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Abstract

In timing-based neural codes, neurons have to emit action potentials
at precise moments in time. We use a supervised learning paradigm to
derive a synaptic update rule that optimizes via gradient ascent the like-
lihood of postsynaptic firing at one or several desired firing times. We
find that the optimal strategy of up- and downregulating synaptic effica-
cies depends on the relative timing between presynaptic spike arrival and
desired postsynaptic firing. If the presynaptic spike arrives before the
desired postsynaptic spike timing, our optimal learning rule predicts that
the synapse should become potentiated. The dependence of the poten-
tiation on spike timing directly reflects the time course of an excitatory
postsynaptic potential. However, our approach gives no unique reason
for synaptic depression under reversed spike-timing. In fact, the pres-
ence and amplitude of depression of synaptic efficacies for reversed spike
timing depends on how constraints are implemented in the optimization
problem. Two different constraints, i.e., control of postsynaptic rates or
control of temporal locality, are studied. The relation of our results to
Spike-Timing Dependent Plasticity (STDP) and reinforcement learning
is discussed.
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1 Introduction

Experimental evidence suggests that precise timing of spikes is important in several
brain systems. In the barn owl auditory system, for example, coincidence detecting
neurons receive volleys of temporally precise spikes from both ears (Carr and Konishi
1990). In the electrosensory system of mormyrid electric fish, medium ganglion cells
receive input at precisely timed delays after electric pulse emission (Bell et al. 1997).
Under the influence of a common oscillatory drive as present in the rat hippocampus
or olfactory system, the strength of a constant stimulus is coded in the relative timing
of neuronal action potentials (Hopfield 1995; Brody and Hopfield 2003; Mehta et al.
2002). In humans precise timing of first spikes in tactile afferents encode touch
signals at the finger tips (Johansson and Birznieks 2004). Similar codes have also
been suggested for rapid visual processing (Thorpe et al. 2001), and for the rat’s
whisker response (Panzeri et al. 2001).

The precise timing of neuronal action potentials also plays an important role in
Spike-Timing Dependent Plasticity (STDP). If a presynaptic spike arrives at the
synapse before the postsynaptic action potential, the synapse is potentiated; if the
timing is reversed the synapse is depressed (Markram et al. 1997; Zhang et al. 1998;
Bi and Poo 1998; Bi and Poo 1999; Bi and Poo 2001). This biphasic STDP function
is reminiscent of a temporal contrast or temporal derivative filter and suggests that
STDP is sensitive to the temporal features of a neural code. Indeed, theoretical
studies have shown that, given a biphasic STDP function, synaptic plasticity can
lead to a stabilization of synaptic weight dynamics (Kempter et al. 1999; Song
et al. 2000; Kempter et al. 2001; van Rossum et al. 2000; Rubin et al. 2001) while
the neuron remains sensitive to temporal structure in the input (Gerstner et al.
1996; Roberts 1999; Kempter et al. 1999; Kistler and van Hemmen 2000; Rao and
Sejnowski 2001; Gerstner and Kistler 2002a).

While the relative firing time of pre- and postsynaptic neurons, and hence tem-
poral aspects of a neural code, play a role in STDP, it is, however, less clear whether
STDP is useful to learn a temporal code. In order to further elucidate the com-
putational function of STDP, we ask in this paper the following question: What
is the ideal form of a STDP function in order to generate action potentials of the
postsynaptic neuron with high temporal precision?

This question naturally leads to a supervised learning paradigm - i.e., the task to
be learned by the neuron is to fire at a predefined desired firing time tdes. Supervised
paradigms are common in machine learning in the context of classification and pre-
diction problems (Minsky and Papert 1969; Haykin 1994; Bishop 1995), but have
more recently also been studied for spiking neurons in feedforward and recurrent
networks (Legenstein et al. 2005; Rao and Sejnowski 2001; Barber 2003; Gerstner
et al. 1993; Izhikevich 2003). Compared to unsupervised or reward-based learn-
ing paradigms, supervised paradigms on the level of single spikes are obviously less
relevant from a biological point, since it is questionable what type of signal could
tell the neuron about the ‘desired’ firing time. Nevertheless, we think it is worth
addressing the problem of supervised learning - firstly as a problem in it’s own right,
and secondly as a starting point of spike base reinforcement learning (Xie and Seung
2004; Seung 2003). Reinforcement learning in a temporal coding paradigm implies
that certain sequences of firing times are rewarded whereas others are not. The
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“desired firing times” are hence defined indirectly via the presence or absence of a
reward signal. The exact relation of our supervised paradigm to reward-based rein-
forcement learning will be presented in section 4. Section 2 introduces the stochastic
neuron model and coding paradigm which are used to derive the results presented
in section 3.

2 Model

2.1 Coding Paradigm

In order to explain our computational paradigm, we focus on the example of tem-
poral coding of human touch stimuli (Johansson and Birznieks 2004), but the same
ideas would apply analogously to the other neuronal systems with temporal codes
mentioned above (Carr and Konishi 1990; Bell et al. 1997; Hopfield 1995; Brody and
Hopfield 2003; Mehta et al. 2002; Panzeri et al. 2001). For a given touch stimulus,
spikes in an ensemble of N tactile afferents occur in a precise temporal order. If the
same touch stimulus with identical surface properties and force vector is repeated
several times, the relative timing of action potentials is reliably reproduced whereas
the spike timing in the same ensemble of afferents is different for other stimuli (Jo-
hansson and Birznieks 2004). In our model, we assume that all input lines, labeled
by the index j with 1 ≤ j ≤ N converge onto one or several postsynaptic neurons.
We think of the postsynaptic neuron as a detector for a given spatio-temporal spike
patterns in the input. The full spike pattern detection paradigm will be used in
Section 3.3. As a preparation and first steps towards the full coding paradigm we
will also consider the response of a postsynaptic neuron to a single presynaptic spike
(Section 3.1) or to one given spatio-temporal firing pattern (Section 3.2).

2.2 Neuron Model

Let us consider a neuron i which is receiving input from N presynaptic neurons.

Let us denote the ensemble of all spikes of neuron j by xj = {t1j , . . . , t
Nj

j } where tkj
denotes the time when neuron j fired its kth spike. The spatio-temporal spike pattern
of all presynaptic neurons 1 ≤ j ≤ N will be denoted by boldface x = {x1, . . . , xN}.

A presynaptic spike elicited at time tf
j evokes an excitatory postsynaptic poten-

tial (EPSP) of amplitude wij and time course ε(t − tfj ). For the sake of simplicity,
we approximate the EPSP time course by a double exponential

ε(s) = ε0

[

exp

(

−
s

τm

)

− exp

(

−
s

τs

)]

Θ(s) (1)

with a membrane time constant of τm = 10 ms and a synaptic time constant of
τs = 0.7 ms which yields an EPSP rise time of 2 ms. Here Θ(s) denotes the Heaviside
step function with Θ(s) = 1 for s > 0 and Θ(s) = 0 else. We set ε0 = 1.3 mV
such that a spike at a synapse with wij = 1 evokes an EPSP with amplitude of
approximately 1 mV. Since the EPSP amplitude is a measure of the strength of a
synapse, we refer to wij also as the efficacy (or “weight”) of the synapse between
neuron j and i.
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Let us further suppose that the postsynaptic neuron i receives an additional
input I(t) that could either arise from a second group of neurons or from intracellular
current injection. We think of the second input as a ‘teaching’ input that increases
the probability that the neuron fires at or close to the desired firing time tdes. For
the sake of simplicity we model the teaching input as a square current pulse I(t) =
I0Θ(t − tdes + 0.5∆T )Θ(tdes + 0.5∆T − t) of amplitude I0 and duration ∆T . The
effect of the teaching current on the membrane potential is

uteach(t) =

∫ ∞

0
k(s)I(t− s)ds (2)

with k(s) = k0 exp(−s/τm) where k0 is a constant that is inversely proportional to
the capacitance of the neuronal membrane.

In the context of the human touch paradigm discussed in section 2.1, the teach-
ing input could represent some preprocessed visual information (‘object touched by
fingers starts to slip now’), feedback from muscle activity (‘strong counterforce ap-
plied now’), cross-talk from other detector neurons in the same population (‘your
colleagues are active now’), or unspecific modulatory input due to arousal or reward
(‘be aware - something interesting happening now’).

In the context of training of recurrent networks (e.g. Rao and Sejnowski 2001),
the teaching input consists of a short pulse of an amplitude that guarantees action
potential firing.

The membrane potential of the postsynaptic neuron i (Spike Response Model,
Gerstner and Kistler 2002b) is influenced by the EPSPs evoked by all afferent spikes

of stimulus x, the ‘teaching’ signal and the refractory effects generated by spikes tf
i

of the postsynaptic neuron

ui(t|x, yi
t) = urest +

N
∑

j=1

wij

∑

t
f
j ∈xj

ε(t− tfj ) +
∑

t
f
i ∈yi

t

η(t− tfi ) + uteach(t) (3)

where urest = −70 mV is the resting potential, yi
t = {t1i , t

2
i , . . . , t

F
i < t} is the

set of postsynaptic spikes that occurred before t and tF
i always denotes the last

postsynaptic spike before t. On the right-hand side of Eq. (3), η(s) denotes the
spike-afterpotential generated by an action potential. We take

η(s) = η0 exp

(

−
s

τm

)

Θ(s) (4)

where η0 < 0 is a reset parameter that describes how much the voltage is reset after
each spike; for the relation to integrate-and-fire neurons see (Gerstner and Kistler
2002b). The spikes themselves are not modeled explicitly but reduced to formal
firing times. Unless specified otherwise, we take η0 = −5 mV.

In a deterministic version of the model, output spikes would be generated when-
ever the membrane potential ui reaches a threshold ϑ. In order to account for
intrinsic noise, and also for a small amount of ‘synaptic noise’ generated by stochas-
tic spike arrival from additional excitatory and inhibitory presynaptic neurons which
are not modeled explicitly we replace the strict threshold by a stochastic one. More
precisely we adopt the following procedure (Gerstner and Kistler 2002b). Action
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potentials of the postsynaptic neuron i are generated by a point process with time
dependent stochastic intensity ρi(t) = g(ui(t)) that depends non-linearly upon the
membrane potential ui. Since the membrane potential in turn depends on both the
input and the firing history of the postsynaptic neuron, we write:

ρi(t|x, yi
t) = g(ui(t|x, yi

t)). (5)

We take an exponential to describe the stochastic escape across threshold, i.e, g(u) =
ρ0 exp

(

u−ϑ
∆u

)

where ϑ = −50 mV is the formal threshold, ∆u = 3 mV is the width
of the threshold region and therefore tunes the stochasticity of the neuron, and
ρ0 = 1/ms is the stochastic intensity at threshold (see Fig. 1). Other choices of
the escape function g are possible with no qualitative change of the results. For
∆u → 0, the model is identical to the deterministic leaky integrate-and-fire model
with synaptic current injection (Gerstner and Kistler 2002b).
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Figure 1: A. Escape rate g(u) = ρ0 exp
(

u−ϑ
∆u

)

. B. Firing rate of the postsynaptic
neuron as a function of the amplitude I0 of a constant stimulation current (arbitrary
units). C. Interspike interval (ISI) distribution for different input currents.

We note that the stochastic process, defined in Eq. (5) is similar to, but differ-
ent from a Poisson process since the stochastic intensity depends on the set yt of
the previous spikes of the postsynaptic neuron. Thus the neuron model has some
‘memory’ of previous spikes.

2.3 Stochastic Generative Model

The advantage of the probabilistic framework introduced above via the noisy thresh-
old is that it is possible to describe the probability density1 Pi(y|x) of an entire spike

1For the sake of simplicity, we denoted the set of postsynaptic spikes from 0 to T
by y instead of yT .
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train2 Y (t) =
∑

t
f
i ∈y

δ(t − tfi ) (see appendix A for details):

Pi(y|x) =







∏

t
f
i ∈y

ρi(t
f
i |x, y

t
f
i

)






exp

(

−

∫ T

0
ρi(s|x, ys)ds

)

= exp

(∫ T

0
log(ρi(s|x, ys))Y (s)− ρi(s|x, ys)ds

)

(6)

Thus we have a generative model that allows us to describe explicitly the likelihood
Pi(y|x) of emitting a set of spikes y for a given input x. Moreover, since the likelihood
in Eq. (6) is a smooth function of its parameters, it is straightforward to differentiate
it with respect to any variable. Let us differentiate Pi(y|x) with respect to the
synaptic efficacy wij , since this is a quantity that we will use later on:

∂ log Pi(y|x)

∂wij
=

∫ T

0

ρ′i(s|x, ys)

ρi(s|x, ys)
[Y (s)− ρi(s|x, ys)]

∑

t
f
j ∈xj

ε(s− tfj )ds. (7)

where ρ′i(s|x, ys) = dg
du
|u=ui(s|x,ys).

In this paper, we propose three different optimal models called A, B and C (cf.
Table 1). The models differ in the stimulation paradigm and the specific task of the
neuron. In section 3, the task and hence the optimality criteria are supposed to be
given explicitly. However, the task in model C could also be defined indirectly by
the presence or absence of a reward signal as discussed in section 4.1. The common
idea behind all three approaches (A-C) is the notion of optimal performance. Opti-
mality is defined by an objective function L that is directly related to the likelihood
formula of Eq. (6) and that can be maximized by changes of the synaptic weights.
Throughout the paper, this optimization is done by a standard technique of gradient
ascent:

∆wij = α
∂L

∂wij
(8)

with a learning rate α. Since the three models correspond to three different tasks,
they have a slightly different objective function. Therefore, gradient ascent yields
slightly different strategies for synaptic update. In the following we start with the
simplest model with the aim to illustrate the basic principles that generalize to the
more complex models.

3 Results

In this section we present synaptic updates rules derived by optimizing the likeli-
hood of postsynaptic spike firing at some desired firing time tdes. The essence of
the argument is introduced in a particularly simple scenario, where the neuron is
stimulated by one presynaptic spike and the neuron is inactive except at the desired
firing time tdes. This is the raw scenario that is further developed in several different
directions.

2Capital Y is the spike train generated by the ensemble (lower case) y.
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Firstly, we may ask the question of how the postsynaptic spike at the desired
time tdes is generated: (i) the spike could simply be given by a supervisor. As always
in maximum likelihood approaches, we then optimize the likelihood that this spike
could have been generated by the neuron model (i.e., the generative model) given
the known input; (ii) the spike could have been generated by an strong current
pulse of short duration applied by the supervisor (teaching input). In this case the
a priori likelihood that the generative model fires at or close to the desired firing
time is much higher. The two conceptual paradigms give slightly different results as
discussed in scenario A.

Secondly, we may, in addition to the spike at the desired time tdes allow for
other postsynaptic spikes generated spontaneously. The consequences of sponta-
neous activity for the STDP function are discussed in scenario B. Thirdly, instead
of imposing a single postsynaptic spike at a desired firing time tdes, we can think of
a temporal coding scheme where the postsynaptic neuron responds to one (out of
M) presynaptic spike patterns with a desired output spike train containing several
spikes while staying inactive for the other M − 1 presynaptic spike patterns. This
corresponds to a pattern classification task which is the topic of scenario C.

Moreover, optimization can be performed in an unconstrained fashion or under
some constraint. As we will see in this section, the specific form of the constraint
influences the results on STDP, in particular the strength of synaptic depression
for post-before-pre timing. To emphasize this aspect, we discuss two different con-
straints. The first constraint is motivated by the observation that neurons have a
preferred working point defined by a typical mean firing rate that is stabilized by
homeostatic synaptic processes (Turrigiano and Nelson 2004). Penalizing deviations
from a target firing rate is the constraint that we will use in scenario B. For very
low target firing rate, the constraint reduces to the condition of ‘no activity’ which
is the constraint implemented in scenario A.

The second type of constraint is motivated by the notion of STDP itself: changes
of synaptic plasticity should depend on the relative timing of pre- and postsynaptic
spike firing and not on other factors. If STDP is to be implemented by some physical
or chemical mechanisms with finite time constants, we must require the STDP func-
tion to be local in time, i.e., the amplitude of the STDP function approaches zero
for large time differences. This is the temporal locality constraint used in scenario
C. While the unconstrained optimization problems are labeled with the subscript u
(Au, Bu, Cu), the constrained problems are marked by the subscript c (Ac, Bc, Cc)
(c.f Table 1).

3.1 Scenario A: One Postsynaptic Spike Imposed

Let us start with a particularly simple model which consists of one presynaptic
neuron and one postsynaptic neuron (c.f. Fig. 2A). Let us suppose that the task of
the postsynaptic neuron i is to fire a single spike at time tdes in response to the input
which consists of a single presynaptic spike at time tpre, i.e. the input is x = {tpre}
and the desired output of the postsynaptic neuron is y = {tdes}. Since there is only
a single pre- and a single postsynaptic neuron involved, we drop in this section the
indices j and i of the two neurons.
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Unconstrained scenarios Constrained scenarios

Au
Postsynaptic spike imposed

Ac
No activity

LAu = log(ρ(tdes)) LAc = LAu −
∫ T

0 ρ(t)dt

Bu

Postsynaptic spike imposed

Bc
Stabilized activity

+ spontaneous activity
LBu = log(ρ̄(tdes)) LBc = LBu − 1

Tσ2

∫ T

0
(ρ̄(t) − ν0)2dt

Cu

Postsynaptic spike

Cc

Temporal locality
patterns imposed constraint

LCu = log





∏

i

Pi(y
i|xi)

∏

k 6=i

Pi(0|x
k)

γ
M−1



 LCc = LCu , P∆∆′ = aδ∆∆′

(

∆− T̃0

)2

Table 1: Summary of the optimality criterion L for the three unconstrained scenarios
(Au, Bu, Cu) and the three constrained scenarios (Ac, Bc, Cc). The constraint for
scenario C is not included in the likelihood function LCc itself, but rather in the
deconvolution with a matrix P that penalizes quadratically the terms that are non-
local in time. See appendix C for more details.
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Figure 2: A. Scenario A: a single presynaptic neuron connected to a postsynaptic
neuron with a synapse of weight w. B. Optimal weight change given by Eq. (10) for
the scenario Au. This weight change is exactly the mirror image of an EPSP.

3.1.1 Unconstrained scenario Au: One Spike at tdes

In this subsection, we assume that the postsynaptic neuron has not been active in the
recent past, i.e. refractory effects are negligible. In this case, we have ρ(t|x, yt) =
ρ(t|x) because of the absence of previous spikes. Moreover, since there is only a
single presynaptic spike (i.e. x = {tpre}), we write ρ(t|tpre) instead of ρ(t|x).

Since the task of the postsynaptic neuron is to fire at time tdes, we can define
the optimality criterion LAu as the log-likelihood of the firing intensity at time tdes,
i.e.

LAu = log
(

ρ(tdes|tpre)
)

(9)
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The gradient ascent on this function leads to the following STDP function:

∆wAu = α
∂LAu

∂w
= α

ρ′(tdes|tpre)

ρ(tdes|tpre)
ε(tdes − tpre) (10)

where ρ′(t|tpre) ≡ dg
du
|u=u(t|tpre). Since this optimal weight change ∆wAu can

be calculated for any presynaptic firing time tpre, we get a STDP function which
depends on the time difference ∆t = tpre− tdes (c.f. Fig. 2B). As we can see directly
from Eq. (10), the shape of the potentiation is exactly a mirror image of an EPSP.
This result is independent of the specific choice of the function g(u).

The drawback of this simple model becomes apparent, if the STDP function
given by Eq. 10 is iterated over several repetitions of the experiment. Ideally, it
should converge to an optimal solution given by ∆wAu = 0 in Eq. (10). However,
the optimal solution given by ∆wAu = 0 is problematic: for ∆t < 0, the optimal
weight tends towards ∞ whereas for ∆t ≥ 0, there is no unique optimal weight
(∆wAu = 0, ∀w). The reason of this problem is, of course, that the model describes
only potentiation and includes no mechanisms for depression.

3.1.2 Constrained Scenario Ac: No Other Spikes Than at tdes

In order to get some insight of where the depression could come from, let us consider
a small modification of the previous model. In addition to the fact that the neuron
has to fire at time tdes, let us suppose that it should not fire anywhere else. This
condition can be implemented by an application of Eq. (6) to the case of a single
input spike x = {tpre} and a single output spike y = {tdes}. In terms of notation we
set P (y|x) = P (tdes|tpre) and similarly ρ(s|x, y) = ρ(s|tpre, tdes) and use Eq. (6) to
find:

P (tdes|tpre) = ρ(tdes|tpre) exp

[

−

∫ T

0
ρ(s|tpre, tdes)ds

]

. (11)

Note that for s ≤ tdes, the firing intensity does not depend on tdes, hence ρ(s|tpre, tdes) =
ρ(s|tpre) for s ≤ tdes. We define the objective function LAc as the log-likelihood of
generating a single output spike at time tdes, given a single input spike at tpre. Hence,
with Eq. (11):

LAc = log(P (tdes|tpre))

= log(ρ(tdes|tpre))−

∫ T

0
ρ(s|tpre, tdes)ds (12)

and the gradient ascent ∆wAc = α∂LAc/∂w rule yields

∆wAc = α
ρ′(tdes|tpre)

ρ(tdes|tpre)
ε(tdes − tpre)− α

∫ T

0
ρ′(s|tpre, tdes)ε(s− tpre)ds (13)

Since we have a single postsynaptic spike at tdes, Eq. (13) can directly be plotted
as a STDP function. In Fig. 3 we distinguish two different cases. In Fig. 3A we
optimize the likelihood LAc in the absence of any teaching input. To understand
this scenario we may imagine that a postsynaptic spike has occurred spontaneously
at the desired firing time tdes. Applying the appropriate weight update calculated
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Figure 3: Optimal weight adaptation for scenario Ac given by Eq. (7) in the absence
of a teaching signal (A) and in the presence of a teaching signal (B). The weight
change in the post-before-pre is governed by the spike afterpotential uAP (t) = η(t)+
uteach(t). The duration of the teaching input is ∆T = 1 ms. The amplitude of
the current I0 is chosen so that maxt uteach(t) = 5 mV. urest is chosen such that
the spontaneous firing rate g(urest) matches the desired firing rate 1/T , i.e. urest =
∆u log 1

Tρ0
+ θ ' −60 mV. The weight strength is w = 1.

from Eq. (13) will make such a timing more likely the next time the presynaptic
stimulus is repeated. The reset amplitude η0 has only a small influence.

In Fig. 3B we consider a case where firing of the postsynaptic spike at the ap-
propriate time was made highly likely by a teaching input of duration ∆T = 1 ms
centered around the desired firing tdes. The form of the STDP function depends on
the amount η0 of the reset. If there is no reset η0 = 0, the STDP function shows
strong synaptic depression of synapses that become active after the postsynaptic
spike. This is due to the fact that the teaching input causes an increase of the
membrane potential that decays back to rest with the membrane time constant τm.
Hence the window of synaptic depression is also exponential with the same time
constant. Qualitatively the same is true, if we include a weak reset. The form of
the depression window remains the same, but its amplitude is reduced. The inverse
of the effect occurs only for strong reset to or below resting potential. A weak reset
is standard in applications of integrate-and-fire models to in vivo data and is one of
the possibilities to explain the high coefficient of variation of neuronal spike trains
in vivo (Bugmann, Christodoulou, and Taylor 1997; Troyer and Miller 1997).

A further property of the STDP functions in Fig. 3 is a negative offset for |tpre−
tdes| → ∞. The amplitude of the offset can be calculated for w ' 0 and ∆t > 0,
i.e. ∆w0 ' −ρ′(urest)

∫∞
0 ε(s)ds. This offset is due to the fact that we do not want

spikes at other times than tdes. As a result, the optimal weight w? (i.e. solution
of ∆wAu = 0), should be as negative as possible (w? → −∞ or w? → wmin in the
presence of a lower bound) for ∆t > 0 or ∆t � 0.
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3.2 Scenario B: Spontaneous Activity

The constraint in Scenario Ac of having strictly no other postsynaptic spikes than
the one at time tdes may seem artificial. Moreover, it is this constraint which leads
to the negative offset of the STDP function discussed at the end of the previous
paragraph. In order to relax the constraint of “no spiking”, we allow in scenario
B for a reasonable spontaneous activity. As above, we start with an unconstrained
scenario Bu before we turn to the constrained scenario Bc.

3.2.1 Unconstrained scenario Bu: Maximize the Firing Rate at tdes

Let us start with the simplest model which includes spontaneous activity. Scenario
Bu is the analog of the model Au, but with two differences.

First, we include spontaneous activity in the model. Since ρ(t|x, yt) depends
on the spiking history for any given trial, we have to define a quantity which is
independent of the specific realizations y of the postsynaptic spike train.

Secondly, instead of considering only one presynaptic neuron, we consider N =
200 presynaptic neurons, each of them emitting a single spike at time tj = jδt, where
δt = 1 ms (see Fig. 4A). The input pattern will therefore be described by the set of
delayed spikes x = {xj = {tj}, j = 1, . . . , N}. As long as we consider only a single
spatio-temporal spike pattern in the input, it is always possible to relabel neurons
appropriately so that neuron j + 1 fires after neuron j.
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Figure 4: Scenario B. A. N = 200 presynaptic neurons are firing one after the other
at time tj = jδt with δt = 1 ms. B. The optimal STDP function of scenario Bu.

Let us define the instantaneous firing rate ρ̄(t) that can be calculated by aver-
aging ρ(t|yt) over all realizations of postsynaptic spike trains:

ρ̄(t|x) = 〈ρ(t|x, yt)〉yt|x
. (14)

Here the notation 〈·〉yt|x
means taking the average over all possible configuration of

postsynaptic spikes up to t for a given input x. In analogy to a Poisson process,
a specific spike train with firing times yt = {t1i , t

2
i , . . . , t

F
i < t} is generated with
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probability P (yt|x) given by Eq. (6). Hence, the average 〈·〉yt|x
of Eq. (14) can be

written as follows (see appendix B for numerical evaluation of ρ̄(t)):

ρ̄(t|x) =
∞
∑

F=0

1

F !

∫ t

0
· · ·

∫ t

0
ρ(t|x, yt)P (yt|x)dtFi . . . dt1i . (15)

Analogously to the model Au, we can define the quality criterion as the log-
likelihood LBu of firing at the desired time tdes:

LBu = log(ρ̄(tdes|x)). (16)

Thus the optimal weight adaptation of synapse j is given by

∆wBu

j = α
∂ρ̄(tdes|x)/∂wj

ρ̄(tdes|x)
(17)

where ∂ρ̄(t|x)
∂wj

is given by

∂ρ̄(t|x)

∂wj
= ρ̄′(t|x)ε(t− tj) +

〈

ρ(t|x, yt)
∂

∂wj
log P (yt|x)

〉

yt|x

, (18)

∂
∂wj

log P (yt|x) is given by Eq. (7) and ρ̄′(t|x) =
〈

dg
du

∣

∣

u=u(t|x,yt)

〉

yt|x
.

Figure 4B shows that, for our standard set of parameters, the differences to
scenario Au are negligible.

Figure 5A depicts the STDP function for various values of the parameter ∆u at
a higher postsynaptic firing rate. We can see a small undershoot in the pre-before-
post region. The presence of this small undershoot can be understood as follows:
enhancing a synapse of a presynaptic neuron that fires too early would induce a
postsynaptic spike that arrives before the desired firing time and therefore, because
of refractoriness, would prevent the generation of a spike at the desired time. The
depth of this undershoot decreases with the stochasticity of the neuron and increases
with the amplitude of the refractory period (if η0 = 0, there is no undershoot).
In fact, correlations between pre- and postsynaptic firing reflect the shape of an
EPSP in the high-noise regime, whereas they show a trough for low noise (Poliakov
et al. 1997; Gerstner 2001). Our theory shows that the pre-before-post region of the
optimal plasticity function is a mirror image of these correlations.

3.2.2 Constrained scenario Bc: Firing Rate Close to ν0”

In analogy to model Ac we now introduce a constraint. Instead of imposing strictly
no spikes at times t 6= tdes, we can relax the condition and minimize deviations of
the instantaneous firing rate ρ̄(t|x, tdes) from a reference firing rate ν0. This can be
done by introducing into Eq. (16) a penalty term PB given by

PB = exp

(

−
1

T

∫ T

0

(ρ̄(t|x, tdes)− ν0)
2

2σ2
dt

)

. (19)

For small σ, deviations from the reference rate yields a large penalty. For σ → ∞,
the penalty term has no influence. The optimality criterion is a combination of a
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Figure 5: A. The optimal STDP functions of scenario Bu for different level of stochas-
ticity described by the parameter ∆u. The standard value (∆u = 3 mV) is given
by the solid line, decreased noise (∆u = 1 mV and ∆u = 0.5 mV) are indicated
by dot-dashed and dashed lines respectively . In the low-noise regime, enhancing a
synapse which fires slightly too early can prevent the firing at the desired firing time
tdes due to refractoriness. To increase the firing rate at tdes it is thence advantageous
to decrease the firing probability some time before tdes. Methods: For each value of
∆u, the initial weight w0 are set such that the spontaneous firing rate is ρ̄ = 30Hz.
In all three cases, ∆w has been multiplied by ∆u in order to normalize the ampli-
tude of the STDP function. Reset: η0 = −5 mV. B. Scenario Bc. Optimal STDP
function for scenario Bc given by Eq. (21) for a teaching signal of duration ∆T = 1
ms. The maximal increase of the membrane potential after 1 ms of stimulation with
the teaching input is maxt uteach(t) = 5 mV. Synaptic efficacies wij are initialized
such that u0 = −60 mV which gives a spontaneous rate of ρ̄ = ν0 = 5 Hz. Standard
noise level: ∆u = 3 mV.

high firing rate ρ̄ at the desired time under the constraint of small deviations from
the reference rate ν0. If we impose the penalty as a multiplicative factor and take
as before the logarithm, we get:

LBc = log
(

ρ̄(tdes|x)PB

)

(20)

Hence the optimal weight adaptation is given by

∆wBc

j = α
∂ρ̄(tdes|x)/∂wj

ρ̄(tdes|x)
−

α

Tσ2

∫ T

0
(ρ̄(t|x, tdes)− ν0)

∂

∂wj
ρ̄(t|x, tdes)dt. (21)

Since in scenario B each presynaptic neuron j fires exactly once at time tj = jδt and
the postsynaptic neuron is trained to fire at time tdes, we can interpret the weight
adaptation ∆wBc

j of Eq. (21) as a STDP function ∆wBc which depends on the time

difference ∆t = tpre − tdes. Fig. 5 shows this STDP function for different values
of the free parameter σ of Eq. (19). The higher the standard deviation σ, the less
effective is the penalty term. In the limit of σ →∞, the penalty term can be ignored
and the situation is identical to that of scenario Bu.
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3.3 Scenario C: Pattern Detection

3.3.1 Unconstrained Scenario Cu: Spike Pattern Imposed

This last scenario is a generalization of the scenario Ac. Instead of restricting the
study to a single pre- and postsynaptic neuron, we consider N presynaptic neurons
and M postsynaptic neurons (see Fig. 6). The idea is to construct M independent
detector neurons. Each detector neuron i = 1, . . . ,M , should respond best to a
specific prototype stimulus, say xi, by producing a desired spike train yi, but should
not respond to other stimuli, i.e. yi = 0, ∀xk, k 6= i (see Fig. 7). The aim is to find
a set of synaptic weights that maximize the probability that neuron i produces y i

when xi is presented and produces no output when xk, k 6= i is presented. Let the
likelihood function LCu be

LCu = log





M
∏

i=1

Pi(y
i|xi)

M
∏

k=1,k 6=i

Pi(0|x
k)

γ
M−1



 (22)

where Pi(y
i|xi) (c.f Eq. (6)) is the probability that neuron i produces the spike

train yi when the stimulus xi is presented. The parameter γ characterizes the
relative importance of the patterns that should not be learned compared to those
that should be learned. We get

LCu =

M
∑

i=1

log(Pi(y
i|xi)) + γ

〈

log(Pi(0|x
k))
〉

xk 6=xi
(23)

where the notation 〈·〉
xk 6=xi ≡ 1

M−1

∑M
k 6=i means taking the average over all

patterns other than xi. The optimal weight adaptation yields

∆wC
ij = α

∂

∂wij
log(Pi(y

i|xi)) + αγ

〈

∂

∂wij
log(Pi(0|x

k))

〉

xk 6=xi

(24)
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Figure 6: Scenario C. N presynaptic neurons are fully connected to M postsynaptic
neurons. Each postsynaptic neuron is trained to respond to a specific input pattern
and not respond to M − 1 other patterns as described by the objective function of
Eq. (22).

14



A B

0 100 200
0

200

400
xi

0 200
0

200

400

0 100 200
0

200

400

xk

0 200
0

200

400

0 100 200
0

500

1000

yi

0
0

500

1000

0 100 200
0

500

1000

yk

0
0

500

1000

0 100 200

time [ms]

0

0.2

0.4

ρ i

0 200
0

0 100 200

time [ms]

0

0.05

0.1

ρ k

0 200
0

PSfrag replacements

tpre − tdes [ms]

“good” pattern
“bad” pattern

x
i

yi

x
k

yk

ρi

ρk

time [ms]

Figure 7: Pattern detection after learning. Top. The left raster plot represents
the input pattern the ith neuron has to be sensitive to. Each line corresponds to
one of the N = 400 presynaptic neurons. Each dot represents an action potential.
The right figure represents one of the patterns the ith neuron should not respond to.
Middle. The left raster plot corresponds to 1000 repetitions of the output of neuron
i when the corresponding pattern xi is presented. The right plot is the response of
neuron i to one of the pattern it should not respond to. Bottom. The left graph
represents the probability density of firing when pattern xi is presented. This plot
can be seen as the PSTH of the middle graph. Arrows indicate the supervised timing
neuron i learned. The right graph describes the probability density of firing when
pattern xk is presented. Note the different scales of vertical axis.

The learning rule of Eq. (24) gives the optimal weight change for each synapse
and can be evaluated after presentation of all pre- and postsynaptic spike patterns,
i.e. it is a “batch” update rule. Since each pre- and postsynaptic neuron emit many
spikes in the interval [0, T ], we can not directly interpret the result of Eq. (24) as a
function of the time difference ∆t = tpre − tdes as we did in scenario A or B.

Ideally, we would like to write the total weight change of the optimal rule given
by Eq. (24) as a sum of contributions

∆wC
ij =

∑

tpre ∈ xi
j

tdes ∈ yi

∆WCu(tpre − tdes), (25)
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where ∆W Cu(tpre − tdes) is a STDP function and the summation runs over all pairs
of pre- and postsynaptic spikes. The number of pairs of pre- and postsynaptic
spikes with a given time shift is given by the correlation function which is best
defined in discrete time. We assume time steps of duration δt = 0.5 ms. Since the
correlation will depend on the presynaptic neuron j and the postsynaptic neuron
i under consideration, we introduce a new index k = N(i − 1) + j. We define the
correlation in discrete time by its matrix elements Ck∆ that describe the correlation
between the presynaptic spike train X i

j(t) and the postsynaptic spike train Y i(t −
T0 + ∆δt). For example, C3∆ = 7 implies that 7 spike pairs of presynaptic neuron
j = 3 with postsynaptic neuron i = 1 have a relative time shift of T0 −∆δt. With
this definition, we can rewrite Eq. (25) in vector notation (see appendix C.1 for
more details):

∆wC !
= C∆WCu (26)

where ∆wC = (∆wC
11, . . . ,∆wC

1N ,∆wC
21, . . . ,∆wC

MN )T is the vector containing all
the optimal weight change given by Eq. (24) and ∆WCu is the vector containing
the discretized STDP function with components ∆W Cu

∆ = ∆WCu(−T0 + ∆δt) for
1 ≤ ∆ ≤ 2T̃0 with T̃0 = T0/δ. In particular, the center of the STDP function (i.e.

tpre = tdes) corresponds to the index ∆ = T̃0. The symbol
!
= expresses the fact that

we want to find ∆WCu such that ∆wC is as close as possible to C∆WCu . By taking
the pseudo-inverse C+ = (CT C)−1CT of C, we can invert Eq. (26) and get

∆WCu = C+∆wC (27)

The resulting STDP function is plotted in Fig. 8A. As it was the case for the sce-
nario Au, the STDP function exhibits a negative offset. In addition to the fact the
postsynaptic neuron i should not fire at other times than the ones given by y i, it
should also not fire whenever pattern xk, k 6= i is presented. The presence of the
negative offset is due to those two factors.

3.3.2 Constrained Scenario Cc: Temporal Locality

In the previous paragraph, we obtained a STDP function with a negative offset. This
negative offset does not seem realistic because it implies that the STDP function
is not localized in time. In order to impose temporal locality (finite memory span
of the learning rule) we modify Eq. (27) in the following way (see appendix C.2 for
more details):

∆WCc = (CT C + P )−1CT ∆wC (28)

where P is a diagonal matrix which penalizes non-local terms. In this paper, we
take a quadratic suppression of terms that are non-local in time. With respect
to a postsynaptic spike at tdes, the penalty term is proportional to (t − tdes)2. In
matrix notation, and using our convention that the postsynaptic spike corresponds
to ∆ = T̃0, we have:

P∆∆′ = aδ∆∆′

(

∆− T̃0

)2
(29)

The resulting STDP functions for different values of a are plotted in Fig. 8B. The
higher the parameter a, the more non-local terms are penalized, the narrower is the
STDP function.

16



A B

-50 0 50

t
pre

- t
des

 [ms]

0

0.1

0.2

0.3

0.4
∆W

C
u

PSfrag replacements

tpre − tdes [ms]
∆WCu

-50 0 50

t
pre

- t
des

 [ms]

-0.1

0

0.1

0.2

∆W
C

c

a = 0.04
a = 0.4

PSfrag replacements

tpre − tdes [ms]
∆WCc

Figure 8: A. Optimal weight change for scenario Cu. In this case, no locality
constraint is imposed and the result is similar to the STDP function of scenario Ac

(with η0 = 0 and uteach(t) = 0) represented on Fig. 3. B. Optimal weight change for
scenario Cc as a function of the locality constraint characterized by a. The stronger
the importance of the locality constraint, the narrower is the spike-spike interaction.
For A and B: M = 20, η0 = −5 mV. The initial weights wij are chose so that the
spontaneous firing rate matches the imposed firing rate.

Fig. 9A shows the STDP functions for various number of patterns M . No sig-
nificant change can be observed for different numbers of input patterns M . This is
due to the appropriately chosen normalization factor 1/(M − 1) in the exponent of
Eq. (22).
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Figure 9: A. Optimal STDP function as a function of the number of input patterns
M . (a = 0.04, N = 400) B. Optimal weight change as a function of the weight w. If
the weights are small (dashed line) potentiation dominates whereas if they are big
(dotted line) depression dominates.
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The target spike trains yi have a certain number of spikes during the time window
T , i.e. they set a target value for the mean rate. Let νpost = 1

TM

∑M
i=1

∫ T

0 yi(t)dt
be the imposed firing rate. Let w0 denote the amplitude of the synaptic strength
such that the firing rate ρ̄w0

given by those weights is identical to the imposed firing
rate: ρ̄w0

= νpost. If the actual weights are smaller than w0, almost all the weights
should increase whereas if they are bigger than w0, depression should dominate (c.f
Fig 9B). Thus the exact form of the optimal STDP function depends on the initial
weight value w0. Alternatively, homeostatic process could assure that the mean
weight value is always in the appropriate regime.

In Eqs. (25) and (26) we imposed that the total weight change should be gen-
erated as a sum over pairs of pre- and postsynaptic spikes. This is an assumption
which has been made in order to establish a link to standard STDP theory and ex-
periments where spike pairs have been in the center of interest (Gerstner et al. 1996;
Kempter et al. 1999; Kistler and van Hemmen 2000; Markram et al. 1997; Bi and
Poo 1998; Zhang et al. 1998). It is, however, clear by now that the timing of spike
pairs is only one of several factors contributing to synaptic plasticity. We therefore
asked how much we miss if we attribute the ‘optimal’ weight changes calculated in
Eq. (24) to spike-pair effects only. To answer this question we compared the optimal
weight change ∆wC

ij from Eq. (24) with that derived from the pair-based STDP rule

∆wrec
ij =

∑

tpre∈xi
j

∑

tdes∈yi ∆WCc(tpre− tdes) with or without locality constraint, i.e.

for different values of the locality parameter (a = 0, 0.04, 0.4): see Fig. 10. More
precisely, we simulate M = 20 detector neurons, each one of them having N = 400
presynaptic inputs, so each subplot of Fig. 10 contains 8000 points. Each point in
a graph corresponds to the optimal change of one weight for one detector neuron
(x axis) compared to the weight change of the very same weight due to pair based
STDP (y axis). We found that in the absence of a locality constraint the pair-wise
contributions are well correlated with the optimal weight changes. With strong
locality constraints the quality of the correlation drops significantly. However, for
a weak locality constraint that corresponds to a STDP function with reasonable
potentiation and depression regimes, the correlation of the pair-based STDP rule
with the optimal update is still good. This suggests that synaptic updates with a
STDP-function based on pairs of pre- and postsynaptic spikes is close to optimal in
the ‘pattern detection’ paradigm.

4 Discussion

4.1 Supervised versus Unsupervised and Reinforcement Learning

Our approach is based upon the maximization of the probability of firing at desired
times tdes with or without constraints. From the point of view of machine learn-
ing, this is a supervised learning paradigm implemented as a maximum likelihood
approach using the spike response model with escape noise as a generative model.
Our work can be seen as a continuous-time extension of the maximum likelihood
approach proposed in Barber (2003).

The starting point of all supervised paradigms is the comparison of a desired
output with the actual output a neuron has, or would have, generated. The difference
between the desired and actual output is then used as the driving signal for synaptic
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Figure 10: Correlation plot between the optimal synaptic weight change ∆wopt =
∆wCu and the reconstructed weight change ∆wrec = C∆WCc using the temporal
locality constraint. A. No locality constraint, i.e. a = 0. Deviations from the
diagonal are due to the fact that the optimal weight change given by Eq. (24) can
not be perfectly accounted for the sum of pair effects. The mean deviations are given
by Eq. (43). B. A weak locality constraint (a = 0.04) almost does not change the
quality of the weight change reconstruction. C. Strong locality constraint (a = 0.4).
The horizontal lines arise since most synapses are subject to a few strong updates
induced by pairs of pre- and postsynaptic spike times with small time shifts.

Unconstrained scenarios Constrained scenarios

Au
pre-before-post

Ac
post-before-pre

LTP ∼ EPSP LTD (or LTP) ∼ spike afterpot.

Bu
pre-before-post

Bc

post-before-pre
LTP/LTD ∼ reverse correlation LTD ∼ increased firing rate

Cu

pre-before-post

Cc

post-before-pre
LTP ∼ EPSP LTD ∼ background patterns
LTD ∼ background patterns ∼ temporal locality

Table 2: Main results for each scenario.

updates in typical model approaches (Minsky and Papert 1969; Haykin 1994; Bishop
1995). How does this compare to experimental approaches? Experiments focusing
on STDP have been mostly performed in vitro (Markram et al. 1997; Magee and
Johnston 1997; Bi and Poo 1998). Since in typical experimental paradigms firing of
the postsynaptic neuron is enforced by strong pulses of current injection, the neuron
is not in a natural ‘unsupervised’ setting; on the other hand, the situation is also
not fully supervised, since there is never a conflict between the desired and actual
output of a neuron. In one of the rare in vivo experiments to STDP (Frégnac et al.
1988; Frégnac et al. 1992), the spikes of the postsynaptic neuron are also imposed by
current injection. Thus, a classification of STDP experiments in terms of supervised,
unsupervised, or reward based, is not as clearcut as it may seem at a first glance.

From the point of view of neuroscience, paradigms of unsupervised or reinforce-
ment are probably much more relevant than the supervised scenario discussed here.
However, most of our results from the supervised scenario analyzed in this paper,
can be reinterpreted in the context of reinforcement learning following the approach
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proposed by Xie and Seung (2004). To illustrate the link between reinforcement
learning and supervised learning, we define a global reinforcement signal R(x, y)
which depends on the spike timing of the presynaptic neurons x and the postsy-
naptic neuron y. The quantity optimized in reinforcement learning is the expected
reward 〈R〉

x,y averaged over all pre- and postsynaptic spike trains, i.e.

〈R〉
x,y =

∑

x,y

R(x, y)P (y|x)P (x) (30)

If the goal of learning is to maximize the expected reward, we can define a learn-
ing rule which achieves this goal by changing synaptic efficacies in direction of the
gradient of the expected reward 〈R〉

x,y:

〈∆w〉
x,y = α

〈

R(x, y)
∂ log P (y|x)

∂w

〉

x,y

(31)

where α is a learning parameter and ∂ log P (y|x)
∂w

is the quantity we discussed in
this paper. Thus the quantities optimized in our supervised paradigm re-appear
naturally in a reinforcement learning paradigm.

For an intuitive interpretation of the link between reinforcement learning and
supervised learning consider a postsynaptic spike that (spontaneously) occurred at
time t0. If no reward is given, no synaptic change takes place. However, if the
postsynaptic spike at t0 is linked to a rewarding situation, the synapse will try to
recreate in the next trial a spike at the same time, i.e., t0 has the role of the desired
firing time tdes introduced in this paper. Thus the STDP function with respect to
a postsynaptic spike at tdes derived in this paper, can be seen as the spike timing
dependence which maximizes the expected reward in a spike-based reinforcement
learning paradigm.

4.2 Interpretation of STDP Function

Let us now summarize and discuss our results in a broader context. In all three
scenarios, we found an STDP function with potentiation for pre-before-post timing.
Thus this result is structurally stable and independent of model details. However,
depression for post-before-pre timing does depend on model details.

In scenario A, we have seen that the behavior of the post-before-pre region is
determined by the spike afterpotential (see table 2 for a result summary of the three
models). In the presence of a teaching input and firing rate constraints, a weak
reset of the membrane potential after the spike means that the neuron effectively
has a depolarizing spike after potential (DAP). In experiments, DAPs have been
observed by Feldman (2000), Markram et al. (1997) and Bi and Poo (1998) for strong
presynaptic input. Other studies, however, have shown that the level of depression
does not depend on the postsynaptic membrane potential (Sjöström et al. 2001).
In any case, a weak reset (i.e., to a value below threshold rather than to the resting
potential) is consistent with the findings of other researchers that used integrate-
and-fire models to account for the high coefficient of variation of spike trains in vivo
(Bugmann et al. 1997; Troyer and Miller 1997).

In the presence of spontaneous activity (c.f. scenario B), a constraint on the
spontaneous firing rate causes the optimal weight change to elicit a depression of
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presynaptic spikes that arrive immediately after the postsynaptic one. In fact, the
reason of the presence of the depression in scenario Bc is directly related to the
presence of a DAP caused by the strong teaching stimulus. In both scenarios A and
B, depression occurs in order to compensate the increased firing probability due to
the DAP.

In scenario C, it has been shown that the best way to adapt the weights (in a
task where the postsynaptic neuron has to detect a specific input pattern among
others) can be described as a STDP function. This task is similar to the one in
Izhikevich (2003) in the sense that a neuron is designed to be sensitive to a specific
input pattern, but different since our work does not assume any axonal delays. The
depression part in this scenario arises from a locality constraint. We impose that
weight changes are explained by a sum of pair-based STDP functions.

There are various ways of defining objective functions and we have used three
different objective functions in this paper. The formulation of an objective function
gives a mathematical expression of the ‘functional role’ we assign to a neuron. The
functional role depends on the type of coding (temporal coding or rate coding) and
hence on the information the postsynaptic neurons will read out. The functional
role also depends on the task or context in which a neuron is embedded. It might
seem that different tasks and coding schemes could thus give rise to a huge number
of objective functions. However the reinterpretation of our approach in the context
of reinforcement learning provides a unifying viewpoint: even if the functional role
of some neurons in a specific region of the brain can be different from other neurons
of a different region, it is still possible to see the different objective functions as
different instantiations of the same underlying concept - the maximization of the
reward, where the reward is task specific.

More specifically, all objective functions used in this paper maximized the firing
probability at a desired firing time tdes - reflecting the fact that in the framework of
timing based codes, the task of a neuron is to fire at precise moments in time. With
a different assumption on the neuron’s role on signal processing, different objective
functions need to be used. An extreme case is a situation, where the neuron’s task
is to avoid firing at time tdes. A good illustration is given by the experiments done
in the electrosensory lobe (ELL) of the electric fish (Bell et al. 1997). These cells
receive two sets of input: the first one contains the pulses coming from the electric
organ while the second input conveys information about the sensory stimulus. Since
a large fraction of the sensory stimulus can be predicted by the information coming
from the electric organ, it is computationally interesting to subtract the predictable
contribution and focus only on the unpredictable part of the sensory stimulus. In
this context, a reasonable task would be precisely to ask the neuron not to fire at
time tdes where tdes is the time where the predictable simulation arrives and this
task could be defined indirectly via an appropriate reward signal. An objective
function of this type would, in the end, reverse the sign of the weight change of the
causal part (LTD for the pre-before-post region), and this is precisely what is seen
experimentally (Bell et al. 1997).

In our framework, the definition of the objective function is closely related to
the neuronal coding. In scenario C, we postulate that neurons emit a precise spike
train whenever the “correct” input is presented and be silent otherwise. This cod-
ing scheme is clearly not the most efficient one. Another possibility is to impose
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postsynaptic neurons to produce a specific but different spike train for each input
pattern and not only for the “correct” input. Such a modification of the scenario
does not dramatically change the results. The only effect is to reduce the amount
of depression and increase the amount of potentiation.

4.3 Optimality Approaches versus Mechanistic Models

Theoretical approaches to neurophysiological phenomena in general, and to synaptic
plasticity in particular, can be roughly grouped into three categories: first, biophys-
ical models that aim at explaining the STDP function from principles of ion channel
dynamics and intracelluar processes (Senn et al. 2001; Shouval et al. 2002; Abar-
banel et al. 2002; Karmarkar and Buonomano 2002); second, mathematical models
that start from a given STDP function and analyze computational principles such
as intrinsic normalization of summed efficacies or sensitivity to correlations in the
input (Kempter et al. 1999; Roberts 1999; Roberts and Bell 2000; van Rossum
et al. 2000; Kistler and van Hemmen 2000; Song et al. 2000; Song and Abbott 2001;
Kempter et al. 2001; Gütig et al. 2003); finally, models that derive ‘optimal’ STDP
properties for a given computational task (Chechik 2003; Dayan and Häusser 2004;
Hopfield and Brody 2004; Bohte and Mozer 2005; Bell and Parra 2005; Toyoizumi
et al. 2005a; Toyoizumi et al. 2005b). Optimizing the likelihood of postsynaptic
firing in a predefined interval, as we did in this paper, is only one possibility amongst
others of introducing concepts of optimality (Barlow 1961; Atick and Redlich 1990;
Bell and Sejnowski 1995) into the field of STDP. Chechik (2003) uses concepts from
information theory, but restricts his study to the classification of stationary patterns.
The paradigm considered in Bohte and Mozer (2005) is similar to our scenario Bc,
in that they use a fairly strong teaching input to make the postsynaptic neuron
fire. Bell and Parra (2005) and Toyoizumi et al. (2005a) are also using concepts
from information theory, but they are applying them to the pre- and postsynaptic
spike trains. The work of Toyoizumi et al. (2005a) is a clearcut unsupervised learn-
ing paradigm and hence distinct from the present approach. Dayan and Häusser
(2004) use concepts of optimal filter theory, but are not interested in precise firing
of the postsynaptic neuron. The work of Hopfield and Brody (2004) is similar to
our approach in that it focuses on recognition of temporal input patterns, but in our
approach we are in addition interested in triggering postsynaptic firing with precise
timing. Hopfield and Brody emphasize the repair of disrupted synapses in a network
that has previously acquired its function of temporal pattern detector.

Optimality approaches, such as ours, will never be able to make strict predictions
about the properties of neurons or synapses. Optimality criteria may, however, help
to elucidate computational principles and provide insights about potential tasks of
electrophysiological phenomena such as STDP.
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A Probability Density of a Spike Train

The probability density of generating a spike train yt = {t1i , t
2
i , . . . , t

F
i < t} with the

stochastic process defined by Eq. (5) can be expressed as follows:

P (yt) = P (t1i , . . . , t
F
i )R(t|yt) (32)

where P (t1i , . . . , t
F
i ) is the probability density of having F spikes at times t1

i , . . . , t
F
i

and R(t|yt) = exp
(

−
∫ t

tFi
ρ(t′|yt′)dt′

)

corresponds to the probability of having no

spikes from tFi to t. Since the joint probability P (t1i , . . . , t
F
i ) can be expressed as a

product of conditional probabilities

P (t1i , . . . , t
F
i ) = P (t1i )

F
∏

f=2

P (tfi |t
f−1
i , . . . , t1i ) (33)

Eq. (32) becomes

P (yt) = ρ(t1i |yt1i
) exp

(

−

∫ t1i

0
ρ(t′|yt′)dt′

)

·







F
∏

f=2

ρ(tfi |yt
f
i

) exp

(

−

∫ t
f
i

t
f−1
i

ρ(t′|yt′)dt′

)







exp

(

−

∫ t

tFi

ρ(t′|yt′)dt′

)

=







∏

t
f
i ∈yt

ρ(tfi |yt
f
i

)






exp

(

−

∫ t

0
ρ(t′|yt′)dt′

)

(34)

B Numerical Evaluation of ρ̄(t)

Since it is impossible to numerically evaluate the instantaneous firing rate ρ̄(t) with
the analytical expression given by Eq. (14), we have to do it in a different way. In
fact, there are two different ways to evaluate ρ̄(t). Before going into the details, let
us first recall that from the law of large numbers, the instantaneous firing rate is
equal to the empirical density of spikes at time t:

〈ρ(t|yt)〉yt
= 〈Y (t)〉Y (t) (35)

where Y (t) =
∑

t
f
i ∈yt

δ(t− tfi ) is one realization of the postsynaptic spike train.

Thus the first and simplest method based on the r.h.s of Eq. (35) is to build a PSTH
by counting spikes in small time bins [t, t + δt] over, say K = 10′000 repetitions of
an experiment. The second, and more advanced method, consists in evaluating the
l.h.s. of Eq. (35) by Monte-Carlo sampling: instead of averaging over all possible
spike trains yt, we generate K = 10′000 spike trains by repetition of the same
stimulus. A specific spike train yt = {t1i , t

2
i , . . . , t

F
i < t} will automatically appear

with appropriate probability given by Eq. (6). The Monte-Carlo estimation ρ̃(t) of
ρ̄(t) can be written as

ρ̃(t) =
1

P

P
∑

m=1

ρ(t|ym
t ) (36)
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where ym
t is the mth spike train generated by the stochastic process given by

Eq. (5). Since we use the analytical expression of ρ(t|ym
t ), we will call Eq. (36)

a semi-analytical estimation. Let us note that the semi-analytical estimation ρ̃(t)
converges more rapidly to the true value ρ̄(t) than the empirical estimation based
on the PSTH.

In the limit of a Poisson process, i.e. η0 = 0, the semi-analytical estimation
ρ̃(t) given by Eq. (36) is equal to the analytical expression of Eq. (14), since the
instantaneous firing rate ρ of a Poisson process is independent of the firing history
yt = {t1i , t

2
i , . . . , t

F
i < t} of the postsynaptic neuron.

C Deconvolution

C.1 Deconvolution for Spike Pairs

With a learning rule such as Eq. (24), we know the optimal weight change ∆wij for
each synapse, but we still do not know the corresponding STDP function.

Let us first define the correlation function ck(τ), k = N(i − 1) + j between the
presynaptic spike train X i

j(t) =
∑

tpre∈xi
j
δ(t− tpre) and the postsynaptic spike train

Y i(t) =
∑

tdes∈yi δ(t− tdes):

ck(τ) =

∫ T

0
Xi

j(s)Y
i(s + τ)ds, k = 1, . . . , NM (37)

where we allow a range −T0 ≤ τ ≤ T0, with T0 � T . Since the sum of the pair
based weight change ∆W should be equal to the total adaptation of weights ∆wk,
we can write:

∫ T0

−T0

ck(s)∆W (s)ds
!
= ∆wk k = 1, . . . , NM (38)

If we want to express Eq. (37) in a matrix form, we need to descretize time in
small bins δt and define the matrix element

Ck∆ =

∫ (∆+1)δt−T0

∆δt−T0

ck(s)ds (39)

Now Eq. (38) becomes

∆w
!
= C∆W (40)

where ∆w = (∆w11, . . . ,∆w1N ,∆w21, . . . ,∆wMN )T is the vector containing all
the optimal weight change and ∆W is the vector containing the discretized STDP
function, i.e. ∆W∆ = ∆W (−T0 + ∆δt), for ∆ = 1, . . . , 2T̃0 with T̃0 = T0/δt.

In order to solve the last matrix equation, we have to compute the inverse of the
non-square NM × 2T̃0 matrix C, which is known as the Moore-Penrose inverse (or
the pseudo-inverse):

C+ = (CTC)−1CT (41)

which exists only if (CT C)−1 exists. In fact, the solution given by

∆W = C+∆w (42)

minimizes the square distance

D =
1

2
(C∆W −∆w)2 (43)

24



C.2 Temporal Locality Constraint

If we want to impose a constraint of locality, we can add a term in the minimization
process of Eq. (43) and define the following:

E = D +
1

2
∆WT P∆W (44)

where P is a diagonal matrix which penalizes non-local terms. In this paper, we
take a quadratic suppression of terms that are non-local in time:

P∆∆′ = aδ∆∆′

(

∆− T̃0

)2
(45)

T̃0 corresponds to the index of the vector ∆W in Eqs. (40) and (44) for which
tpre− tdes = 0. Calculating the gradient of E given by Eq. (44) with respect to ∆W

yields
∇∆WE = CT (C∆W−∆w) + P∆W (46)

By looking at the minimal value of E, i.e. ∇∆WE = 0, we have

∆W = (CTC + P )−1CT∆w (47)

By setting a = 0, we recover the previous case.
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