly by the same stimulus over many trials.

When driven by a step change in the input, the population of

neurons coding for this stimulus responds first strongly but then

adapts to the stimulus. To cite a few examples, the activity of

auditory nerve fibers adapt to pure tones [8], cells in the retina and

the visual cortex adapt to contrast [9,10] and neurons in the

inferior temporal cortex adapt to higher order structures of images

[11]. Adaptation is energy-efficient [12] but leads to a potentially

ambiguous code because adapting responses generate a population

activity which does not directly reflect the momentary strength of

the stimuli [13]. Putting the case of sensory illusions aside, the fact

that our perception of constant stimuli does not fade away

indicates that the adapting responses can be efficiently decoded by

the brain areas further down the processing stream. In fact,

illusions such as the motion after-effect are believed to reflect

errors in decoding the activity of neuronal populations [14]. But

what is the correct rule to decode population activity? What

elements of the population history are relevant? What are the basic

principles?

Synapse- and network-specific mechanisms merge with intrinsic

neuronal properties to produce an adapting population response.

Here we focus on the intrinsic mechanisms, commonly called

spike-frequency adaptation. Spike-frequency adaptation appears

in practically all neuron types of the nervous system [15].

Biophysical processes that can mediate spike-frequency adaptation

include spike-triggered activation/inactivation of ion-channels

[16–18] and a spike-triggered increase in the firing threshold

[19–22]. Neurons adapt a little more each time they emit a spike,

and it is the cumulative effect of all previous spikes that sets the

level of adaptation. The effect of a single spike on future spiking

probability cannot be summarized by a single time constant.

Rather, the spike-triggered adaptation unfolds on multiple time

scales and varies strongly across cell-types [22,23].
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Mean-field methods were used to describe: attractors [24–28],

rapid-responses [6,29] and signal propagation [30]. While

adaptation is important to correctly predict the activity of single

neurons [22,31–33], it is difficult to include it in mean-field

methods. A theory relating spike-frequency adaptation to popu-

lation dynamics should be general enough to encompass a variety

of different spike-triggered adaptation profiles, as observed in

experiments. In the literature we find six main approaches to the

population coding problem. The first and most simple one

formulates the rate of a neuronal population (or the time-

dependent rate in a PSTH) as a linear function of the stimulus.

This phenomenological model relates to the concept of receptive

fields [34] and can be made quantitative using a Wiener expansion

[35]. Yet, early experimental tests showed that linear filtering must

be complemented with a non-linear function [35,36]. The linear-

non-linear model can thus be considered as the second approach

to population coding. In combination with a Poisson spike

generator it is called the LNP model for Linear-Nonlinear-

Poisson. It makes accurate predictions of experimental measure-

ments for stationary stimulus ensembles, but fails when the

stimulus switches either its first or second order statistics. Neural

refractoriness is in part responsible for effects not taken into

account in this linear-nonlinear model [37–40]. In a third

approach proposed by Wilson and Cowan [41] the population

activity is the solution to a non-linear differential equation.

Unfortunately this equation has only a heuristic link to the

underlying neuronal dynamics and cannot account for rapid

transients in the population response. The fourth approach

formulates the population activity in terms of an integral equation

[6,41,42] which can be interpreted as a (time-dependent) renewal

theory. While this renewal theory takes into account refractoriness

(i.e. the effect of the most recent spike) and captures the rapid

transients of the population response and PSTH, neither this one

nor any of the other encoding frameworks mentioned above

consider adaptive effects. To include adaptation into previously

non-adaptive models, a common approach is to modify the

effective input by rescaling the external input with a function that

depends on the mean neuronal firing rate in the past [15,43,44].

This forms the fifth method. For example, Benda and Herz [15]

suggested a phenomenological framework in which the linear-non-

linear approach is modified as a function of the past activity while

Rauch et al. [43] calculated the effective rate in integrate-and-fire

Figure 1. Encoding and Decoding with neuronal populations. What is the function that relates an arbitrary stimulus to the population activity
of adapting neurons? We focus on the problem of relating the filtered input h(t)~½k � I �(t) to the activity A(t). The population activity is the fraction
of active neurons (red) in the population of neurons (right). All neurons are identical and receive the same stimulus. One possible stimulus I(t) is a
step current (left).
doi:10.1371/journal.pcbi.1002711.g001

Author Summary

How can information be encoded and decoded in
populations of adapting neurons? A quantitative answer
to this question requires a mathematical expression
relating neuronal activity to the external stimulus, and,
conversely, stimulus to neuronal activity. Although widely
used equations and models exist for the special problem
of relating external stimulus to the action potentials of a
single neuron, the analogous problem of relating the
external stimulus to the activity of a population has proven
more difficult. There is a bothersome gap between the
dynamics of single adapting neurons and the dynamics of
populations. Moreover, if we ignore the single neurons
and describe directly the population dynamics, we are
faced with the ambiguity of the adapting neural code. The
neural code of adapting populations is ambiguous
because it is possible to observe a range of population
activities in response to a given instantaneous input.
Somehow the ambiguity is resolved by the knowledge of
the population history, but how precisely? In this article we
use approximation methods to provide mathematical
expressions that describe the encoding and decoding of
external stimuli in adapting populations. The theory
presented here helps to bridge the gap between the
dynamics of single neurons and that of populations.

Coding and Decoding with Adapting Neurons
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neurons endowed with a frequency-dependent modification of the

input current. Finally, there is also a sixth method to determine the

population activity of adapting populations. Inspired by the

Fokker-Planck approach for integrate-and-fire neurons [27], this

last approach finds the population activity by evolving probability

distributions of one or several state variables [45–49]. Isolating the

population activity then involves solving a non-linear system of

partial differential equations.

The results described in the present article are based on two

principal insights. The first one is that adaptation reduces the

effect of the stimulus primarily as a function of the expected

number of spikes in the recent history and only secondarily as a

function of the higher moments of the spiking history such as

spike-spike correlations. We derive such an expansion of the

history moments from the single neuron parameters. The second

insight is that the effects of the refractory period are well captured

by renewal theory and can be superimposed on the effects of

adaptation.

The article is organized as follows: after a description of the

population dynamics, we derive a mathematical expression that

predicts the momentary value of the population activity from

current and past values of the input. Then, we verify that the

resulting encoding framework accurately describes the response to

input steps. We also study the accuracy of the encoding framework

in response to fluctuating stimuli and analyze the problem of

decoding. Finally, we compare with simpler theories such as

renewal theory and a truncated expansion of the past history

moments.

Results

To keep the discussion transparent, we focus on a population of

unconnected neurons. Our results can be generalized to coupled

populations using standard theoretical methods [3,6,27].

Encoding Time-dependent Stimuli in the Population
Activity

How does a population of adapting neurons encode a given

stimulating current I(t)? Each neuron in the population will

produce a spike train, denoted by S(t), such that the population

can be said to respond with a set of spike trains. Using the

population approach, we want to know how the stimulus is

reflected in the fraction of neurons that are active at time t, that is,

the population activity A(t) (Fig. 1). The population activity (or

instantaneous rate of the population) is a biologically relevant

quantity in the sense that a post-synaptic neuron further down the

processing stream receives inputs from a whole population of

presynaptic neurons and is therefore at each moment in time

driven by the spike arrivals summed over the presynaptic

population, i. e. the presynaptic population activity.

Mathematically, we consider a set of spike trains in which spikes

are represented by Dirac-pulses centered on the spike time t̂t:

S(t)~
P
f̂ttg d(t{t̂t) [3]. The population activity is defined as the

expected proportion of active neurons within an infinitesimal time

interval. It corresponds, in the limit of a large population and small

time interval, to the number of active neurons nact(t,tzDt) in the

time interval ½t,tzDt� divided by the total number of neurons N
and the time interval Dt [3]:

A(t)~ lim
Dt?0, N??

nact(t; tzDt)

NDt
~SS(t)T: ð1Þ

The angular brackets S:T denote the expected value over an

ensemble of identical neurons. Experimentally, the population

activity is estimated on a finite time interval and for a finite

population. Equivalently the population activity can be considered

as an average over independent presentations of a stimulus in only

one neuron. In this sense, the population activity is equivalent to

both the time-dependent firing intensity and the Peri-Stimulus

Time Histogram (PSTH).

Since the population activity represents the instantaneous firing

probability, it is different from the conditional firing intensity,

l(tDI ,S), which further depends on the precise spiking history, or

past spike train S. Suppose we have observed a single neuron for a

long time (e.g. 10 seconds). During that time we have recorded its

time dependent input current I(t’) and observed its firing times

S(t’)~
P
f̂ttg d(t’{t̂t). Knowing the firing history S(t’) for t’vt and

the time-dependent driving current I(t’) for t’vt, the variable

l(tDI ,S) describes the instantaneous rate of the neuron to fire again

at time t. Intuitively, l(tDI ,S) reflects a likelihood to spike at time t
for a neuron having a specific history while A(t) is the firing rate at

time t averaged on all possible histories (see Methods):

A(t)~Sl(tDI ,S)T: ð2Þ

Ideally, one could hope to estimate l(tDI ,S) directly from the

data. However, given the dimensionality of I and S, model-free

estimation is not feasible. Instead we use the Spike Response

Model (SRM; [6,50–52]), which is an example of a Generalized

Linear Model [53], in order to parametrize l(tDI ,S), but other

parametrizations outside the exponential family are also possible.

In particular, l(tDI ,S) can also be defined for nonlinear neuron

models with diffusive noise in the input, even though explicit

expressions are not available. The validity of the SRM as a model

of neuronal spike generation has been verified for various neuron

types and various experimental protocols [22,31,32]. In the SRM,

the conditional firing intensity l increases with the effective input

x:

l(tDI ,St)~l0f x(t)ð Þ, ð3Þ

where x(t) is the total driving force of the neuron:

x(t)~½k � I �(t)z½g � S�(t)~h(t)z½g � S�(t), ð4Þ

where ‘�’ denotes the convolution, h(t)~½k � I �(t) is the input

current convolved with k(t) the membrane filter, g(t) encodes the

effect of each spike on the probability of spiking, l0 is a scaling

constant related to the instantaneous rate at the threshold with

units of inverse time (see Methods for model parameters). The

link-function f can take different shapes depending on the noise

process [3]. Here we will use an exponential link-function since it

was shown to fit the noisy adaptive-exponential-integrate-and-fire

model [54] as well as experimental data [22,32,55]. The

exponential link-function: f (x)~r0 exp (b(x{h)) corresponds to

l0ex after absorbing the scaling parameter h in the constant

l0/lr0e{bh and b and in the functions k and g to make these

unit-free.

To see that the function g(t) can implement both adaptation

and refractoriness, let us first distinguish these processes concep-

tually. The characteristic signature of refractoriness is that the

interspike interval distribution for constant input is zero or close to

zero for very short intervals (e.g. one millisecond) - and in the

following we use this characteristic signature as a definition of

refractoriness. With this definition, a Hodgkin-Huxley model (with

or without noise) or a leaky integrate-and-fire model (with or

Coding and Decoding with Adapting Neurons
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without diffusive noise) are refractory, whereas a Linear-Nonlin-

ear-Poisson Model is not. In fact, every neuron model with

intrinsic dynamics exhibits refractoriness, but Poissonian models

do not.

While refractoriness refers to the interspike-interval distribution

and therefore to the dependence upon the most recent spike,

adaptation refers to the effect of multiple spikes. Adaptation is

most clearly observed as a successive increase of interspike

intervals in response to a step current. In contrast, a renewal

model [56], where interspike intervals are independent of each

other, does not exhibit adaptation (but does exhibit refractoriness).

Similarly, a leaky or exponential integrate-and-fire model with

diffusive noise does not show adaptation. A Hodgkin-Huxley

model with the original set of parameters exhibits very little

adaptation, but addition of a slow ion current induces adaptation.

Conceptually, contributions of multiple spikes must accumulate

to generate spike frequency adaptation. In the Spike Response

Model, this accumulation is written as a convolution:

½g � S�(t)~
P

t̂t g(t{t̂t). If g(t)~{? for 0vtvDabs and vanishes

elsewhere, the model exhibits absolute refractoriness of duration

Dabs but no adaptation. If g(t)~{? for 0vtvDabs and

g(t)~g2 e{t=t2 with t2~500 ms, then the model exhibits adap-

tation in addition to refractoriness. In all the simulations, we use

g(t)~g1e{t=t1zg2e{t=t2 with g2vg1v0 and t1vt2, With this

choice of g we are in agreement with experimental results on

cortical neurons [22], but the effects of adaptation and refracto-

riness cannot be separated as clearly as in the case of a model with

absolute refractoriness. Loosely speaking, the long time constant t2

causes adaptation, whereas the short time constant t1 mainly

contributes to refractoriness. In fact, for g2~0 and t1 equal to the

membrane time constant, the model becomes equivalent to a leaky

integrate-and-fire neuron [3], so that the neuron is refractory and

non-adapting. In the simulations, t1 is longer than the membrane

time constant so that, for very strong stimuli, it may also contribute

to adaptation. We note that the formalism developed in this paper

does not rely on our specific choice of g. We only require (i)

causality by imposing g(s)~0 for sƒ0 and (ii) lims?? g(s)~0 so

that the effect of a past spike decreases over time.

The effects described by g(t) can be mediated by a dynamic

threshold as well as spike-triggered currents [22]. Throughout the

remainder of the text we will refer to g(t) as the effective spike

after-potential (SAP). It is, however, important to note that g(t) has

no units, i.e. it relates to an appropriately scaled version of the

experimentally measured spike after-potential. A depolarizing

(facilitating) SAP is associated with g(t)w0, while a hyperpolar-

izing (adapting) SAP is associated with g(t)v0.

Quasi-Renewal Theory
In a population of neurons, every neuron has a different spiking

history defined by its past spike train S~f̂tt1,̂tt2,̂tt3, . . .g where t̂t1 is

the most recent spike, t̂t2 the previous one and so on. To find the

population activity at any given time, we hypothesize that the

strong effect of the most recent spike needs to be considered

explicitly while the rest of the spiking history merely introduces a

self-inhibition that is similar for all neurons and that depends only

on the average firing profile in the past. Thus for each neuron we

write the past spike train as S~ft’,S’g where t’~t̂t1vt is the time

of the last spike. Our hypothesis corresponds to the approximation

l(tDI ,t’,S’)&Sl(tDI ,t’,S’)TS’, i.e. the last spike needs to be treated

explicitly, but we may average across earlier spike times. This

approximation is not appropriate for intrinsically bursting

neurons, but it should apply well to other cell types (fast-spiking,

non-fast-spiking, delayed, low-threshold). According to this

hypothesis, and in analogy to the time-dependent renewal theory

[3,42] we find (derivation in Methods):

A(t)~

ðt

{?
Sl(tjI ,t’,S’)TS’

exp {

ðt

t’
Sl(xjI ,t’,S’)TS’dx

� �
A(t’)dt’:

ð5Þ

Unfortunately Eq. 5 remains insolvable, because we do not know

Sl(tDt’,S’)TS’. Using Eqs. 3 and 4 we find:

Sl(tDI ,t’,S’)TS’~l0eh(t)zg(t{t’)Se½g�S’�(t)TS’ ð6Þ

As mentioned above, we hypothesize that the spiking history

before the previous spike merely inhibits subsequent firing as a

function of the average spiking profile in the past. In order to

formally implement such an approximation, we introduce a series

expansion [57] in terms of the spiking history moments (derivation

in Methods) where we exploit the fact that Seg�S’TS’ is a moment

generating function:

Se½g�S’�(t)TS’~ exp
X?
m~1

1

m!

ðt

{?
eg(t{s1){1
� �

. . .

 

eg(t{sm){1
� �

gm(s1, . . . ,sm)ds1 . . . dsm

�
:

ð7Þ

The first history moment g1(t)~SS(t)TS~A(t) relates to the

expected number of spikes at a given time t. The second history

moment considers the spike-spike correlations

g2(t1,t2)~S½S(t1){A(t1)�½S(t2){A(t2)�T and so on for the higher

moments.

We truncate the series expansion resulting from Eq. 7 at the first

order (m~1). We can then write Eq. 6 as:

Sl(tDt’,S’)TS’~l0e
h(t)zg(t{t’)z

Ð t’
{?

(eg(t{z){1)A(z)dz ð8Þ

We can insert Eq. 8 in Eq. 5 so as to solve for A(t) as a function of

the filtered input h(t). The solutions can be found using numerical

methods.

We note that by removing the integral of (eg{1)A from Eq. 8 we

return exactly to the renewal equation for population activity

(Sl(tDt’,S’)TS’?l(tDt’)). Adaptation reduces the driving force by an

amount proportional to the average spike density before t’, that is, the

average spiking density before the most recent spike. In other words,

instead of using the specific spike history of a given neuron, we work

with the average history except for the most recent spike which we

treat explicitly. We call Eqs. 5 and 8 the Quasi-Renewal equation

(QR) to acknowledge its theoretical foundations. It is renewal-like,

yet, we do not assume the renewal condition since a new spike does

not erase the effect of the previous history (see Methods).

Encoding and Decoding Time-Dependent Stimuli
Let us now assess the domain of validity of the QR theory by

comparing it with direct simulations of a population of SRM

neurons. To describe the single neurons dynamics, we use a set of

parameters characteristic of L2–3 pyramidal cells [22]. The SAP is

made of two exponentials: one with a short time constant (30 ms)

but large amplitude and another with a long time constant (400 ms)

but a small amplitude. The results presented here are representative

of results that can be obtained for any other physiological set of

parameters. For details on the simulation, see Methods.

Coding and Decoding with Adapting Neurons
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The response to a step increase in stimulating current is a

standard paradigm to assess adaptation in neurons and used here

as a qualitative test of our theory. We use three different step

amplitudes: weak, medium and strong. The response of a

population of, say, 25,000 model neurons to a strong step increase

in current starts with a very rapid peak of activity. Indeed, almost

immediately after the strong stimulus onset, most of the neurons

are triggered to emit a spike. Immediately after firing at t̂t, the

membrane potential of theses neurons is reset to a lower value by

the contribution of the SAP; g(t{t̂t). The lower membrane

potential leads to a strong reduction of the population activity.

Neurons which have fired at time t̂t are ready to fire again only

after the SAP has decreased sufficiently so that the membrane

potential can approach again the threshold h. We can therefore

expect that a noiseless population of neurons will keep on

oscillating with the intrinsic firing frequency of the neurons [6];

however, due to stochastic spike emission of a noisy population the

neurons in the population gradually de-synchronize. The damped-

oscillation that we see in response to a strong step stimulus (Fig. 2C)

is the result of this gradual de-synchronization. Similar damped

oscillations at the intrinsic firing frequency of the neurons have

also been observed for a Spike Response Model with renewal

properties [6], i.e., a model that only remembers the effect of the

last spike.

In contrast to renewal models (i.e., models with refractoriness

but no adaptation), we observe in Fig. 2C that the population

activity decays on a slow time scale, taking around one second to

reach a steady state. This long decay is due to adaptation in the

single-neuron dynamics, here controlled by the slow time constant

t2~400 ms. The amount of adaptation can be quantified if we

compare, for a given neuron its first interspike interval after

stimulus onset with the last interspike interval. The mean first

interspike interval (averaged over all neurons) for the strong step

stimulus is 93 ms while the last interval is nearly twice as long

(163 ms), indicating strong adaptation. For smaller steps, the effect

of refractoriness is less important so that adaptation becomes the

most prominent feature of the step response (Fig. 2A). An

appropriate encoding framework should reproduce both the

refractoriness-based oscillations and the adaptation-based decay.

The QR equation describes well both the damped oscillation

and the adapting tail of the population activity response to steps

(Fig. 2). Also, the steady state activity is predicted over a large

range (Fig. 2D). We note that an adaptation mechanism that is

essentially subtractive on the membrane potential (Eq. 4) leads

here to a divisive effect on the frequency-current curve.

Altogether, we conclude the QR theory accurately encode the

response to step stimulus.

Step changes in otherwise constant input are useful for

qualitative assessment of the theory but quite far from natural

stimuli. Keeping the same SAP as in Fig. 2, we replace the

piecewise-constant input by a fluctuating current (here Ornstein-

Uhlenbeck process) and study the validity of QR over a range of

input mean and standard deviation (STD), see Fig. 3. As the STD

of the input increases, the response of the population reaches

higher activities (maximum activity at STD = 80 pA was 89 Hz).

The prediction by the QR theory is almost perfect with correlation

coefficients consistently higher than 0.98. Note that the correlation

coefficient is bounded above by the finite-size effects in estimating

the average of the 25,000-neuron simulation. Over the range of

input studied, there was no tendency of either overestimating or

underestimating the population activity (probability of positive

error was 0.5). There was only a weak tendency of increased

discrepancies between theory and simulation at higher activity

(correlation coefficient between simulated activity and mean

square error was 0.25).

Decoding the population activity requires solving the QR

equation (Eq. 5 and 8) for the original input h(t) (see Methods).

Input steps can be correctly decoded (Fig. 4A–C) but also

fluctuating stimuli (Fig. 4D–E). Again, the input mean does not

influence the precision of the decoding (Fig. 4E). The numerical

method does not decode regions associated with population

activities that are either zero or very small. Accordingly, the

correlation coefficient in Fig. 4E is calculated only at times where

decoding could be carried out. Note that unless one is to estimate

the statistics of the input current and assume stationarity, it is

impossible for any decoder to decode at times when A(t)~0. If the

size of the population is decreased, the performance of the QR

decoder decreases (Fig. S1). Finite size effects limit decoding

performance by increasing the error on the mean activity (as can

be seen by comparing the effect of filtering the average population

activity (Fig. S1A and B)). Another finite-size effect is that at small

population sizes there is a greater fraction of time where an

estimate of the activity is zero and the decoding cannot be

performed (Fig. S1D–F). Also, decoding errors are larger when A
is close to zero (Fig. S1C). Nevertheless, for an input with

STD = 40 pA and a population of 250 neurons, QR decoding can

be performed 55% of the times with a correlation coefficient of

0.92. If the filtering of the population activity is on a longer time

Figure 2. Quasi-renewal theory for step responses with realistic
SAP. (A–C) Population activity responses (top panels; PSTH from
25,000 repeated simulations in blue, quasi-renewal theory in black) to
the step current input as shown in bottom panels (black). The input
step size was increased from A to C. The mean first and last interspike
interval were 458+2 ms and 504+2 ms, respectively, in A, 142.1+0.4
and 214+1 ms in B, 93.5+0.2 and 163.2+0.5 ms in C. (D) Steady-state
activity vs. input current for simulations of 25,000 independent neurons
(blue) and quasi-renewal theory (black). The SAP was fixed to

g(t)~{8e{t=30ms{1e{t=400ms [22]. For other model parameters see
Models and Methods.
doi:10.1371/journal.pcbi.1002711.g002

Coding and Decoding with Adapting Neurons
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Figure 3. Encoding time-dependent stimuli in the population activity. (A) Population activity responses (middle panel; PSTH from 25,000
repeated simulations in blue, quasi-renewal theory in black) to the time-dependent stimuli shown in the bottom panel (black). The difference
between direct simulation and theory is shown in the top panel. The stimulus is an Ornstein-Uhlenbeck process with correlation time constant of
300 ms, a STD increasing every 2 seconds (20,40,60 pA) and a mean of 10 pA. (B) Correlation coefficients between direct simulation and QR for
various STDs and mean (in pA) of the input current.
doi:10.1371/journal.pcbi.1002711.g003

Figure 4. Decoding the stimulus from the population activity. (A–C) The original (bottom panels, black line) and decoded stimulus (bottom
panels, red line; arbitrary units) recovered from the PSTH of 25,000 independent SRM neurons (top panels; blue line) with the QR decoder (Eq. 45). (D)
Same as before but for time-dependent input. The decoded waveform of negative input is occasionally undefined and corresponds to input outside
the dynamic range. The difference between direct simulation and theory is shown in the bottom panel. (E) Correlation coefficient between original
and decoded input as a function of input STD, shown for three distinct mean input (m~10 pA, m~20 pA, and m~30 pA). Decoding based on quasi-
renewal theory (Methods).
doi:10.1371/journal.pcbi.1002711.g004
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scale (20 ms instead of 2 ms) then decoding is possible 82% of the

times and the accuracy is roughly the same (Fig. S1).

Comparing Population Encoding Theories
We will consider two recent theories of population activity from

the literature. Both can be seen as extensions of rate models such

as the Linear-Nonlinear Poisson model where the activity of a

homogeneous population is A(t)~f (½k � I �(t)) where k is a linear

filter and f some nonlinear function. First, we focus on adaptive

formulations of such rate models. For example Benda and Herz

[15] have suggested that the firing rate of adapting neurons is a

non-linear function of an input that is reduced by the past activity,

such that the activity is A(t)~f (½k � I �(t){½c � A�(t)) where c is a

self interaction filter that summarizes the effect of adaptation.

Second, we compare our approach with renewal theory [3,42]

which includes refractoriness, but not adaptation. How does our

QR theory relate to these existing theories? And how would these

competing theories perform on the same set of step stimuli?

To discuss the relation to existing theories, we recall that the

instantaneous rate of our model l(tDI ,S) depends on both the

input and the previous spike trains. In QR theory, we single out

the most recent spike at t’ and averaged over the remaining spike

trains S’: l(tDI ,S)&Sl(tDI ,t’,S’)TS’. There are two alternative

approaches. One can keep the most recent spike at t’ and

disregard the effect of all the others: l(tDI ,S)&l(tDI ,t’). This gives

rise to the time-dependent renewal theory, which will serve as a

first reference for the performance comparison discussed below.

On the other hand, one can average over all previous spikes, that

is, no special treatment for the most recent one. In this case

A(t)&Sl(tDI ,S)TS: ð9Þ

The right-hand side of Eq. 9 can be treated with a moment

expansion similar to the one in Eq. 7. To zero order, this gives a

population rate A(t)~l0e½k�I �(t), that is, an instantiation of the

LNP model. To first order in an event-based moment expansion

(EME1) we find:

A(t)~l0e
h(t){

Ð t

{?
1{eg(t{s)ð ÞA(s)ds

: ð10Þ

Therefore, the moment expansion (Eq. 7) offers a way to link the

phenomenological framework of Benda and Herz (2003) to

parameters of the SRM. In particular, the nonlinearity is the

exponential function, the input term is h~k � I and the self-

inhibition filter is c(s)~eg(s){1. We note that Eq. 10 is a self-

consistent equation for the population activity valid in the limit of

small coupling between the spikes which can be solved using

standard numerical methods (see Methods). A second-order

equation (EME2) can similarly be constructed using an approx-

imation to the correlation function (see Methods).

We compare the prediction of EME1, EME2 and renewal

theory with the simulated responses to step inputs (Fig. 5). All the

encoding frameworks work well for small input amplitudes

(Fig. 5A). It is for larger input steps that the different theories

can be distinguished qualitatively (Fig. 5C). Renewal theory

predicts accurately the initial damped oscillation as can be

expected by its explicit treatment of the relative refractory period.

The adapting tail, however, is missing. The steady state is reached

too soon and at a level which is systematically too high. EME1 is

more accurate in its description of the adapting tail but fails to

capture the damped oscillations. The strong refractory period

induces a strong coupling between the spikes which means that

truncating to only the first moment is insufficient. The solution

based on EME2 improves the accuracy upon that of EME1 so as

to make the initial peak shorter, but oscillates only weakly. We

checked that the failure of the moment-expansion approach is due

to the strong refractory period by systematically modifying the

strength of the SAP (Fig. S2). Similarly, when the SAP is weak, the

effect of g(t) will often accumulate over several spikes and renewal

theory does not capture the resulting adaptation (Fig. S2).

Fluctuating input makes the population respond in peaks of

activity separated by periods of quiescence. This effectively

reduces the coupling between the spikes and therefore improves

the accuracy of EME1. The validity of EME1 for encoding time-

dependent stimulus (Fig. S3) decreases with the STD of the

fluctuating input with no clear dependence on the input mean.

Decoding with EME1 is done according to a simple relation:

h(t)~ log l{1
0 A(t)

� �
z

ðt

{?
1{eg(t{z)
� �

A(z)dz ð11Þ

where the logarithm of the momentary population activity is

added to an accumulation of the past activity. The presence of the

logarithm reflects the non-linearity for encoding (the link-function

in Eq. 3) and leads to the fact that when the instantaneous

population activity is zero, the stimulus is undefined but bounded

from above: h(t)v
Ð t

{? (1{eg(t{z))A(z)dz. Fig. S4 shows the

ability of Eq. 11 to recover the input from the population activity

Figure 5. Approximative theories. (A–C) Population activity
responses (top panels; PSTH from 25,000 repeated simulations in blue,
renewal theory in black, first order moment expansion (EME1) in red,
second order (EME2) in green) to the step current input (bottom panels;
black). (D) Activity at the steady state vs. input current as calculated
from the direct simulation of 25,000 model neurons (blue squares, error
bars show one standard error of the mean), prediction from renewal
theory (black), and 1st order moment-expansion (red, Eq. 51).
doi:10.1371/journal.pcbi.1002711.g005
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of 25,000 model neurons. We conclude that Eq. 11 is a valid

decoder in the domain of applicability of EME1.

In summary, the EMEs yield theoretical expressions for the

time-dependent as well as steady-state population activity. These

expressions are valid in the limit of small coupling between the

spikes which corresponds to either large interspike intervals or

small SAP. Renewal theory on the other hand is valid when the

single-neuron dynamics does not adapt and whenever the

refractory effects dominate.

Discussion

The input-output function of a neuron population is sometimes

described as a linear filter of the input [41], as a linear filter of the

input reduced as a function of past activity [58,59], as a non-linear

function of the filtered input [60], or by any of the more recent

population encoding frameworks [47,48,61–65]. These theories

differ in their underlying assumptions. To the best of our

knowledge, a closed-form expression that does not assume weak

refractoriness or weak adaptation has not been published before.

We have derived self-consistent formulas for the population

activity of independent adapting neurons. There are two levels of

approximation, EME1 (Eq. 10) is valid at low coupling between

spikes which can be observed in real neurons whenever (i) the

interspike intervals are large, (ii) the SAPs have small amplitudes or

(iii) both the firing rate is low and the SAPs have small amplitudes.

The second level of approximation merges renewal theory with the

moment-expansion to give an accurate description on all time-

scales. We called this approach the QR theory.

The QR equation captures almost perfectly the population code

for time-dependent input even at the high firing rates observed in

retinal ganglion cells [55]. But for the large interspike intervals and

lower population activity levels of in vivo neurons of the cortex

[66,67], it is possible that the simpler encoding scheme of Eq. 10 is

sufficient. Most likely, the appropriate level of approximation will

depend on the neural system; cortical sparse coding may be well

represented by EME, while neuron populations in the early stages

of perception may require QR.

We have focused here on the Spike Response Model with

escape noise which is an instantiation of a Generalized Linear

Model. The escape noise model, defined as the instantaneous

firing rate l(t)~f (u{q) given the momentary distance between

the (deterministic) membrane potential and threshold should be

contrasted with the diffusive noise model where the membrane

potential fluctuates because of noisy input. Nevertheless, the two

noise models have been linked in the past [51,54,68]. For example,

the interval-distribution of a leaky integrate-and-fire model with

diffusive noise and arbitrary input can be well captured by escape

noise with instantaneous firing rate l(t)~f (u(t){q, _uu(t)) which

depends both on the membrane potential and its temporal

derivative _uu [51]. The dependence upon _uu accounts for the rapid

and replicable response that one observes when an integrate-and-

fire model with diffusive noise is driven in the supra-threshold

regime [68] and can, in principle, be included in the framework of

the QR theory.

The decoding schemes presented in this paper (Eq. 11 and 45)

reveal a fundamental aspect of population coding with adapting

neurons. Namely, the ambiguity introduced by the adaptation can

be resolved by considering a well-tuned accumulator of past

activity. The neural code of adapting populations is ambiguous

because the momentary level of activity could be the result of

different stimulus histories. We have shown that resolving the

ambiguity requires the knowledge of the activity in the past but to

a good approximation does not require the knowledge of which

neuron was active. At high population activity for neurons with

large SAPs, however, the individual timing of the last spike in the

spike trains is required to resolve the ambiguity (compare also

Fairhall et al. [13]). Unlike bayesian spike-train decoding

[55,69,70], we note that in our decoding frameworks the operation

requires only knowledge of the population activity history and the

single neuron characteristics. The properties of the QR or EME1

decoder can be used to find biophysical correlates of neural

decoding such as previously proposed for short term plasticity

[71,72], non-linear dendrites [73] or lateral inhibition [74]. Note

that, a constant percept in spite of spike frequency adaptation does

not necessarily mean that neurons use a QR decoder. It depends

on the synaptic structure. In an over-representing cortex, a

constant percept can be achieved even when the neurons exhibit

strong adaptation transients [75].

Using the results presented here, existing mean-field methods

for populations of spiking neurons can readily be adapted to

include spike-frequency adaptation. In Methods we show the QR

theory for the interspike interval distribution and the steady-state

autocorrelation function (Fig. 6) as well as linear filter character-

izing the impulse response function (or frequency-dependent gain

function) of the population. From the linear filter and the

autocorrelation function, we can calculate the signal-to-noise ratio

[3] and thus the transmitted information [1]. The autocorrelation

function also gives an estimate of the coefficient of variation [76]

and clarifies the role of the SAP in quenching the spike count

variability [49,77,78]. The finite-size effects [27,79–81] is another,

more challenging, extension that should be possible.

The scope of the present investigation was restricted to

unconnected neurons. In the mean-field approximation, it is

straight-forward to extend the results to several populations of

connected neurons [6]. For instance, similar to EME1, a network

made of inter-connected neurons of M cell-types would corre-

spond to the self-consistent system of equation:

Ak(t)~l0 exp

hext(t)z
XM
m~1

( km � Am)½t�z
ðt

{?
egk(t{s){1
� �

Ak(s)ds

" #
,
ð12Þ

where km is the scaled post-synaptic potential kernel from cell-type

m to cell-type k (following the formalism of Gerstner and Kislter

[3]), hext is an external driving force, each subpopulation is

characterized by its population activity Ak(t) and its specific spike

after potential gk(t). The analogous equation for QR theory is:

Ak(t)~l0

ðt

{?
exp

hext(t)z
XM
m~1

( km � Am)½t�zgk(t{t’)z

 

ðt’

{?
(egk (t{z){1)Ak(z)dz

�
sk(tjt’)Ak(t’)dt’

ð13Þ

where sk(tDt’) is:

sk(tjt’)~ exp {l0

ðt

t’
exp hext(x)z

XM
m~1

( mk � Am)½x�z
  

gk(x{t’)z
ðt’

{?
(egk(x{z){1ÞAk(zÞdz

�
dxÞ:

ð14Þ
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Since the SAP is one of the most important parameter for

distinguishing between cell classes [22], the approach presented in

this paper opens the door to network models that take into account

the neuronal cell-types beyond the sign of the synaptic connection.

Even within the same class of cells, real neurons have slightly

different parameters from one cell to the next [22] and it remains

to be tested whether we can describe a moderately inhomogeneous

population with our theory. Also, further work will be required to

see if the decoding methods presented here can be applied to

brain-machine interfacing [82–84].

Methods

This section is organized in 3 subsections. Subsection A covers

the mathematical steps to derive the main theoretical results (Eqs.

2, 5 and 7). It also presents a new approach to the time-dependent

renewal equation, links with renewal theory and the derivation of

the steady-state interspike interval distribution and auto-correla-

tion. Subsection B covers the numerical methods and algorithmic

details and subsection C the analysis methods.

A Mathematical Methods
Derivation of Eq. 2. The probability density of a train of n

spikes Sn in an interval ({?,t� is given by [85]:

P(Sn)~ P
t̂ti[Sn

l(̂tti DSn)e
{
Ð

l(xDSn)dx
, ð15Þ

where we omit writing the dependence on the input I for

notational convenience. Here Sn~f̂tt1,̂tt2, . . . t̂tng is the spike train

where t̂t1ƒt denotes the most recent spike, t̂t2 the previous one and

so on. Instead of l(xDSn) we can also write l(tD̂tt1,̂tt2, . . . t̂tn). Note

that because of causality, at a time x with t̂tkz1vxvt̂tk, l can only

depend on earlier spikes so that l(xD̂tt1,̂tt2, . . . t̂tn)~l(xD̂ttkz1,̂ttkz2,

. . . ,̂ttn). Special care has to be taken because of the discontinuity of

l at the moment of the spike. We require limx?tkz1
l(xDtkz1,

. . . ,tn)~0 so that it is excluded that two spikes occur at the same

moment in time. By definition, the population activity is the

expected value of a spike train: A(t)~
Ð

S(t)P(S)DS. Following

van Kampen [57] we can integrate over all possible spike times in

an ordered or non-ordered fashion. In the ordered fashion, each

spike time t̂ti is restricted to times before the next spike time t̂ti{1.

We obtain:

A(t)~
X?
n~1

lim
?0

ðtz

{?
. . .

ð t̂tn

{?
l(̂tt1 ĵtt2, . . . ,̂ttn) . . . l(̂ttn)

e
{
Ð t

t̂t1
l(xĵtt1,...,̂ttn)dx{...{

Ð t̂tn
{?

l(x)dxXn

j~1

d(t{t̂tj)dt̂t1 . . . dt̂tn,

ð16Þ

where the term n~0 has been eliminated by the fact that

Sn~0~0. The notation lim ?0

Ð tz
is intended to remind the

reader that a spike happening exactly at time t is included in the

integral. In fact only one Dirac-delta function gives a non-vanishing

term because only the integral over t̂t1 includes the time t. After

integration over t̂t1 we have:

A(t)~
X?
n~1

lim
?0

ðt{

{?
. . .

ð t̂tn{1

{?
l(tĵtt2, . . . ,̂ttn)l(̂tt2 ĵtt3, . . . ,̂ttn)

. . . l(̂ttn)e
{
Ð t

t̂t2
l(xĵtt2,...,̂ttn)dx{...{

Ð t̂tn
{?

l(x)dx
dt̂t2 . . . dt̂tn:

ð17Þ

Note that there are now n{1 integrals and the first integral is over

t̂t2 with an upper limit at t{ . The { makes clear that the spike t̂t2

must be before the spike at t̂t1~t. In the ordered notation t̂t2vt̂t1.

Re-labelling the infinite sum with k~n{1, one readily sees that

we recover the weighting factor P(Sk) of a specific spike train with

k spikes (Eq. 15) in front of the momentary firing intensity l(tDSk):

A(t)~
X?
k~0

lim
?0

ðt{

{?
. . .

ð t̂tk

{?
l(̂tt1 ĵtt2, . . . ,̂ttk) . . . l(̂ttk)

e
{
Ð t

t̂t1
l(xĵtt1,...,̂ttk )dx{...{

Ð t̂tk
{?

l(x)dx
l(tĵtt1, . . . ,̂ttk)dt̂tk . . . dt̂t1

ð18Þ

Figure 6. Steady-state interspike interval distribution and auto-correlation. (A)The interspike interval distribution calculated from the
25,000 repeated simulations of the SRM after the steady state has been reached (blue) is compared with the QR theory (Eq. 31; black) for I = 60, 70 and
80 pA. (B) On the same regimen, the autocorrelation function calculated from direct simulations at the steady-state (blue) is compared with the QR
prediction (Eq. 33; black). See Methods for model parameters.
doi:10.1371/journal.pcbi.1002711.g006
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Therefore we have shown Eq. 2, which we repeat here in the

notation of the present paragraph:

A(t)~
X?
k~0

Sl(tD̂tt1, . . . t̂tk)Tf̂tt1,...,̂ttkg~Sl(tDS)T: ð19Þ

Note that the term with zero spikes in the past (k~0) contributes a

term l(t)e
{
Ð t

{?
l(x)dx

to the sum.

Derivation of Eq. 5. In order to single out the effect of the

previous spike, we replace t̂t1~t’ and group factors in the path

integral of Eq. 18:

A(t)~l(t)e
{
Ð t

{?
l(x)dx

z
P?

k~1

Ð t

{?

Ð t’
{? . . .

Ð t̂tk
{? e

{
Ð t

t’
l(xjt’,...,̂ttk )dx

l(tjt’, . . . ,̂ttk)

� �
|

l(t’ĵtt2, . . . ,̂ttk)l(̂tt2 ĵtt3, . . . ,̂ttk) . . . l(̂ttk)

e
{
Ð t’

t̂t2
l(xĵtt2,...,̂ttk )dx{...{

Ð t̂tk
{?

l(x)dx
dt̂tk . . . dt̂t2dt’

ð20Þ

The first term contains the probability that no spike was ever

fired by the neuron until time t. We can safely assume this term to

be zero. The factors in square brackets depend on all previous

spike times. However if we assume that the adaptation effects only

depend on the most recent spike time t’ and on the typical spiking

history before, but not on the specific spike times of earlier spikes,

then the formula in square brackets can be moved in front of the

integrals over t̂t2, t̂t3, … We therefore set:

l(xDt’,S’)&Sl(xDt’,S’)TS’ ð21Þ

where S’ is the spike train containing all the spikes before t’. Thus,

l is now only a function of t’ but not of the exact configuration of

earlier spikes. We use the approximation of Eq. 21 only for the

factors surrounded by square brackets in Eq. 20. The path integral

Eq. 20 becomes:

A(t)~

ðt

{?
Sl(tDt’,S’)TS’e

{
Ð t

t’
Sl(xDt’,S’)TS’dx

A(t’)dt’ ð22Þ

where we have used Eq. 17 to recover A(t’).
Derivation of Eq. 7. We can recognize in Seg�STS the moment

generating functional for the random function S(t). This functional

can be written in terms of the correlation functions such as

S½S(t1){A(t1)�½S(t2){A(t2)�T [57]. The correlation functions are

labeled gn(t1,t2, . . . ,tn) as in van Kampen [57] such that the first

correlation function is the population activity: g1(t):A(t), the second

correlation function is g2(t1,t2)~S½S(t1){A(t1)�½S(t2){A(t2)�T for

t1=t2, and so on. Then, the generating functional can be written [57]:

Se(g�S)½t�T~ exp
X?
m~1

1

m!

ðt

{?
eg(t{s1){1
� �

. . .

 

eg(t{sm){1
� �

gm(s1, . . . ,sm)ds1 . . . dsmÞ:
ð23Þ

Eq. 23 is called a generating functional because the functional

derivatives with respect to g(t) and evaluated at g(t)~0 yields the

correlation functions.

Derivation of the renewal equation. A derivation of the

renewal equation [6,41,42] can be obtained by replacing the QR

approximation (Eq. 21) by the renewal approximation:

l(xDt’,S’)&l(xDt’): ð24Þ

Applying this approximation on the factors in the square bracket

of Eq. 20 gives:

A(t)~

ðt’

{?
l(tDt’)e{

Ð t

t’
l(xDt’)dx

A(t’)dt’: ð25Þ

Therefore Eqs. 20 and 24 yield a novel path integral proof of the

renewal equation (Eq. 25).

The survival function and interval distribution. First

consider the expected value in Eq. 2 partitioned so as to first

average over the previous spike t’ and then over the rest of the

spiking history S’(t):

A(t)~Sl(tjt0,S0)Tt0 ,S0~S
ð

l(tjt0,S0)P(t,t0)dt0T
S0
ð26Þ

where the last equality results from a marginalization of the last

spike time. P(t,t’) is the probability to spike at time t’ and to survive

from t’ to t without spiking. Thus we can write P(t,t’) as the

product of the population activity at t’ and the probability of not

spiking between t’ and t that we will label s(tDt’):

P(t,t’)~s(tDt’)A(t’): ð27Þ

The function s(tDt’) is the survival function in renewal theory. It

depends implicitly on the spiking history. The rate of decay of the

survival function depends in general on the precise timing of all

previous spikes. The QR approximation means that we approx-

imate this decay by averaging over all possible spike trains before

t’, so that:

ds(tDt’)
dt

~{s(tDt’)Sl(tDt’,S’)TS’, ð28Þ

which can be integrated to yield:

s(tDt’)~ exp {

ðt

t’
Sl(xDt’,S’)TS’dx

� �
: ð29Þ

The survival function in Eq. 27 and Eq. 26 leads to the QR

equation (Eq. 5). Following renewal theory [3], the interspike

interval distribution:

r(t,t’)~Sl(tDt’,S’)TS’e
{
Ð t

t’
Sl(xDt’,S’)TS’dx

: ð30Þ

The factor in Eq. 5 can therefore be interpreted as an approximate

expression of the interspike interval distribution of adaptive

neurons.

Auto-correlation functions and interspike interval

distributions at the steady state. At the steady state with a

constant input h, the interspike interval distribution predicted by

QR theory is:

rs(t,h,A?)~ls(t,h,A?) exp {

ðt

0

ls(x,h,A?)dx

� �
ð31Þ

(20)
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where t is the interspike interval, A? is the steady-state activity,

and ls is the averaged conditional firing intensity Sl(tDt’S’)TS’.

The latter can be written as:

ls(t,h,A?)~ exp hzg(t)zA?

ð?
t

(eg(x){1)dx

� �
: ð32Þ

From which we recover the auto-correlation function

c(t)~SS(t)S(tzt)T{A2
? [3]:

cQR(t,A?)~A?F{1 R 1zr̂rs

1{r̂rs

� 	� �
, ð33Þ

where r̂rs(v) is the Fourier transform of rs(t). To solve for the

steady-state population activity, we note that the inverse of A?(h)
is also the mean interspike interval at the steady state:

A?(h){1~

ð?
0

trs(t,h,A?)dt: ð34Þ

B Numerical Methods
All simulations were performed on a desktop computer with 4

cores (Intel Core i7, 2.6 GHz, 24 GB RAM) using Matlab (The

Mathworks, Natwick, MA). The Matlab codes to numerically solve

the self-consistent equations are made available on the author’s

websites. The algorithmic aspects of the numerical methods are

discussed now.

Direct simulation. All temporal units in this code are given

in milliseconds. Direct simulation of Eq. 3 was done by first

discretizing time (dt was varied between 0.5 and 0.005 ms) and

then deciding at each time step whether a spike is emitted by

comparing the probability to spike in a time-bin:

1{e{l(t)dt ð35Þ

to a random number of uniform distribution. Each time a spike is

emitted, the firing probability is reduced according to the SRM

equation for l(t) because another term g(t{t’) is added (Eq. 3).

Typically 25,000 repeated simulations were required to compute

PSTHs on such a fine temporal resolution. The PSTHs were built

by averaging the 25,000 discretized spike trains and performing a

2-ms running average unless otherwise mentioned. The dynamics

of g(t) were calculated from the numerical solution of the

differential equation corresponding to g(t)~g1e{t=t1zg2e{t=t2

~a1(t)za2(t) where _aa1~{a1=t1zg1

P
f d(t{t̂tf ) and similarly

for a2.

For all simulations, the baseline current was 10 pA (except for

time-dependent current where the mean was specified), the

baseline excitability was l0~ log ({10) kHz, the membrane filter

k~k0e{t=tk was a single exponential with an amplitude k0~0:01
in units of inverse electric charge and a time constant of

tk~10 ms.

Time-dependent input consisted of an Ornstein-Uhlenbeck

process which is computed at every time step as:

I(tzdt)~I(t){
I(t)

tI

dtzmI dtzsI j(t)
ffiffiffiffi
dt
p

ð36Þ

where mI is the mean, sI the standard deviation and tI = 300 ms

the correlation time constant. j(t) is a zero mean, unit variance

Gaussian variable updated at every time step.

Numerical solution of renewal and quasi-renewal

equations. We consider the QR equation, Eq. 5, with the

averaged conditional intensity of Eq. 8. We choose a tolerance c

for truncating the function eg(t){1 and find the cutoff tc such that:

eg(t){1w{ c for all twtc. A typical value for the tolerance, c, is

10{2. We split the main integral in Eq. 5 in two integrals, one

from {? to tc, the other from tc to t to get:

A(t)~l0eh(t)

ðt{tc

{?
s(tjt’)A(t’)dt’z

ðt

t{tc

exp

�

g(t{t’)z
ðt’

{?
(eg(t{z){1)A(z)dz

� �
s(tjt’)A(t’)dt’

�
,

ð37Þ

where s(tDt’) is called the survival function (see Methods A) and

corresponds to exp ({
Ð t

t’ Sl(xDt’,S’)dxTS’). With the same rea-

soning the lower bound of the innermost integral can be changed

from {? to t’{tc because Deg(t{z){1Dv{ c for all

zvt’{tcƒt{tc. The first term in the square brackets of Eq.

37 are the neurons that have had their last spike a long time back

in the past. For this term, we use the conservation equation,

1~
Ð t

{? s(tDt’)A(t’)dt’ [3]. This enables us to write the first-order

QR equation in terms of an integral from t{tc to t or t’ only:

A(t)~l0eh(t) 1{

ðt

t{tc
½1{ exp

� ðg(t{t’)z

ðt’

t’{tc

(eg(t{z){1)A(z)dz

�
�s(tjt’)A(t’)dt’g:

ð38Þ

We define two vectors. First x(t) is made of the exponential in Eq.

38 on the linear grid for t’[½t{tc,t�, such that the k’th element can

be written:

x
(t)
k ~ exp gkz

XkzK

j~k

yjAt{jdt

 !
, ð39Þ

where yj is the discretized function eg(t){1. K~tc=dt is the

number of time steps dt needed to cover the time span tc

defined above. Note that x(t) does not depend on At since y0~0
(because of an absolute refractoriness during the spike). The

update of x is the computationally expensive step of our

implementation. Adaptive time-step procedures could be

applied to improve the efficiency of the algorithm, but we did

not do so. The special case where a rapid solution is possible is

discussed further below.

The second vector m(t) corresponds to s(tDt’)A(t’)dt for t’
evaluated on the same linear grid as the one used for x. This

vector traces the probability of having the last spike at t’. Assuming

that there was no stimulation before time t~0 we can initialize

this vector to zero. To update m we note that the firing condition

Eq. 35 gives:

s(tzdtDt’)A(t’)~ exp {dtSl(tzdtDt’,S’)TS’�ð Þs(tDt’)A(t’): ð40Þ

To do so, we see from Eq. 40 that we can evaluate m(tzdt) from

m(t) calculated at the previous time step. The first bin is updated to

the previous population activity:
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m
(tzdt)
1 ~Atdt ð41Þ

and all the other bins are updated according to

m
(tzdt)
k ~m

(t)
k{1 exp {dteh(tzdt)x

(tzdt)
k{1

� �
: ð42Þ

We can therefore calculate the population activity iteratively at

each time bin using Eq. 38:

At~eht 1z x(t){1
� �T

m(t)
h i

: ð43Þ

where x(t) and m(t) depend on the activity At’ for t’vt. This

algorithm implements a numerical approximation of the QR

equation. On our desktop computer and with our particular

implementation, solving 1 second of biological time took 36 sec-

onds with a discretization of 0.1 ms for QR and 84–200 seconds

for direct simulation of 25,000 neurons, depending on the firing

rate. Using the same number of neurons but with a discretization

of 0.5 ms it took 1.8 seconds to solve QR and 16–20 seconds to

perform the direct simulation. If T is the total number of time step,

the present numerical methods are O(TK2). Evaluating the

convolution in Eq. 39 with fast Fourier transform gives

O(TK ln K). This same convolution can be evaluated with a

differential equation with the choice of basis: g(t)~ ln (1{PP
p~1 ape{apt), with parameters ap and ap having the constraint

of
P

ap~1. This fast parametrization solves in O(TK).

Decoding QR. Isolating the input ht from Eq. 43 gives the

decoding algorithm:

eht~At 1z x(t){1
� �T

m(t)
� �{1

ð44Þ

where m(t) is also a function of ht. Decoding can be carried out

by assuming m(t)&m(t{dt) in Eq. 44, but this can lead to

numerical instabilities when the time step is not very small.

Instead we write m(t) as a function of m(t{dt) (Eqs. 41 and 42),

expand Eq. 42 to first order in dt and solve the resulting

quadratic equation for eht :

At~eht 1zAt{dtdt(x
(t)
1 {1)z x

(t)
2:K{1

� �T

m
(t{dt)
1:K{1

� �

zdt eht
� �2

x
(t)
2:K{1

� �T

(x
(t)
1:K{1: �m

(t{dt)
1:K{1),

ð45Þ

where :� denotes the element by element (array) multiplication.

Numerical solution of EME1 and EME2. The structure of

EME1 and EME2 allows us to use a nonlinear grid spacing in

order to save memory resources. The bins should be small where

g(t) varies fast, and larger where g(t) varies slowly. Since the SAP

is approximatively exponential, we choose the size bk of bin k to

be given by: bk~q(1zek=b)=2rdt: where q:r takes the nearest

greater integer and dt is the smallest time bin allowed and will be

the discretization of the final solution for the population activity.

The degree of nonlinearity, b, is chosen such that there are K bins

between dt and tc. To a good approximation, b(tc,K) can be

obtained by solving the equation: 2tc

dt
{K{1{e1=b( 2tc

dt
{K)z

e(K{1)=b~0.

To perform the numerical integration, we define the vector

y made of the function (eg(tk){1)bk evaluated at the end of

each bin tk with bin size bk, the vector h with elements ht made

of the convolution k � I discretized on the uniform grid of

length T with bin size dt, and on the same grid the vector A
made of the discretized population activity. Finally, we define

the vector ~AA(t) made of the population activity in the last tc

seconds since time t on the non-linear grid defined by bk.

Using the rectangle method to evaluate the integral of the first-

order self-consistent equation for population activity, we can

write:

Atzdt~ exp htzdtzyT ~AA(t)
� �

: ð46Þ

Such that the population activity is obtained by solving

iteratively through time Eq. 46, an operation requiring O(TK).

To compute the second order equation, we first build the

correlation vector c on the linear grid of the smallest bin size dt:

c(h)~F{1 R 1zp̂ps(h)

1{p̂ps(h)

� 	� �
ð47Þ

where F{1 denotes the inverse Fourier transform and p̂ps(I) is the

Fourier transform of ps, the steady-state interspike interval

distribution for a renewal process. The steady-state inter-spike

interval distribution vector is calculated from:

ps(t,h)~l0eh exp g(t){l0eh

ðt

0

eg(x)dx

� �
, ð48Þ

where h is a constant input and t is an interspike interval. We

assume that at each time t the correlation function is the steady-

state correlation function associated with h(t). Then we construct

the matrix ~CC(t) such that its element p,q can be written:

~CC(t)
pq~cDtq{tp D=dt(h(t))A(t{Dtq{tpD): ð49Þ

Since the logarithmically spaced tq were multiples of dt this matrix

can be computed from c. We first construct a look-up table for the

correlation function for a range of the filtered input h. This way

the matrix ~CC can be easily computed at each time step by updating

with the new values of the population activity A. Finally, we

evaluate the self-consistent equation of the population activity with

the second order correction:

Atzdt~ exp htzdtzyT ~AA(t)z
1

2
yT ~CC(t)y

� �
: ð50Þ

EME1 gain function. The first-order expansion (Eq. 10) can

be used to write an analytical expression for the steady-state

population activity. A constant input h will bring the neuron

population to a constant population activity that is obtained by

solving for the constant A? in Eq. 10.

A?~
1

k1
W l0ehk1

� �
, ð51Þ

whereW is the Lambert W-function and k1~
Ð

1{eg(s)

 �

ds. This

gain function is valid on a restricted range of input (Fig. 5D).
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C Analysis Methods
When assessing the accuracy of the encoding or the decoding,

we used the correlation coefficient. The correlation coefficient is

the variance-normalized covariance between two random vari-

ables X and Y :

S(X{SXT)(Y{SYT)Tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S(X{SXT)2TS(Y{SYT)2T

q , ð52Þ

where the expectation is taken over the discretized time.

Supporting Information

Figure S1 Statistics of decoding performance. (A–B)

Correlation coefficient between original filtered input recovered

from the activity of a population of N~10,50,250,1000 or 5000
neurons shown as a function of N . The activity was filtered with a

given single exponential filter with a time constant of (A) 20 ms

and (B) 2 ms. (C) Mean squared error associated with an

instantaneous firing rate (N~5000, error bars correspond to one

standard deviation). (D–E) Fraction of input times at which

decoding could be performed corresponding to A and B,

respectively. Decoding could not be carried out when the stimulus

was outside the dynamic range which corresponds to A~0. (F)

Fraction of times where the activity was non-zero as a function of

the population size. Colors show different standard deviation of

the original input with values in pA, other parameters idem as

Fig. 4.

(TIF)

Figure S2 Role of SAP for Renewal theory, EME1 and
EME2 for step input. Population activity responses (top panels;

PSTH from 25,000 repeated simulations in blue, renewal theory in

black, EME1 in red, EME2 in green) to the step current input

(bottom panels; black). The neuron population follows spike-

response model dynamics with effective SAP g(t)~g0e{t=tg with

tg = 500 ms. (A–C) shows exemplar traces for different SAP

amplitude and input steps: (A) g0~1 and current step I1~20 pA,

(B) g0~1 and current step I1~45 pA, (C) g0~5 and current step

I1~45 pA. The mean square error of each analytical approxi-

mation (D Renewal, E EME1, F, EME2) for various values of the

SAP amplitude g0 and current step size I1. The error rate is the

standard deviation between the PSTH and the theory as

calculated on the first 2 seconds after the step, divided by

2 seconds. For other model parameters see Methods.

(TIF)

Figure S3 Encoding time-dependent stimuli in the
population activity with Event-Based Moment Expan-
sion (EME). (A) Population activity responses (middle panel;

PSTH from 25,000 repeated simulations in blue, EME1 in red to

the time-dependent stimuli (bottom panel; black). The difference

between direct simulation and theory is shown in the top

panel.The stimulus is an Ornstein-Uhlenbeck process with

correlation time constant of 300 ms with STD increasing every

2 seconds (20,40,60 pA) and a mean of 10 pA. (B) Correlation

coefficients between direct simulation and EME1 for various STDs

and mean (in pA) of the input current. Results of Fig. 3 are copied

(dashed lines).

(TIF)

Figure S4 Decoding the stimulus from the population
activity with EME1. (A–D) The original (bottom panels, black

line) and decoded stimulus (bottom panels, red line; arbitrary units)

recovered from the PSTH of 25,000 independent SRM neurons

(top panels; blue line) using Eq. 11. The decoded waveform of

negative input is occasionally undefined because the logarithm of

zero activity is not defined (Eq. 11). (E) Correlation coefficient of

original and decoded input as a function of input STD, shown for

three distinct mean input (m~10 pA, m~20 pA, and m~30 pA).

Compare also with QR in Fig. 4.

(TIF)
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